Automated Detection of Porcine Gelatin Using Deep Learning-Based E-Nose to Support Halal Authentication

Keywords: e-nose, halal authentication, integrated e-nose, porcine gelatin detection, RNN

Abstract

Authenticating gelatin sources is essential for consumers, particularly those with dietary restrictions or religious concerns regarding pork-derived ingredients. Porcine gelatin, widely used in food and pharmaceutical products, poses considerable challenges for authentication due to its prevalence and the difficulty of detecting it, especially in processed products. In this study, we developed and evaluated an integrated electronic nose (e-nose) system with a Recurrent Neural Network (RNN) to detect and classify gelatin type based on their sources. The e-nose system utilized an array of gas sensors to capture the unique volatile organic compounds (VOCs) associated with each gelatin type, which was subsequently classified by the RNN. The classification performance of the integrated 7-module e-nose system showed promising results based on time points after sample preparation, with accuracy, sensitivity, and AUC of 96.3%, 96.6%, and 98.2% at the 0-hour point, respectively, rising to 99.1% for all three metrics at 2-hour point. The sensitivity of the system also showed an increase over time for single gelatin samples, from 100%, 97.8%, and 91.9% to 98.6%, 99.3%, and 99.3% for pig-derived, cow-derived, and fish gelatin, respectively. For mixed gelatin samples, the system maintained high accuracy, sensitivity, and AUC at 98.2%, 97.9%, and 98.1%, respectively. In conclusion, the integrated e-nose system demonstrates the potential for robust performance in gelatin authentication, paving the way for more efficient and reliable methods of halal food authentication.

Downloads

Download data is not yet available.

References

Shaari, H., Ahmad, N., Md Salleh, S., Mohd Mokhtar, S. S., Yusoff, R. Z., Khamwon, A., & Putatchote, N. “Does halal product availability and accessibility enhance halal aw areness and intention to purchase halal packaged food products: Malaysia and Thailand's halal industry perspective”. International Journal of Supply Chain Management. Feb. 2020.

Khan, M. M., Asad, H., & Mehboob, I. “Investigating the consumer behavior for halal endorsed products: Case of an emerging Muslim market”. Journal of Islamic Marketing, 8(4), 625-641. Nov. 2017. doi: 10.1108/JIMA-09-2015-0068.

Lubis, H. N., Mohd-Naim, N. F., Alizul, N. N., & Ahmed, M. U. “From market to food plate: Current trusted technology and innovations in halal food analysis”. Trends in Food Science & Technology, 58, 55-68. Dec. 2016. doi: 10.1016/j.tifs.2016.10.024.

Ahmed Osman, O. “Fraud on Halal Food: Principles, Quality Challenges, and Safety Concerns”. In Halal and Kosher Food: Integration of Quality and Safety for Global Market Trends. pp. 131-144. Cham: Springer International Publishing. Oct. 2023. doi: 10.1007/978-3-031-41459-6_11.

Liu, D., Nikoo, M., Boran, G., Zhou, P., & Regenstein, J. M. “Collagen and gelatin”. Annual Review of Food Science and Technology, 6, 527–557. Apr. 2015. doi: 10.1146/annurev-food-031414-111800.

Rakhmanova, A., Khan, Z., Sharif, R., & Lv, X. “Meeting the requirements of halal gelatin: A mini review”. MOJ Food Proceedings Technology, 6, 477–482. Nov. 2018. doi: 10.15406/mojfpt.2018.06.00209.

Karim, A. A., & Bhat, R. “Gelatin alternatives for the food industry: Recent developments, challenges and prospects”. Trends in Food Science & Technology, 19(12), 644–656. Dec. 2008. doi: 10.1016/j.tifs.2008.08.001.

Zhang, G., Liu, T., Wang, Q., Chen, L., Lei, J., Luo, J., … Su, Z. “Mass spectrometric detection of marker peptides in tryptic digests of gelatin: A new method to differentiate between bovine and porcine gelatin”. Food Hydrocolloids, 23 (7), 2001–2007. Oct. 2009. doi: 10.1016/j.foodhyd.2009.03.010.

Alwi, Z. “Halal analysis principle for food and pharmaceutical: A case study of gelatin”, in the 19th Annual International Conference on Islamic Studies, AICIS 2019, 1-4 October 2019, Jakarta, Indonesia. doi: 10.4108/eai.1-10-2019.2291692.

Lin, C. C., Chiou, T. K., & Sung, W. C. “Characteristics of gelatin from giant grouper (Epinephelus lanceolatus) skin”. International Journal of Food Properties, 18 (11), 2339–2348. Nov. 2015. doi: 10.1080/10942912.2014.980947.

Demirhan, Y., Ulca, P., & Senyuva, H. Z. “Detection of porcine DNA in gelatin and gelatine-containing processed food products—halal/Kosher authentication”. Meat Science, 90(3), 686–689. Mar. 2012. doi: 10.1016/j.meatsci.2011.10.014.

