MedProtect: Protecting Electronic Patient Data Using Interpolation-Based Medical Image Steganography

Keywords: data hiding, electronic patient records, information hiding, information security, medical data protection, steganography

Abstract

Electronic Patient Records (EPRS) represent critical elements of digital healthcare systems, as they contain confidential and sensitive medical information essential for patient care and clinical decision-making. Due to their sensitive nature, EPRs frequently face threats from unauthorized intrusions, security breaches and malicious attacks. Safeguarding such information has emerged as an urgent concern in medical data security. Steganography offers a compelling solution by hiding confidential data within conventional carrier objects like medical imagery. Unlike traditional cryptographic methods that merely alter the data representation, steganography conceals the existence of the information itself, thereby providing discretion, security, and resilience against unauthorized disclosure. However, embedding patient information inside medical images introduces a new challenge. The method must maintain the image's visual fidelity to prevent compromising diagnostic precision, while ensuring reversibility for complete restoration of both original imagery and concealed information. To address these challenges, this research proposes MedProtect, a reversible steganographic framework customized for medical applications. MedProtect procedure integrates pixel interpolation techniques and center-folding-based data transformation to insert sensitive records into medical imagery. This method combination ensures accurate data recovery of the original image while maintaining the image quality of the resulting image. To clarify the performance of MedProtect, this study evaluates two well-established image quality metrics, Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM). The discovery shows that the framework achieves PSNR values of 48.190 to 53.808 dB and SSIM scores between 0.9956 and 0.9980. These outcomes display the high level of visual fidelity and imperceptibility achieved by the proposed method, underscoring its effectiveness as a secure approach for protecting electronic patient records within medical imaging systems.

Downloads

Download data is not yet available.

References

S. T. Miller and R. G. Pickering, “CLINICAL CASE Use of Electronic Patient Data in Research Commentary,” American Medical Association Journal of Ethics, vol. 13, pp. 148–151, 2011, Accessed: May 20, 2025. [Online]. Available: www.virtualmentor.org

A. O. Adeniyi, J. O. Arowoogun, R. Chidi, C. A. Okolo, and O. Babawarun, “The impact of electronic health records on patient care and outcomes: A comprehensive review,” World Journal of Advanced Research and Reviews, vol. 21, no. 2, pp. 1446–1455, Feb. 2024, doi: 10.30574/wjarr.2024.21.2.0592.

E. Kim, S. M. Rubinstein, K. T. Nead, A. P. Wojcieszynski, P. E. Gabriel, and J. L. Warner, “The Evolving Use of Electronic Health Records (EHR) for Research,” Semin Radiat Oncol, vol. 29, no. 4, pp. 354–361, Oct. 2019, doi: 10.1016/J.SEMRADONC.2019.05.010.

C. N. Vorisek, M. Lehne, S. A. I. Klopfenstein, P. J. Mayer, A. Bartschke, T. Haese, and S. Thun, “Fast Healthcare Interoperability Resources (FHIR) for Interoperability in Health Research: Systematic Review,” JMIR Med Inform, vol. 10, no. 7, Jul. 2022, doi: 10.2196/35724.

S. N. Duda, N. Kennedy, D. Conway, A. C. Cheng, V. Nguyen, T. Zayas-Cabán, and P. A. Harris, “HL7 FHIR-based tools and initiatives to support clinical research: a scoping review,” Journal of the American Medical Informatics Association, vol. 29, no. 9, pp. 1642–1653, Aug. 2022, doi: 10.1093/JAMIA/OCAC105.

A. W. Chanda D’Layla, N. J. De La Croix, T. Ahmad, and F. Han, “EHR-protect: A steganographic framework based on data-transformation to protect electronic health records,” Intelligent Systems with Applications, vol. 26, Jun. 2025, doi: 10.1016/j.iswa.2025.200493.

H. A. Khan, R. Abdulla, S. K. Selvaperumal, and A. Bathich, “IoT based on secure personal healthcare using RFID technology and steganography,” International Journal of Electrical and Computer Engineering, vol. 11, no. 4, pp. 3300–3309, Aug. 2021, doi: 10.11591/ijece.v11i4.pp3300-3309.

M. M. Hashim, S. H. Rhaif, A. A. Abdulrazzaq, A. H. Ali, and M. S. Taha, “Based on IoT Healthcare Application for Medical Data Authentication: Towards A New Secure Framework Using Steganography,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Aug. 2020. doi: 10.1088/1757-899X/881/1/012120.

K. Shimada, R. Suketomo, M. Misumi, M. Inagaki, and T. Kodama, “Physical security attacks on symbol masking schemes using time-spread cryptographic keys in digital coherent communication,” Opt Commun, vol. 590, Oct. 2025, doi: 10.1016/j.optcom.2025.131986.

