Dual Attention and Channel Atrous Spatial Pyramid Pooling Half-UNet for Polyp Segmentation

Keywords: Colorectal Cancer, Polyp Segmentation, Deep Learning, Computational Efficiency, DACHalf-UNet

Abstract

Colorectal cancer (CRC) is a leading cause of cancer-related deaths, with two million cases detected in 2020 and causing one million deaths annually. Approximately 95% of CRC cases originate from colorectal adenomatous polyps. Early detection through accurate polyp segmentation is crucial for preventing and treating CRC effectively. While colonoscopy screening remains the primary detection method, its limitations have prompted the development of Computer-Aided Diagnostic (CAD) systems enhanced by deep learning models. This study proposes a novel neural network architecture called Dual Attention and Channel Atrous Spatial Pyramid Pooling Half-UNet (DACHalf-UNet) for medical polyp image segmentation that balances optimal performance with computational efficiency. The proposed model builds upon the U-Net framework by integrating Double Squeeze-and-Excitation (DSE) blocks in the encoder after the Ghost Module, Channel Atrous Spatial Pyramid Pooling (CASPP) in the bottleneck and decoder, and Attention Gate (AG) mechanisms within the architecture. DACHalf-UNet was trained and evaluated on the CVC-ClinicDB and Kvasir-SEG datasets for 70 epochs. Evaluations demonstrated superior performance with F1-Score and IoU values of 94.23% and 89.28% on CVC-ClinicDB, and 88.40% and 81.47% on Kvasir-SEG, respectively. Comparative analysis showed that DACHalf-UNet outperforms existing architectures including U-Net, U-Net++, ResU-Net, AGU-Net, CSAP-UNet, PRCNet, UNeXt, and UNeSt. Notably, the model achieves this performance with only 0.56 million trainable parameters and 30.29 GFLOPs, significantly reducing computational complexity compared to previous methods. These results demonstrate that DACHalf-UNet effectively addresses the need for accurate and efficient polyp segmentation, potentially enhancing CAD systems and contributing to improved CRC detection and treatment outcomes.

Downloads

Download data is not yet available.

References

L. Lu, S. Chen, H. Tang, X. Zhang, and X. Hu, “A multi-scale perceptual polyp segmentation network based on boundary guidance,” Image Vis. Comput., vol. 138, p. 104811, Oct. 2023, doi: 10.1016/j.imavis.2023.104811.

H. Xia, Y. Qin, Y. Tan, and S. Song, “BA-Net: Brightness prior guided attention network for colonic polyp segmentation,” Biocybern. Biomed. Eng., vol. 43, no. 3, pp. 603–615, Jul. 2023, doi: 10.1016/j.bbe.2023.08.001.

S. Ghosh, A. Bandyopadhyay, S. Sahay, R. Ghosh, I. Kundu, and K. C. Santosh, “Colorectal Histology Tumor Detection Using Ensemble Deep Neural Network,” Eng. Appl. Artif. Intell., vol. 100, p. 104202, Apr. 2021, doi: 10.1016/j.engappai.2021.104202.

C. Wang, R. Xu, S. Xu, W. Meng, and X. Zhang, “Automatic polyp segmentation via image-level and surrounding-level context fusion deep neural network,” Eng. Appl. Artif. Intell., vol. 123, p. 106168, Aug. 2023, doi: 10.1016/j.engappai.2023.106168.

L. Yang, C. Zhai, Y. Liu, and H. Yu, “CFHA-Net: A polyp segmentation method with cross-scale fusion strategy and hybrid attention,” Comput. Biol. Med., vol. 164, p. 107301, Sep. 2023, doi: 10.1016/j.compbiomed.2023.107301.

G. Liu et al., “CAFE-Net: Cross-Attention and Feature Exploration Network for polyp segmentation,” Expert Syst. Appl., vol. 238, p. 121754, Mar. 2024, doi: 10.1016/j.eswa.2023.121754.

L. Meng, Y. Li, and W. Duan, “Three-stage polyp segmentation network based on reverse attention feature purification with Pyramid Vision Transformer,” Comput. Biol. Med., vol. 179, p. 108930, Sep. 2024, doi: 10.1016/j.compbiomed.2024.108930.

W. Zhang, F. Lu, H. Su, and Y. Hu, “Dual-branch multi-information aggregation network with transformer and convolution for polyp segmentation,” Comput. Biol. Med., vol. 168, p. 107760, Jan. 2024, doi: 10.1016/j.compbiomed.2023.107760.

H. Prasetyo, M. A. F. Rohman, A. W. H. Prayuda, and J.-M. Guo, “Enhancing Polyp Segmentation Efficiency Using Pixel Channel Attention HalfU-Net,” in 2024 IEEE 10th Information Technology International Seminar (ITIS), Surabaya, Indonesia: IEEE, Nov. 2024, pp. 381–386. doi: 10.1109/itis64716.2024.10845590.

J. Li et al., “PRCNet: A parallel reverse convolutional attention network for colorectal polyp segmentation,” Biomed. Signal Process. Control, vol. 95, p. 106336, Sep. 2024, doi: 10.1016/j.bspc.2024.106336.