Milovanovic, I., & Hayes, M. “Marine Gelatine from rest raw materials”. Applied Sciences, 8(12), 2407. Nov. 2018. doi: 10.3390/app8122407.

Lutz, Í., Miranda, J., Santana, P., Martins, T., Ferreira, C., Sampaio, I., ... & Gomes, G. E. “Quality analysis of genomic DNA and authentication of fisheries products based on distinct methods of DNA extraction”. Plos one, 18(2), e0282369. Feb. 2023. doi: 10.1371/journal.pone.0282369.

Nováková, L. “Challenges in the development of bioanalytical liquid chromatography–mass spectrometry method with emphasis on fast analysis”. Journal of Chromatography A, 1292, 25-37. May. 2013. doi: 10.1016/j.chroma.2012.08.087.

Kartheek, M., Smith, A. A., Muthu, A. K., & Manavalan, R. “Determination of adulterants in food: a review”. Journal of Chemical and Pharmaceutical Research, 3(2), 629-636. May. 2011.

Wojtasik-Kalinowska, I., Szpicer, A., Binkowska, W., Hanula, M., Marcinkowska-Lesiak, M., & Poltorak, A. “Effect of processing on volatile organic compounds formation of meat”. Applied Sciences, 13(2), 705. Jan. 2023. doi: 10.3390/app13020705.

Vandendriessche, T., Nicolai, B. M., & Hertog, M. L. A. T. M. “Optimization of HS SPME fast GC-MS for high-throughput analysis of strawberry aroma”. Food Analytical Methods, 6, 512-520. Apr. 2013. doi: 10.1007/s12161-012-9471-x.

Roy, M., & Yadav, B. K. “Electronic nose for detection of food adulteration: A review”. Journal of Food Science and Technology, 1-13. Mar. 2022. doi: 10.1007/s13197-021-05057-w.

Mohapatra, P., Panigrahi, S., & Amamcharla, J. “Evaluation of a commercial electronic nose system coupled with universal gas sensing chamber for sensing indicator compounds associated with meat safety”. Journal of Food Measurement and Characterization, 9, 121-129. Jun. 2015. doi: 10.1007/s11694-014-9200-9.

Kadafi, M., & Putra, R. A. “Electronic nose (e-nose) design for ARDUINO nano-based halal haram identification”. Jurnal Neutrino: Jurnal Fisika dan Aplikasinya, 13(1), 8-12. Oct. 2020. doi: 10.18860/neu.v13i1.8903.

Moshayedi, A. J., Sohail Khan, A., Hu, J., Nawaz, A., & Zhu, J. “E-nose-driven advancements in ammonia gas detection: a comprehensive review from traditional to cutting-edge systems in indoor to outdoor agriculture”. Sustainability, 15(15), 11601. Jul. 2023. doi: 10.3390/su151511601.

Wilson, A. D., & Baietto, M. “Applications and advances in electronic-nose technologies”. Sensors, 9(7), 5099-5148. Jun. 2009. doi: 10.3390/s90705099.

Kumar, A., Gaur, N., Chakravarty, S., Alsharif, M. H., Uthansakul, P., & Uthansakul, M. “Analysis of spectrum sensing using deep learning algorithms: CNNs and RNNs”. Ain Shams Engineering Journal, 15(3), 102505. Mar. 2024. doi: 10.1016/j.asej.2023.102505.

Doi, H., Watanabe, E., Shibata, H., & Tanabe, S. “A reliable enzyme linked immunosorbent assay for the determination of bovine and porcine gelatin in processed foods”. Journal of Agricultural and Food Chemistry, 57(5), 1721–1726. Mar. 2009. doi: 10.1021/jf802733y.

Tukiran, N. A., Ismail, A., Mustafa, S., & Hamid, M. “Determination of porcine gelatin in edible bird’s nest by competitive indirect ELISA based on anti-peptide polyclonal antibody”. Food Control, 59, 561–566. Jan. 2016. doi: 10.1016/j.foodcont.2015.06.039.

Lee, J.-H., Kim, M.-R., Jo, C.-H., Jung, Y.-K., Kwon, K., & Kang, T. S. “Specific PCR assays to determine bovine, porcine, fish and plant origin of gelatin capsules of dietary supplements”. Food Chemistry, 211, 253–259. Nov. 2016. doi: 10.1016/j.foodchem.2016.05.060.

Khayyira, A. S., Estepane, V. M., & Malik, A. “Rapid PCR–based detection optimization of porcine dna in gelatin capsule shell”. International Journal of Applied Pharmaceutics, 10(6), 217-223. Nov. 2018. doi: 10.22159/ijap.2018v10i6.29346.

Mohamad, N. A., Mustafa, S., Khairil Mokhtar, N. F., & El Sheikha, A. F. “Molecular beacon-based real-time PCR method for detection of porcine DNA in gelatin and gelatin capsules”. Journal of the Science of Food and Agriculture, 98(12), 4570–4577. Sep. 2018. doi: 10.1002/jsfa.8985.

