Comparative Analysis of Feature Extraction Techniques for Facial Paralysis Classification

  • Salamet Nur Himawan Politeknik Negeri Indramayu
  • Adi Suheryadi Informatic Department, Politeknik Negeri Indramayu, Indramayu, Indonesia
  • Kurnia Adi Cahyanto Informatic Department, Politeknik Negeri Indramayu, Indramayu, Indonesia
  • Filemon Sitanggang Informatic Department, Politeknik Negeri Indramayu, Indramayu, Indonesia
  • Kiki Adi Pamungkas Informatic Department, Politeknik Negeri Indramayu, Indramayu, Indonesia
Keywords: Facial Paralysis, Feature Extraction, Support Vector Machine, Random Forest, K-Nearest Neighbors, Local Binary Pattern, Histogram Of Oriented Gradients, Gabor Filters

Abstract

Facial paralysis significantly affects a person's ability to communicate and perform essential functions. Facial paralysis classification plays a vital role in the diagnosis and monitoring of facial disorders. Traditional diagnostic methods often rely on subjective evaluations, leading to inconsistent outcomes. The aim of this study is to evaluate and compare various feature extraction techniques to enhance the accuracy and efficiency of facial paralysis classification. The primary contribution of this research lies in its comprehensive analysis of texture-based (Local Binary Patterns, Histogram of Oriented Gradients, Gabor filters) and geometric feature extraction methods, providing insights into their respective strengths and limitations for facial paralysis detection. This study utilizes the YouTube Facial Palsy (YFP) dataset, comprising annotated images of paralyzed and non-paralyzed faces. Preprocessing included resizing images to 128x128 pixels to standardize inputs. Feature extraction methods were applied to the dataset, and the extracted features were classified using machine learning algorithms, including Support Vector Machines (SVM), Random Forest (RF), and k-Nearest Neighbors (KNN). Model performance was evaluated using accuracy, precision, recall, and F1-score metrics. The best-performing method achieved an accuracy of 85% using HOG features combined with KNN. The findings highlight that texture-based methods, particularly HOG, excel in capturing subtle asymmetries, while geometric features offer computational efficiency and interpretability with fewer extracted features. This study underscores the importance of selecting suitable feature extraction methods based on task requirements, and emphasizes the potential of hybrid approaches to leverage the strengths of different methods. Future research should explore advanced geometric descriptors and integrate hybrid models to enhance clinical applicability

Downloads

Download data is not yet available.

References

P. R. Sharma, R. M. Zuker, and G. H. Borschel, “Perspectives in the reconstruction of paediatric facial paralysis,” Curr Opin Otolaryngol Head Neck Surg, vol. 23, no. 6, pp. 470–479, Dec. 2015, doi: 10.1097/MOO.0000000000000211.

S. E. Coulson, G. R. Croxson, R. D. Adams, and N. J. O’dwyer, “Reliability of the ‘Sydney,’ ‘Sunnybrook,’ and ‘House Brackmann’ Facial Grading Systems to Assess Voluntary Movement and Synkinesis after Facial Nerve Paralysis,” Otolaryngology–Head and Neck Surgery, vol. 132, no. 4, pp. 543–549, Apr. 2005, doi: 10.1016/j.otohns.2005.01.027.

T. Wang, S. Zhang, J. Dong, L. Liu, and H. Yu, “Automatic evaluation of the degree of facial nerve paralysis,” Multimed Tools Appl, vol. 75, no. 19, pp. 11893–11908, Oct. 2016, doi: 10.1007/s11042-015-2696-0.

J. W. House and D. E. Brackmann, “Facial Nerve Grading System,” Otolaryngology–Head and Neck Surgery, vol. 93, no. 2, pp. 146–147, Apr. 1985, doi: 10.1177/019459988509300202.

B. G. Ross, G. Fradet, and J. M. Nedzelski, “Development of a Sensitive Clinical Facial Grading System,” Otolaryngology–Head and Neck Surgery, vol. 114, no. 3, pp. 380–386, Mar. 1996, doi: 10.1016/S0194-59989670206-1.

T. Ahonen, A. Hadid, and M. Pietikainen, “Face Description with Local Binary Patterns: Application to Face Recognition,” IEEE Trans Pattern Anal Mach Intell, vol. 28, no. 12, pp. 2037–2041, Dec. 2006, doi: 10.1109/TPAMI.2006.244.

A. Günay Yılmaz, U. Turhal, and V. Nabiyev, “Face presentation attack detection performances of facial regions with multi-block LBP features,” Multimed Tools Appl, vol. 82, no. 26, pp. 40039–40063, Nov. 2023, doi: 10.1007/s11042-023-14453-7.