G. Kalaiarasi, B. Sudharani, S. C. Jonnalagadda, H. V. Battula, and B. Sanagala, “A Comprehensive Survey of Image Steganography,” in 2nd International Conference on Sustainable Computing and Smart Systems, ICSCSS 2024 - Proceedings, Institute of Electrical and Electronics Engineers Inc., 2024, pp. 1225–1229. doi: 10.1109/ICSCSS60660.2024.10625295.

I. F. Ramadhan, N. J. De La Croix, T. Ahmad, and A. Uzamurengera, “Huffman coding-based data reduction and quadristego logic for secure image steganography,” Engineering Science and Technology, an International Journal, vol. 65, p. 102033, May 2025, doi: 10.1016/J.JESTCH.2025.102033.

R. Apau, M. Asante, F. Twum, J. Ben Hayfron-Acquah, and K. O. Peasah, “Image steganography techniques for resisting statistical steganalysis attacks: A systematic literature review,” PLoS One, vol. 19, no. 9, p. e0308807, Sep. 2024, doi: 10.1371/journal.pone.0308807.

Z. Pakdaman, H. Nezamabadi-pour, and S. Saryazdi, “A new reversible data hiding in transform domain,” Multimed Tools Appl, vol. 80, no. 6, pp. 8931–8955, Mar. 2021, doi: 10.1007/s11042-020-10058-6.

S. Hemalatha, U. D. Acharya, A. Renuka, P. R. Kamath, “A Secure Color Image Steganography in Transform Domain,” International Journal on Cryptography and Information Security, vol. 3, no. 1, pp. 17–24, Mar. 2013, doi: 10.5121/ijcis.2013.3103.

H. Ye, K. Su, X. Cheng, and S. Huang, “Research on reversible image steganography of encrypted image based on image interpolation and difference histogram shift,” IET Image Process, vol. 16, no. 7, pp. 1959–1972, May 2022, doi: 10.1049/ipr2.12461.

G. Gao, S. Tong, Z. Xia, B. Wu, L. Xu, and Z. Zhao, “Reversible data hiding with automatic contrast enhancement for medical images,” Signal Processing, vol. 178, p. 107817, Jan. 2021, doi: 10.1016/J.SIGPRO.2020.107817.

Q. Wang and R. K. Ward, “A new orientation-adaptive interpolation method,” IEEE Transactions on Image Processing, vol. 16, no. 4, pp. 889–900, Apr. 2007, doi: 10.1109/TIP.2007.891794.

T. C. Lu, J. H. Wu, and C. C. Huang, “Dual-image-based reversible data hiding method using center folding strategy,” Signal Processing, vol. 115, pp. 195–213, Oct. 2015, doi: 10.1016/J.SIGPRO.2015.03.017.

T. N. Vo and T. C. Lu, “Dynamic payload adjustment in image steganography through interpolation and center folding strategies,” Signal Processing, vol. 235, p. 110030, Oct. 2025, doi: 10.1016/J.SIGPRO.2025.110030.

K. Mavrogiorgos, A. Kiourtis, A. Mavrogiorgou, S. Kleftakis, and D. Kyriazis, “A Multi-layer Approach for Data Cleaning in the Healthcare Domain,” ACM International Conference Proceeding Series, pp. 22–28, Jan. 2022, doi: 10.1145/3512850.3512856.

S. J. Devaraj, “Emerging Paradigms in Transform-Based Medical Image Compression for Telemedicine Environment,” Telemedicine Technologies: Big Data, Deep Learning, Robotics, Mobile and Remote Applications for Global Healthcare, pp. 15–29, Jan. 2019, doi: 10.1016/B978-0-12-816948-3.00002-7.

K. H. Jung and K. Y. Yoo, “Data hiding method using image interpolation,” Comput Stand Interfaces, vol. 31, no. 2, pp. 465–470, Feb. 2009, doi: 10.1016/j.csi.2008.06.001.

C. F. Lee and Y. L. Huang, “An efficient image interpolation increasing payload in reversible data hiding,” Expert Syst Appl, vol. 39, no. 8, pp. 6712–6719, Jun. 2012, doi: 10.1016/j.eswa.2011.12.019.

A. Malik, G. Sikka, and H. K. Verma, “A Reversible Data Hiding Scheme for Interpolated Images Based on Pixel Intensity Range,” Multimed Tools Appl, vol. 79, no. 25–26, pp. 18005–18031, Jul. 2020, doi: 10.1007/s11042-020-08691-2.