Azilawati, M., Hashim, D., Jamilah, B., & Amin, I. “RP-HPLC method using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate incorporated with normalization technique in principal component analysis to differentiate the bovine, porcine and fish gelatins”. Food Chemistry, 172, 368–376. Apr. 2015. doi: 10.1016/j.foodchem.2014.09.093.

Wardani, D. P., Arifin, M., Suharyadi, E., & Abraha, K. “Quantitative detection of bovine and porcine gelatin difference using surface plasmon resonance-based biosensor”. Optical sensors, vol. 9506, 187-194. SPIE. May. 2015. doi: 10.1117/12.2086259.

Han, F., Huang, X., Aheto, J. H., Zhang, X., & Rashed, M. M. “Fusion of a low-cost electronic nose and Fourier transform near-infrared spectroscopy for qualitative and quantitative detection of beef adulterated with duck”. Analytical Methods, 14(4), 417-426. Jan. 2022. doi:10.1039/D1AY01949J

Chen, J., Yan, W., Fu, Y., Wang, L., Lv, X., Dai, R., ... & Jia, F. “The use of electronic nose in the quality evaluation and adulteration identification of beijing-you chicken”. Foods, 11(6), 782. Mar. 2022. doi: 10.3390/foods11060782.

Oates, M. J., González-Teruel, J. D., Ruiz-Abellon, M. C., Guillamon-Frutos, A., Ramos, J. A., & Torres-Sánchez, R. “Using a low-cost components e-nose for basic detection of different foodstuffs”. IEEE Sensors Journal, 22(14), 13872-13881. Jun. 2022. doi: 10.1109/JSEN.2022.3181513.

Roy, M., Doddappa, M., Yadav, B. K., Jaganmohan, R., Sinija, V. R., Manickam, L., & Sarvanan, S. “Detection of soybean oil adulteration in cow ghee (clarified milk fat): An ultrafast study using flash gas chromatography electronic nose coupled with multivariate chemometrics”. Journal of the Science of Food and Agriculture, 102(10), 4097-4108. Aug. 2022. doi: 10.1002/jsfa.11759.

Zarezadeh, M. R., Aboonajmi, M., Varnamkhasti, M. G., & Azarikia, F. “Olive oil classification and fraud detection using E-nose and ultrasonic system”. Food Analytical Methods, 14, 2199-2210. Aug. 2021. doi: 10.1007/s12161-021-02035-y.

Tian, H., Chen, B., Lou, X., Yu, H., Yuan, H., Huang, J., & Chen, C. “Rapid detection of acid neutralizers adulteration in raw milk using FGC E-nose and chemometrics”. Journal of Food Measurement and Characterization, 16(4), 2978-2988. Aug. 2022. doi: 10.1007/s11694-022-01403-4..

Rasekh, M., Karami, H., Fuentes, S., Kaveh, M., Rusinek, R., & Gancarz, M. “Preliminary study non-destructive sorting techniques for pepper (Capsicum annuum L.) using odor parameter”. LWT, 164, 113667. Jul. 2022. doi: 10.1016/j.lwt.2022.113667.

Nagamalla, V., Kumar, B. M., Janu, N., Preetham, A., Parambil Gangadharan, S. M., Alqahtani, M. A., & Ratna, R. “Detection of adulteration in food using recurrent neural network with internet of things”. Journal of Food Quality, 1, 6163649. Jun. 2022. doi:10.1155/2022/6163649.

MQ-3 specification. Available online: https://www.mysensors.org/dl/57c3ebeb071cb0e34c90057a/design/MQ-3.pdf (accessed on 20 November 2024).

MQ-4 specification. Available online: https://www.mysensors.org/dl/57c3ebeb071cb0e34c90057a/design/MQ-4.pdf (accessed on 20 November 2024)

MQ-6 specification. Available online: https://www.mysensors.org/dl/57c3ebeb071cb0e34c90057a/design/MQ-6.pdf (accessed on 20 November 2024).

Figaro Engineering Inc. TGS 822-for the Detection of Organic Solvent Vapors; Figaro Engineering Inc.: Osaka, Japan, 2002; Volume 1.

MQ-137 specification. Available online: https://www.mysensors.org/dl/57c3ebeb071cb0e34c90057a/design/NH3.pdf (accessed on 20 November 2024).

MQ-136 specification. Available online: https://www.mysensors.org/dl/57c3ebeb071cb0e34c90057a/design/MQ-136.pdf (accessed on 20 November 2024).

MQ-135 specification. Available online: https://www.az-delivery.de/en/products/mq-135-gas-sensor-modul (accessed on 20 November 2024).

Published
2025-01-13
How to Cite
[1]
K. R. Mahmudah, M. K. Biddinika, D. C. Hakika, W. P. Tresna, I. T. Sugiarto, and I. Syafarina, “Automated Detection of Porcine Gelatin Using Deep Learning-Based E-Nose to Support Halal Authentication”, j.electron.electromedical.eng.med.inform, vol. 7, no. 1, pp. 220-230, Jan. 2025.
Section
Research Paper