Application of Hybrid Metaheuristic Algorithms for Feature Selection in Event-Related Potential Classification in Problematic Gamers Using Electroencephalograph Signal

Abstract

Online games have become a popular form of entertainment, particularly for relieving stress, and the rise in online gaming has led to an increase in problematic gaming behaviors. Excessive use of the internet for gaming has raised concerns about its neurophysiological impact, particularly on cognitive and emotional functions. Electroencephalogram signal and Event-Related Potential analysis are valuable tools for monitoring these effects. Given the vast amount of features that can be extracted from EEG signals, it is crucial to apply efficient feature selection methods to identify the most informative ones. This study utilizes the Go/No-Go Association Task combined with the recording of 16-channel EEG signals, chosen as the data-recording method to observe the response of individuals who are problematic online gamers to several stimulus themes. In this context, metaheuristic algorithms like Genetic Algorithm, Ant Colony Optimization, and Particle Swarm Optimization are employed to enhance feature selection. A hybrid approach, combining one of these methods with Binary Stochastic Fractal Search is proposed to improve classification accuracy and optimize feature selection. The results demonstrate that the hybridization of the best algorithm with B-SFS successfully selects the optimal features, achieving perfect classification performance, with an accuracy, sensitivity, and specificity of 1.00 for all respondents. This emphasizes the effectiveness of B-SFS, particularly its diffusion process, where Gaussian distribution facilitates the search for the best solution, thereby improving the reliability of feature selection for detecting problematic gaming behavior.

Downloads

Download data is not yet available.

References

K. Daniel L. and D. Paul, Internet Gaming Disorder. Elsevier, 2019. doi: 10.1016/C2016-0-04107-4.

S. Kemp, “Digital 2024: Global Overview Report.” Accessed: Mar. 11, 2024. [Online]. Available: https://datareportal.com/reports/digital-2024-global-overview-report

O. Lopez-Fernandez et al., “Problematic Internet Use among Adults: A Cross-Cultural Study in 15 Countries,” J Clin Med, vol. 12, no. 3, p. 1027, Jan. 2023, doi: 10.3390/jcm12031027.

J. Shi, R. Renwick, N. E. Turner, and B. Kirsh, “Understanding the lives of problem gamers: The meaning, purpose, and influences of video gaming,” Comput Human Behav, vol. 97, pp. 291–303, Aug. 2019, doi: 10.1016/j.chb.2019.03.023.

K. Zajac, M. K. Ginley, and R. Chang, “Treatments of internet gaming disorder: a systematic review of the evidence,” Expert Rev Neurother, vol. 20, no. 1, pp. 85–93, Jan. 2020, doi: 10.1080/14737175.2020.1671824.

S. Kashif, S. Pandey, and Z. I. Warriach, “Neurophysiological Markers of Internet Gaming Disorder: A Literature Review of Electroencephalography Studies,” Cureus, Sep. 2021, doi: 10.7759/cureus.17866.

T. L. Burleigh, M. D. Griffiths, A. Sumich, G. Y. Wang, and D. J. Kuss, “Gaming disorder and internet addiction: A systematic review of resting-state EEG studies,” Addictive Behaviors, vol. 107, p. 106429, Aug. 2020, doi: 10.1016/j.addbeh.2020.106429.

E. S. Kappenman, J. L. Farrens, W. Zhang, A. X. Stewart, and S. J. Luck, “ERP CORE: An open resource for human event-related potential research,” Neuroimage, vol. 225, p. 117465, Jan. 2021, doi: 10.1016/j.neuroimage.2020.117465.

A. Al-Nafjan, “Feature selection of EEG signals in neuromarketing,” PeerJ Comput Sci, vol. 8, p. e944, Apr. 2022, doi: 10.7717/peerj-cs.944.

E. P. Torres, E. A. Torres, M. Hernández-Álvarez, and S. G. Yoo, “EEG-Based BCI Emotion Recognition: A Survey,” Sensors, vol. 20, no. 18, p. 5083, Sep. 2020, doi: 10.3390/s20185083.

S. Mohdiwale, M. Sahu, G. R. Sinha, and V. Bhateja, “Statistical Wavelets With Harmony Search- Based Optimal Feature Selection of EEG Signals for Motor Imagery Classification,” IEEE Sens J, vol. 21, no. 13, pp. 14263–14271, Jul. 2021, doi: 10.1109/JSEN.2020.3026172.

Z. Li et al., “Enhancing BCI-Based Emotion Recognition Using an Improved Particle Swarm Optimization for Feature Selection,” Sensors, vol. 20, no. 11, p. 3028, May 2020, doi: 10.3390/s20113028.