G. Yue, W. Han, S. Li, T. Zhou, J. Lv, and T. Wang, “Automated polyp segmentation in colonoscopy images via deep network with lesion-aware feature selection and refinement,” Biomed. Signal Process. Control, vol. 78, p. 103846, Sep. 2022, doi: 10.1016/j.bspc.2022.103846.

Y. Liu, Y. Yang, Y. Jiang, and Z. Xie, “Multi-view orientational attention network combining point-based affinity for polyp segmentation,” Expert Syst. Appl., vol. 249, p. 123663, Sep. 2024, doi: 10.1016/j.eswa.2024.123663.

D. Shao, H. Yang, C. Liu, and L. Ma, “AFANet: Adaptive feature aggregation for polyp segmentation,” Med. Eng. Phys., vol. 125, p. 104118, Mar. 2024, doi: 10.1016/j.medengphy.2024.104118.

C. Guo, M. Szemenyei, Y. Yi, W. Wang, B. Chen, and C. Fan, “SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation,” in 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy: IEEE, Jan. 2021, pp. 1236–1242. doi: 10.1109/ICPR48806.2021.9413346.

Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation,” IEEE Trans. Med. Imaging, vol. 39, no. 6, pp. 1856–1867, Jun. 2020, doi: 10.1109/TMI.2019.2959609.

J. Li, P. Ding, F. Lin, Z. Chen, A. A. Heidari, and H. Chen, “UNeSt: A fast segmentation network for colorectal polyps based on MLP and deep separable convolution,” Biomed. Signal Process. Control, vol. 100, p. 107165, Feb. 2025, doi: 10.1016/j.bspc.2024.107165.

H. Lu, Y. She, J. Tie, and S. Xu, “Half-UNet: A Simplified U-Net Architecture for Medical Image Segmentation,” Front. Neuroinformatics, vol. 16, p. 911679, Jun. 2022, doi: 10.3389/fninf.2022.911679.

X. Shu, J. Wang, A. Zhang, J. Shi, and X.-J. Wu, “CSCA U-Net: A channel and space compound attention CNN for medical image segmentation,” Artif. Intell. Med., vol. 150, p. 102800, Apr. 2024, doi: 10.1016/j.artmed.2024.102800.

O. Oktay et al., “Attention U-Net: Learning Where to Look for the Pancreas,” 2018, arXiv. doi: 10.48550/ARXIV.1804.03999.

B. Xiong et al., “FCT-Net: A dual-encoding-path network fusing atrous spatial pyramid pooling and transformer for pavement crack detection,” Eng. Appl. Artif. Intell., vol. 137, p. 109190, Nov. 2024, doi: 10.1016/j.engappai.2024.109190.

S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional Block Attention Module,” 2018, arXiv. doi: 10.48550/ARXIV.1807.06521.

J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodríguez, and F. Vilariño, “WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians,” Comput. Med. Imaging Graph., vol. 43, pp. 99–111, Jul. 2015, doi: 10.1016/j.compmedimag.2015.02.007.

D. Jha et al., “Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep Learning,” IEEE Access, vol. 9, pp. 40496–40510, 2021, doi: 10.1109/ACCESS.2021.3063716.

K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “GhostNet: More Features from Cheap Operations,” Mar. 13, 2020, arXiv: arXiv:1911.11907. doi: 10.48550/arXiv.1911.11907.

H. Al Jowair, M. Alsulaiman, and G. Muhammad, “Multi parallel U-net encoder network for effective polyp image segmentation,” Image Vis. Comput., vol. 137, p. 104767, Sep. 2023, doi: 10.1016/j.imavis.2023.104767.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, vol. 9351, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds., in Lecture Notes in Computer Science, vol. 9351. , Cham: Springer International Publishing, 2015, pp. 234–241. doi: 10.1007/978-3-319-24574-4_28.

F. I. Diakogiannis, F. Waldner, P. Caccetta, and C. Wu, “ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data,” ISPRS J. Photogramm. Remote Sens., vol. 162, pp. 94–114, Apr. 2020, doi: 10.1016/j.isprsjprs.2020.01.013.

M. A. F. Rohman, H. M. Akbar, A. D. A. Firdaus, and H. Prasetyo, “AGU-NET: AttentionGhostU-NetUntuk Segmentasi Penyakit Polip Berbasis Citra Biomedis,” vol. 1, 2023.

X. Fan, J. Zhou, X. Jiang, M. Xin, and L. Hou, “CSAP-UNet: Convolution and self-attention paralleling network for medical image segmentation with edge enhancement,” Comput. Biol. Med., vol. 172, p. 108265, Apr. 2024, doi: 10.1016/j.compbiomed.2024.108265.

J. M. J. Valanarasu and V. M. Patel, “UNeXt: MLP-Based Rapid Medical Image Segmentation Network,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2022, vol. 13435, L. Wang, Q. Dou, P. T. Fletcher, S. Speidel, and S. Li, Eds., in Lecture Notes in Computer Science, vol. 13435. , Cham: Springer Nature Switzerland, 2022, pp. 23–33. doi: 10.1007/978-3-031-16443-9_3.

Published
2025-05-28
How to Cite
[1]
B. D. Sarira and H. Prasetyo, “Dual Attention and Channel Atrous Spatial Pyramid Pooling Half-UNet for Polyp Segmentation”, j.electron.electromedical.eng.med.inform, vol. 7, no. 3, pp. 680-691, May 2025.
Section
Medical Engineering