R. Punia, A. Malik, and S. Singh, “An interpolation-based reversible data hiding scheme for internet of things applications,” Discover Internet of Things, vol. 3, no. 1, pp. 1–16, Dec. 2023, doi: 10.1007/S43926-023-00048-Z/TABLES/4.

S. Solak and G. Tezcan, “A New Dual Image Based Reversible Data Hiding Method Using Most Significant Bits and Center Shifting Technique,” Applied Sciences 2022, Vol. 12, Page 10933, vol. 12, no. 21, p. 10933, Oct. 2022, doi: 10.3390/APP122110933.

C. Shaji and I. Shatheesh Sam, “New Center Folding Strategy Encoding for Reversible Data Hiding in Dual Stego Images,” 2021, pp. 83–89. doi: 10.1007/978-981-16-2248-9_9.

V. A. Pham, N. H. Nguyen, Q. H. Le, K. S. Nguyen, T. L. Cao, and M. T. Pham, “Reversible image authentication using a central folding strategy with two images,” Multimed Tools Appl, vol. 83, no. 24, pp. 64441–64465, Jul. 2024, doi: 10.1007/s11042-024-18165-4.

B. Albertina, M. Watson, C. Holback, R. Jarosz, S. Kirk, Y. Lee, K. Rieger-Christ, and J. Lemmerman, “The Cancer Genome Atlas Lung Adenocarcinoma Collection (TCGA-LUAD) (Version 4) [Data set].” Accessed: Aug. 2025. [Online]. Available: https://www.cancerimagingarchive.net/collection/tcga-luad/

“National Alliance for Medical Image Computing.” Accessed: Aug. 13, 2025. [Online]. Available: https://www.na-mic.org/

“Lorem Ipsum - All the facts - Lipsum generator.” Accessed: May 19, 2025. [Online]. Available: https://www.lipsum.com/

C. Ding, M. Zhang and Y. Gu, “Study on image quality Control Method based on Gaussian Noise,” J Phys Conf Ser, vol. 2029, no. 1, p. 012034, Sep. 2021, doi: 10.1088/1742-6596/2029/1/012034.

T. O. Hodson, T. M. Over, and S. S. Foks, “Mean Squared Error, Deconstructed,” J Adv Model Earth Syst, vol. 13, no. 12, p. e2021MS002681, Dec. 2021, doi: 10.1029/2021MS002681.

D. S. K. Karunasingha, “Root mean square error or mean absolute error? Use their ratio as well,” Inf Sci (N Y), vol. 585, pp. 609–629, Mar. 2022, doi: 10.1016/J.INS.2021.11.036.

V. Mudeng, M. Kim, and S. W. Choe, “Prospects of Structural Similarity Index for Medical Image Analysis,” Applied Sciences 2022, Vol. 12, Page 3754, vol. 12, no. 8, p. 3754, Apr. 2022, doi: 10.3390/APP12083754.

D. R. I. M. Setiadi, “PSNR vs SSIM: imperceptibility quality assessment for image steganography,” Multimed Tools Appl, vol. 80, no. 6, pp. 8423–8444, Mar. 2021, doi: 10.1007/s11042-020-10035-z.

M. R. H. Aminy, N. J. De La Croix, and T. Ahmad, “A Reversible Data Hiding Approach in Medical Images Using Difference Expansion,” Proceedings - 2023 15th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2023, pp. 358–362, 2023, doi: 10.1109/CICN59264.2023.10402139.

M. S. Ananti, A. W. C. D’Layla, N. J. D. La Croix, and T. Ahmad, “FuzzyStego: An Adaptive Steganographic Scheme Using Fuzzy Logic for Optimizing Embeddable Areas in Spatial Domain Images,” Computers, Materials & Continua, vol. 0, no. 0, pp. 1–10, 2025, doi: 10.32604/cmc.2025.061246.

S. Karakus and E. Avci, “A new image steganography method with optimum pixel similarity for data hiding in medical images,” Med Hypotheses, vol. 139, p. 109691, Jun. 2020, doi: 10.1016/J.MEHY.2020.109691.

A. Z. Hussain and M. A. A. Khoder, “Securing Medical Images Using Chaotic Map Encryption and LSB Steganography,” Revue d’Intelligence Artificielle, vol. 38, no. 1, pp. 313–321, Feb. 2024, doi: 10.18280/RIA.380133.

Published
2025-09-01
How to Cite
[1]
A. R. Muhammad, I. F. Ramadhan, N. J. D. L. Croix, T. Ahmad, D. Uwizeye, and E. Kantarama, “MedProtect: Protecting Electronic Patient Data Using Interpolation-Based Medical Image Steganography”, j.electron.electromedical.eng.med.inform, vol. 7, no. 4, pp. 1012-1027, Sep. 2025.
Section
Medical Informatics