O. P. Idowu, P. Fang, and G. Li, “Bio-Inspired Algorithms for Optimal Feature Selection in Motor Imagery-Based Brain-Computer Interface,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, Jul. 2020, pp. 519–522. doi: 10.1109/EMBC44109.2020.9176244.

S. Thirumal and J. Thangakumar, “Investigation of Hybrid Feature Selection Techniques for Autism Classification using EEG Signals,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 4, 2022, doi: 10.14569/IJACSA.2022.0130475.

A. Bouaouda and Y. Sayouti, “Hybrid Meta-Heuristic Algorithms for Optimal Sizing of Hybrid Renewable Energy System: A Review of the State-of-the-Art,” Archives of Computational Methods in Engineering, vol. 29, no. 6, pp. 4049–4083, Oct. 2022, doi: 10.1007/s11831-022-09730-x.

American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, Text Revision Dsm-5-tr. Amer Psychiatric Pub Inc, 2022.

M. Dubuson, X. Noël, C. Kornreich, C. Hanak, M. Saeremans, and S. Campanella, “A Comparative Event-Related Potentials Study between Alcohol Use Disorder, Gambling Disorder and Healthy Control Subjects through a Contextual Go/NoGo Task,” Biology (Basel), vol. 12, no. 5, p. 643, Apr. 2023, doi: 10.3390/biology12050643.

B. A. Nosek, M. R. Banaji, and B. Nosek, “The Go/No-Go Association Task.” Accessed: Sep. 20, 2023. [Online]. Available: www.briannosek.com

H. Stanislaw and N. Todorov, “Calculation of signal detection theory measures,” Behavior Research Methods, Instruments, & Computers, vol. 31, no. 1, pp. 137–149, Mar. 1999, doi: 10.3758/BF03207704.

I. Wijayanto et al., “Unlocking Early Detection and Intervention Potential: Analyzing Visual Evoked Potentials (VEPs) in Adolescents/Teenagers with Narcotics Abuse Tendencies from the TelUnisba Neuropsychology EEG Dataset (TUNDA),” Journal of Electronics, Electromedical Engineering, and Medical Informatics, vol. 6, no. 4, pp. 445–458, Sep. 2024, doi: 10.35882/jeeemi.v6i4.476.

“American Optometric Association, “Computer Vision Syndrome.” Accessed: Nov. 20, 2024. [Online]. Available: https://www.aoa.org/healthy-eyes/eye-and-vision-conditions/computer-vision-syndrome?sso=y

M. Sánchez-Brau, B. Domenech-Amigot, F. Brocal-Fernández, J. A. Quesada-Rico, and M. Seguí-Crespo, “Prevalence of Computer Vision Syndrome and Its Relationship with Ergonomic and Individual Factors in Presbyopic VDT Workers Using Progressive Addition Lenses,” Int J Environ Res Public Health, vol. 17, no. 3, p. 1003, Feb. 2020, doi: 10.3390/ijerph17031003.

M. Lu, S. Hu, Z. Mao, P. Liang, S. Xin, and H. Guan, “Research on work efficiency and light comfort based on EEG evaluation method,” Build Environ, vol. 183, p. 107122, Oct. 2020, doi: 10.1016/j.buildenv.2020.107122.

S. M. Aryani, A. Kusumawanto, J. A. Suryabrata, and C. M. Airin, “The effect of insufficient artificial lighting on workers’ moods and physiology: preliminary research,” IOP Conf Ser Earth Environ Sci, vol. 738, no. 1, p. 012028, Apr. 2021, doi: 10.1088/1755-1315/738/1/012028.

B.-K. Min, Y.-C. Jung, E. Kim, and J. Y. Park, “Bright illumination reduces parietal EEG alpha activity during a sustained attention task,” Brain Res, vol. 1538, pp. 83–92, Nov. 2013, doi: 10.1016/j.brainres.2013.09.031.

M.-C. Hsieh, Y.-Q. Zhang, R. Dong, Y.-C. Lee, and C. Ni, “Use of EEG signals, cortisol secretion, and task performance to evaluate the effects of different lighting environments on concentration level in a sustained attention task,” Int J Ind Ergon, vol. 92, p. 103371, Nov. 2022, doi: 10.1016/j.ergon.2022.103371.

S. Kotte and J. R. K. Kumar Dabbakuti, “Methods for removal of artifacts from EEG signal: A review,” J Phys Conf Ser, vol. 1706, no. 1, p. 012093, Dec. 2020, doi: 10.1088/1742-6596/1706/1/012093.