M. M. Bouchene, “Bayesian optimization of histogram of oriented gradients (HOG) parameters for facial recognition,” J Supercomput, vol. 80, no. 14, pp. 20118–20149, Sep. 2024, doi: 10.1007/s11227-024-06259-7.

N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), IEEE, pp. 886–893. doi: 10.1109/CVPR.2005.177.

K. Verma and A. Khunteta, “Facial expression recognition using Gabor filter and multi-layer artificial neural network,” in 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC), IEEE, Aug. 2017, pp. 1–5. doi: 10.1109/ICOMICON.2017.8279123.

J. Ou, X.-B. Bai, Y. Pei, L. Ma, and W. Liu, “Automatic Facial Expression Recognition Using Gabor Filter and Expression Analysis,” in 2010 Second International Conference on Computer Modeling and Simulation, IEEE, Jan. 2010, pp. 215–218. doi: 10.1109/ICCMS.2010.45.

G. S. Parra-Dominguez, C. H. Garcia-Capulin, and R. E. Sanchez-Yanez, “Automatic Facial Palsy Diagnosis as a Classification Problem Using Regional Information Extracted from a Photograph,” Diagnostics, vol. 12, no. 7, p. 1528, Jun. 2022, doi: 10.3390/diagnostics12071528.

G. S. Parra-Dominguez, R. E. Sanchez-Yanez, and C. H. Garcia-Capulin, “Facial Paralysis Detection on Images Using Key Point Analysis,” Applied Sciences, vol. 11, no. 5, p. 2435, Mar. 2021, doi: 10.3390/app11052435.

D. W. Hosmer, S. Lemeshow, and R. X. Sturdivant, Applied Logistic Regression. Wiley, 2013. doi: 10.1002/9781118548387.

Nazish, S. I. Ullah, A. Salam, W. Ullah, and M. Imad, “COVID-19 Lung Image Classification Based on Logistic Regression and Support Vector Machine,” 2021, pp. 13–23. doi: 10.1007/978-3-030-77246-8_2.

C. Cortes and V. Vapnik, “Support-vector networks,” Mach Learn, vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.

R. Ankita, Ch. U. Kumari, Mr. Mohd. J. Mehdi, N. Tejashwini, and D. T. Pavani, “Lung Cancer Image- Feature Extraction and Classification using GLCM and SVM Classifier,” International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 11, pp. 2211–2215, Sep. 2019, doi: 10.35940/ijitee.K2044.0981119.

L. Breiman, “Random forests,” Mach Learn, vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.

P. Mekha and N. Teeyasuksaet, “Image Classification of Rice Leaf Diseases Using Random Forest Algorithm,” in 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering, IEEE, Mar. 2021, pp. 165–169. doi: 10.1109/ECTIDAMTNCON51128.2021.9425696.

B. Xu, Y. Ye, and L. Nie, “An improved random forest classifier for image classification,” in 2012 IEEE International Conference on Information and Automation, IEEE, Jun. 2012, pp. 795–800. doi: 10.1109/ICInfA.2012.6246927.

S. Sharma and H. Amhia, “Human facial expressions recognition using artificial intelligence K-Nearest Neighbor (KNN) Algorithm,” in 2022 6th International Conference on Devices, Circuits and Systems (ICDCS), IEEE, Apr. 2022, pp. 107–111. doi: 10.1109/ICDCS54290.2022.9780832.

N. S. Altman, “An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression,” Am Stat, vol. 46, no. 3, pp. 175–185, Aug. 1992, doi: 10.1080/00031305.1992.10475879.

T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans Inf Theory, vol. 13, no. 1, pp. 21–27, Jan. 1967, doi: 10.1109/TIT.1967.1053964.

T. C. ten Harkel, G. de Jong, H. A. M. Marres, K. J. A. O. Ingels, C. M. Speksnijder, and T. J. J. Maal, “Automatic grading of patients with a unilateral facial paralysis based on the Sunnybrook Facial Grading System - A deep learning study based on a convolutional neural network,” Am J Otolaryngol, vol. 44, no. 3, p. 103810, May 2023, doi: 10.1016/j.amjoto.2023.103810.

D. G. Kim, S. K. Seo, H. J. Lee, and K. S. Tae, “Deep Learning-Based Evaluation of Facial Paralysis Recognition Accuracy Using East Asian and Western Facial Datasets,” Journal of Rehabilitation Welfare Engineering & Assistive Technology, vol. 17, no. 1, pp. 48–54, Feb. 2023, doi: 10.21288/resko.2021.17.1.48.

