Improving Classification of Medical Images Using ESRGAN-Based Upscaling and MobileNetV2
Abstract
Low-resolution photos are frequently problematic in the medical field when diagnosing skin and eye conditions since they can induce noise and lower the precision of classification algorithms. To overcome this, this research implements the Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) method which is used to perform upscaling, namely increasing the resolution of a low image to a high-resolution image. The research results show that ESRGAN is able to improve the quality of eye and skin images, as proven by accuracy consistency tests on the two datasets. For image classification, the MobileNetV2 model is used because this model is suitable for eye and skin datasets. Evaluation of the image retrieval system using a high-resolution dataset resulting from ESRGAN Upscaling shows an increase in accuracy of 4-17% on both datasets. In this research, the improvement in visual image quality is also proven by the high Peak Signal-to-Noise Ratio (PSNR) value, so that ESRGAN is proven to be effective in increasing image resolution and clarity, both for eye medical image datasets and skin images.
Downloads
References
T. Febrianto, L. PH, and N. Indrayati, “Peningkatan Pengetahuan Kader tentang Deteksi Dini Kesehatan Jiwa melalui Pendidikan Kesehatan Jiwa,” Jurnal Penelitian Perawat Profesional, vol. 1, no. 1, pp. 33–40, Nov. 2019, doi: 10.37287/JPPP.V1I1.17.
L. PH, S. Ayuwatini, and Y. Ardiyanti, “GAMBARAN KESEHATAN JIWA MASYARAKAT,” Jurnal Keperawatan Jiwa, vol. 6, no. 1, p. 60, Jan. 2019, doi: 10.26714/JKJ.6.1.2018.60-63.
U. Kholili, “Pengenalan Ilmu Rekam Medis Pada Masyarakat Serta Kewajiban Tenaga Kesehatan di Rumah Sakit,” Jurnal kesehatan komunitas (Journal of community health), vol. 1, no. 2, pp. 60–72, May 2011, doi: 10.25311/KESKOM.VOL1.ISS2.12.
R. Abduh, “Kajian Hukum Rekam Medis Sebagai Alat Bukti Malapraktik Medis,” DE LEGA LATA: Jurnal Ilmu Hukum, vol. 6, no. 1, pp. 221–234, Jan. 2021, doi: 10.30596/DLL.V6I1.4661.
T. E. Suharningsih, I. G. P. S. Wijaya, and A. Y. Husodo, “Sistem Pakar Penyakit Mata Merah Berbasis Web Menggunakan Metode Decision Tree dengan Forward Chaining,” Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA ), vol. 1, no. 1, pp. 57–64, Mar. 2019, doi: 10.29303/JTIKA.V1I1.2.
R. Sarki, K. Ahmed, H. Wang, Y. Zhang, J. Ma, and K. Wang, “Image Preprocessing in Classification and Identification of Diabetic Eye Diseases,” Data Sci Eng, vol. 6, no. 4, pp. 455–471, Dec. 2021, doi: 10.1007/S41019-021-00167-Z.
Verdy and E. Hartati, “KLASIFIKASI PENYAKIT MATA MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK MODEL RESNET-50,” Jurnal Rekayasa Sistem Informasi dan Teknologi, vol. 1, no. 3, pp. 199–206, Feb. 2024, doi: 10.59407/JRSIT.V1I3.529.
A. I Salsabila, A. P Gandasubrata, and M. Rifada, “Clinical Characteristics and Managements of Primary Open-Angle Glaucoma Patients at National Eye Center, Cicendo Eye Hospital, Bandung, Indonesia,” Journal of Medicine and Health, vol. 5, no. 1, pp. 43–55, Feb. 2023, doi: 10.28932/JMH.V5I1.4265.
X. Bing, W. Zhang, L. Zheng, and Y. Zhang, “Medical Image Super Resolution Using Improved Generative Adversarial Networks,” IEEE Access, vol. 7, pp. 145030–145038, 2019, doi: 10.1109/ACCESS.2019.2944862.
T. Babaqi, M. Jaradat, A. E. Yildirim, S. H. Al-Nimer, and D. Won, “Eye Disease Classification Using Deep Learning Techniques,” Jul. 2023, doi: 10.48550/arXiv.2307.10501.
W. William and C. Lubis, “KLASIFIKASI PENYAKIT MATA MENGGUNAKAN CNN,” Jurnal Ilmu Komputer dan Sistem Informasi, vol. 10, no. 1, Mar. 2022, doi: 10.24912/JIKSI.V10I1.17834.
W. Sun and Z. Chen, “Learned Image Downscaling for Upscaling using Content Adaptive Resampler,” IEEE Transactions on Image Processing, vol. 29, pp. 4027–4040, Jul. 2019, doi: 10.1109/TIP.2020.2970248.
X. Wang, L. Xie, C. Dong, and Y. Shan, “Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data,” Proceedings of the IEEE International Conference on Computer Vision, vol. 2021-October, pp. 1905–1914, 2021, doi: 10.1109/ICCVW54120.2021.00217.