X. Jiang, G.-B. Bian, and Z. Tian, “Removal of Artifacts from EEG Signals: A Review,” Sensors, vol. 19, no. 5, p. 987, Feb. 2019, doi: 10.3390/s19050987.

A. Tharwat, “Independent component analysis: An introduction,” Applied Computing and Informatics, vol. 17, no. 2, pp. 222–249, Apr. 2021, doi: 10.1016/j.aci.2018.08.006.

D. Mika, G. Budzik, and J. Józwik, “Single Channel Source Separation with ICA-Based Time-Frequency Decomposition,” Sensors, vol. 20, no. 7, p. 2019, Apr. 2020, doi: 10.3390/s20072019.

M. Mir, F. Nasirzadeh, H. Bereznicki, P. Enticott, and S. Lee, “Investigating the effects of different levels and types of construction noise on emotions using EEG data,” Build Environ, vol. 225, p. 109619, Nov. 2022, doi: 10.1016/j.buildenv.2022.109619.

M. Saber, “Removing Powerline Interference from EEG Signal using Optimized FIR Filters,” Journal of Artificial Intelligence and Metaheuristics, vol. 1, no. 1, pp. 08–19, 2022, doi: 10.54216/JAIM.010101.

S. Winder, Analog and Digital Filter Design. Elsevier, 2002. doi: 10.1016/B978-0-7506-7547-5.X5000-3.

P. E. Clayson, C. J. Brush, and G. Hajcak, “Data quality and reliability metrics for event-related potentials (ERPs): The utility of subject-level reliability,” International Journal of Psychophysiology, vol. 165, pp. 121–136, Jul. 2021, doi: 10.1016/j.ijpsycho.2021.04.004.

J. Olichney, J. Xia, K. J. Church, and H. J. Moebius, “Predictive Power of Cognitive Biomarkers in Neurodegenerative Disease Drug Development: Utility of the P300 Event-Related Potential,” Neural Plast, vol. 2022, pp. 1–13, Nov. 2022, doi: 10.1155/2022/2104880.

D. Valakos, G. d’Avossa, D. Mylonas, J. Butler, C. Klein, and N. Smyrnis, “P300 response modulation reflects breaches of non-probabilistic expectations,” Sci Rep, vol. 10, no. 1, p. 10254, Jun. 2020, doi: 10.1038/s41598-020-67275-0.

A. Shubhadarshan and U. Gaiwale, “Effect of advancing age on event-related potentials (P300) measures,” The Egyptian Journal of Otolaryngology, vol. 40, no. 1, p. 107, Sep. 2024, doi: 10.1186/s43163-024-00685-3.

A. Bablani, D. R. Edla, D. Tripathi, and V. Kuppili, “An efficient Concealed Information Test: EEG feature extraction and ensemble classification for lie identification,” Mach Vis Appl, vol. 30, no. 5, pp. 813–832, Jul. 2019, doi: 10.1007/s00138-018-0950-y.

R. Nawaz, K. H. Cheah, H. Nisar, and V. V. Yap, “Comparison of different feature extraction methods for EEG-based emotion recognition,” Biocybern Biomed Eng, vol. 40, no. 3, pp. 910–926, Jul. 2020, doi: 10.1016/j.bbe.2020.04.005.

S. M. Qaisar and S. F. Hussain, “Effective epileptic seizure detection by using level-crossing EEG sampling sub-bands statistical features selection and machine learning for mobile healthcare,” Comput Methods Programs Biomed, vol. 203, p. 106034, May 2021, doi: 10.1016/j.cmpb.2021.106034.

I. Ahmad et al., “EEG-Based Epileptic Seizure Detection via Machine/Deep Learning Approaches: A Systematic Review,” Comput Intell Neurosci, vol. 2022, pp. 1–20, Jun. 2022, doi: 10.1155/2022/6486570.

M.-P. Hosseini, A. Hosseini, and K. Ahi, “A Review on Machine Learning for EEG Signal Processing in Bioengineering,” IEEE Rev Biomed Eng, vol. 14, pp. 204–218, 2021, doi: 10.1109/RBME.2020.2969915.

Q. Al-Tashi, S. J. Abdul Kadir, H. M. Rais, S. Mirjalili, and H. Alhussian, “Binary Optimization Using Hybrid Grey Wolf Optimization for Feature Selection,” IEEE Access, vol. 7, pp. 39496–39508, 2019, doi: 10.1109/ACCESS.2019.2906757.

E.-S. M. El-Kenawy, M. M. Eid, M. Saber, and A. Ibrahim, “MbGWO-SFS: Modified Binary Grey Wolf Optimizer Based on Stochastic Fractal Search for Feature Selection,” IEEE Access, vol. 8, pp. 107635–107649, 2020, doi: 10.1109/ACCESS.2020.3001151.