A. Gupta, A. Anpalagan, L. Guan, and A. S. Khwaja, “Deep learning for object detection and scene perception in self-driving cars: Survey, challenges, and open issues,” Array, vol. 10, p. 100057, Jul. 2021, doi: 10.1016/j.array.2021.100057.

S. F. Ahmed et al., “Deep learning modelling techniques: current progress, applications, advantages, and challenges,” Artif Intell Rev, vol. 56, no. 11, pp. 13521–13617, Nov. 2023, doi: 10.1007/s10462-023-10466-8.

N. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The Computational Limits of Deep Learning,” in Ninth Computing within Limits 2023, LIMITS. doi: 10.21428/bf6fb269.1f033948.

G.-S. J. Hsu, J.-H. Kang, and W.-F. Huang, “Deep Hierarchical Network With Line Segment Learning for Quantitative Analysis of Facial Palsy,” IEEE Access, vol. 7, pp. 4833–4842, 2019, doi: 10.1109/ACCESS.2018.2884969.

A. Hadid, “The Local Binary Pattern Approach and its Applications to Face Analysis,” in 2008 First Workshops on Image Processing Theory, Tools and Applications, IEEE, Nov. 2008, pp. 1–9. doi: 10.1109/IPTA.2008.4743795.

L. Zhang, W. Zhou, J. Li, J. Li, and X. Lou, “Histogram of Oriented Gradients Feature Extraction Without Normalization,” in 2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), IEEE, Dec. 2020, pp. 252–255. doi: 10.1109/APCCAS50809.2020.9301715.

R. Mehrotra, K. R. Namuduri, and N. Ranganathan, “Gabor filter-based edge detection,” Pattern Recognit, vol. 25, no. 12, pp. 1479–1494, Dec. 1992, doi: 10.1016/0031-3203(92)90121-X.

S. Le Cessie and J. C. Van Houwelingen, “Ridge Estimators in Logistic Regression,” Appl Stat, vol. 41, no. 1, p. 191, 1992, doi: 10.2307/2347628.

J. Terven, D. M. Cordova-Esparza, A. Ramirez-Pedraza, E. A. Chavez-Urbiola, and J. A. Romero-Gonzalez, “Loss Functions and Metrics in Deep Learning,” Jul. 2023.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to Platt’s SMO Algorithm for SVM Classifier Design,” Neural Comput, vol. 13, no. 3, pp. 637–649, Mar. 2001, doi: 10.1162/089976601300014493.

F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Jan. 2012.

L. Breiman, “Random Forests,” Mach Learn, vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.

D. King, “Dlib-ml: A Machine Learning Toolkit,” Journal of Machine Learning Research, vol. 10, pp. 1755–1758, Jul. 2009, doi: 10.1145/1577069.1755843.

H. Kim, S. Kim, Y. Kim, and K. Park, “A Smartphone-Based Automatic Diagnosis System for Facial Nerve Palsy,” Sensors, vol. 15, no. 10, pp. 26756–26768, Oct. 2015, doi: 10.3390/s151026756.

A. Arora, A. Sinha, K. Bhansali, R. Goel, I. Sharma, and A. Jayal, “SVM and Logistic Regression for Facial Palsy Detection Utilizing Facial Landmark Features,” in Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing, New York, NY, USA: ACM, Aug. 2022, pp. 43–48. doi: 10.1145/3549206.3549216.

X. Tan, J. Yang, and J. Cao, “Facial Nerve Paralysis Assessment based on Regularized Correntropy Criterion SSELM vc and Cascade CNN,” in 2021 55th Asilomar Conference on Signals, Systems, and Computers, IEEE, Oct. 2021, pp. 1043–1047. doi: 10.1109/IEEECONF53345.2021.9723091.

X. Liu, Y. Xia, H. Yu, J. Dong, M. Jian, and T. D. Pham, “Region Based Parallel Hierarchy Convolutional Neural Network for Automatic Facial Nerve Paralysis Evaluation,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 10, pp. 2325–2332, Oct. 2020, doi: 10.1109/TNSRE.2020.3021410.

M. Sajid, T. Shafique, M. J. A. Baig, I. Riaz, S. Amin, and S. Manzoor, “Automatic Grading of Palsy Using Asymmetrical Facial Features: A Study Complemented by New Solutions,” Symmetry (Basel), vol. 10, no. 7, p. 242, Jun. 2018, doi: 10.3390/sym10070242.

Published
2025-03-07
How to Cite
[1]
S. N. Himawan, A. Suheryadi, K. A. Cahyanto, F. Sitanggang, and K. A. Pamungkas, “Comparative Analysis of Feature Extraction Techniques for Facial Paralysis Classification ”, j.electron.electromedical.eng.med.inform, vol. 7, no. 2, pp. 341-351, Mar. 2025.
Section
Electronics