G. Alwakid, W. Gouda, and M. Humayun, “Enhancement of Diabetic Retinopathy Prognostication Using Deep Learning, CLAHE, and ESRGAN,” Diagnostics, vol. 13, no. 14, Jul. 2023, doi: 10.3390/DIAGNOSTICS13142375.
YiWei Chen, “cataract dataset,” 2019. Accessed: Nov. 23, 2024. [Online]. Available: https://www.kaggle.com/datasets/jr2ngb/cataractdataset/data
Arta Kusuma, “HAM10000 Preprocessed Data,” 2018. Accessed: Nov. 24, 2024. [Online]. Available: https://www.kaggle.com/datasets/artakusuma/basedir
C. D. Watson, C. Wang, T. Lynar, and K. Weldemariam, “Investigating two super-resolution methods for downscaling precipitation: ESRGAN and CAR,” Dec. 2020, doi: 10.48550/arXiv.2012.01233.
J. Liu and N. P. Chandrasiri, “CA-ESRGAN: Super-Resolution Image Synthesis Using Channel Attention-Based ESRGAN,” IEEE Access, vol. 12, pp. 25740–25748, 2024, doi: 10.1109/ACCESS.2024.3363172.
A. Aghelan and M. Rouhani, “Fine-tuned Generative Adversarial Network-based Model for Medical Image Super-Resolution,” Nov. 2022, doi: 10.48550/arXiv.2211.00577.
M. I. A. Rohim et al., “Peningkatan Performa Pengenalan Wajah pada Gambar Low-Resolution Menggunakan Metode Super-Resolution,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 1, pp. 199–208, Feb. 2024, doi: 10.25126/JTIIK.20241117947.
X. Wang et al., “ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11133 LNCS, pp. 63–79, Sep. 2018, doi: 10.1007/978-3-030-11021-5_5.
I. J. Goodfellow et al., “Generative Adversarial Networks,” Sci Robot, vol. 3, no. January, pp. 2672–2680, Jun. 2014, doi: 10.48550/arXiv.1406.2661.
G. Alwakid, W. Gouda, and M. Humayun, “Deep Learning-Based Prediction of Diabetic Retinopathy Using CLAHE and ESRGAN for Enhancement,” Healthcare, vol. 11, no. 6, p. 863, Mar. 2023, doi: 10.3390/HEALTHCARE11060863.
J. Song, H. Yi, W. Xu, X. Li, B. Li, and Y. Liu, “ESRGAN-DP: Enhanced super-resolution generative adversarial network with adaptive dual perceptual loss,” Heliyon, vol. 9, no. 4, p. e15134, Apr. 2023, doi: 10.1016/J.HELIYON.2023.E15134.
R. C. Bituin and R. Antonio, “Ensemble Model of Lanczos and Bicubic Interpolation with Neural Network and Resampling for Image Enhancement,” ACM International Conference Proceeding Series, pp. 110–115, Jan. 2024, doi: 10.1145/3647722.3647739/ASSETS/HTML/IMAGES/IMAGE2.PNG.
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 4510–4520, Jan. 2018, doi: 10.1109/CVPR.2018.00474.
C. Guo, M. Yu, and J. Li, “Prediction of Different Eye Diseases Based on Fundus Photography via Deep Transfer Learning,” J Clin Med, vol. 10, no. 23, Dec. 2021, doi: 10.3390/JCM10235481.
M. Jahnavi, D. Rajeswara Rao, and A. Sujatha, “A Comparative Study Of Super-Resolution Interpolation Techniques: Insights For Selecting The Most Appropriate Method,” Procedia Comput Sci, vol. 233, pp. 504–517, Jan. 2024, doi: 10.1016/J.PROCS.2024.03.240.
C. Kumar, A. Choudhary, G. Singh, and Ms. D. Gupta, “Enhanced Super-Resolution Using GAN,” Int J Res Appl Sci Eng Technol, vol. 10, no. 5, pp. 2077–2080, May 2022, doi: 10.22214/IJRASET.2022.42718.
R. Sarode, S. Varpe, O. Kolte, and L. Ragha, “Image Super Resolution using Enhanced Super Resolution Generative Adversarial Network,” ITM Web of Conferences, vol. 44, p. 03054, 2022, doi: 10.1051/ITMCONF/20224403054.
O. Keles, M. A. Yilmaz, A. M. Tekalp, C. Korkmaz, and Z. Dogan, “On the Computation of PSNR for a Set of Images or Video,” 2021 Picture Coding Symposium, PCS 2021 - Proceedings, Apr. 2021, doi: 10.1109/PCS50896.2021.9477470.
K. Yamashita and K. Markov, “Medical Image Enhancement Using Super Resolution Methods,” Computational Science – ICCS 2020, vol. 12141, p. 496, 2020, doi: 10.1007/978-3-030-50426-7_37.
H. Sajati, “The Effect of Peak Signal to Noise Ratio (PSNR) Values on Object Detection Accuracy in Viola Jones Method,” Proceeding SENATIK ITD Adisutjipto Yogyakarta, vol. 4, no. 0, pp. 167–174, Nov. 2018, doi: 10.28989/SENATIK.V4I0.139.
Copyright (c) 2025 Ida Masluha, Yufis Azhar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlikel 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).