K. M. Hosny, M. A. Elaziz, I. M. Selim, and M. M. Darwish, “Classification of galaxy color images using quaternion polar complex exponential transform and binary Stochastic Fractal Search,” Astronomy and Computing, vol. 31, p. 100383, Apr. 2020, doi: 10.1016/j.ascom.2020.100383.

R. A. Thuraisingham, “Revisiting ICEEMDAN and EEG rhythms,” Biomed Signal Process Control, vol. 68, p. 102701, Jul. 2021, doi: 10.1016/j.bspc.2021.102701.

R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed, “A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction,” Journal of Applied Science and Technology Trends, vol. 1, no. 1, pp. 56–70, May 2020, doi: 10.38094/jastt1224.

O. O. Akinola, A. E. Ezugwu, J. O. Agushaka, R. A. Zitar, and L. Abualigah, “Multiclass feature selection with metaheuristic optimization algorithms: a review,” Neural Comput Appl, vol. 34, no. 22, pp. 19751–19790, Nov. 2022, doi: 10.1007/s00521-022-07705-4.

S. Zhang, L. Sun, X. Mao, C. Hu, and P. Liu, “Review on EEG‐Based Authentication Technology,” Comput Intell Neurosci, vol. 2021, no. 1, Jan. 2021, doi: 10.1155/2021/5229576.

J. Wang and M. Wang, “Review of the emotional feature extraction and classification using EEG signals,” Cognitive Robotics, vol. 1, pp. 29–40, 2021, doi: 10.1016/j.cogr.2021.04.001.

R. Arun Kumar, J. Vijay Franklin, and N. Koppula, “A Comprehensive Survey on Metaheuristic Algorithm for Feature Selection Techniques,” Mater Today Proc, vol. 64, pp. 435–441, 2022, doi: 10.1016/j.matpr.2022.04.803.

O. M. Alyasiri, Y.-N. Cheah, A. K. Abasi, and O. M. Al-Janabi, “Wrapper and Hybrid Feature Selection Methods Using Metaheuristic Algorithms for English Text Classification: A Systematic Review,” IEEE Access, vol. 10, pp. 39833–39852, 2022, doi: 10.1109/ACCESS.2022.3165814.

S. S. Gupta and R. R. Manthalkar, “Classification of visual cognitive workload using analytic wavelet transform,” Biomed Signal Process Control, vol. 61, p. 101961, Aug. 2020, doi: 10.1016/j.bspc.2020.101961.

E.-S. M. El-Kenawy, M. M. Eid, M. Saber, and A. Ibrahim, “MbGWO-SFS: Modified Binary Grey Wolf Optimizer Based on Stochastic Fractal Search for Feature Selection,” IEEE Access, vol. 8, pp. 107635–107649, 2020, doi: 10.1109/ACCESS.2020.3001151.

B. Jeong et al., “Multiple-Kernel Support Vector Machine for Predicting Internet Gaming Disorder Using Multimodal Fusion of PET, EEG, and Clinical Features,” Front Neurosci, vol. 16, Jun. 2022, doi: 10.3389/fnins.2022.856510.

J.-Y. Kim, D.-J. Kim, S.-K. Im, H.-S. Kim, and J.-S. Park, “EEG Parameter Selection Reflecting the Characteristics of Internet Gaming Disorder While Playing League of Legends,” Sensors, vol. 23, no. 3, p. 1659, Feb. 2023, doi: 10.3390/s23031659.

S. Park, J. Ha, W. Ahn, and L. Kim, “Measurement of craving among gamers with internet gaming disorder using repeated presentations of game videos: a resting-state electroencephalography study,” BMC Public Health, vol. 23, no. 1, p. 816, May 2023, doi: 10.1186/s12889-023-15750-4.

A. Azhari, A. Kurnia, and S. Swara, “Analysis the effects of games on cognitive activity of late adolescents using the electroencephalogram with the K-nearest neighbor method,” 2020. [Online]. Available: https://simple.ascee.org/1http://pubs.ascee.orgsimple@ascee.org

Published
2025-03-23
How to Cite
[1]
I. Wijayanto, S. Hadiyoso, A. S. Safitri, and T. D. Rahmaniar, “Application of Hybrid Metaheuristic Algorithms for Feature Selection in Event-Related Potential Classification in Problematic Gamers Using Electroencephalograph Signal”, j.electron.electromedical.eng.med.inform, vol. 7, no. 2, pp. 366-379, Mar. 2025.
Section
Electronics