Comparative Analysis of PID and Fuzzy Temperature Control System on Infant Warmer

  • Abdul Majid Department of Medical Electronics Technology, Poltekkes Kemenkes Surabaya
  • Endang Dian Setioningsih Department of Electromedical Engieenering, Poltekkes Kemenkes Surabaya
  • Abd Kholiq Department of Medical Electronics Technology, Poltekkes Kemenkes Surabaya
  • Singgih Yudha Setiawan Department of Medical Electronics Technology, Poltekkes Kemenkes Surabaya
  • Anilkumar Suthar New LJ Institute of Engineering and Technology, Gujarat Technological University, S.G. Highway, Ahmedabad, Gujarat, India
Keywords: Infant warmer, DS18B20, PID, Fuzzy, TFT Nextion

Abstract

Infant Warmer is a life support equipment that is used to provide heat relief for normal and premature babies who are unable to maintain their own body temperature when in a new environment. The purpose of this research is to design an infant warmer using the DS18B20 sensor to analyze the efficiency and effectiveness between PID and fuzzy temperature control. This study used temperature settings of 34 °C, 35 °C, and 36 °C. The tool used for reference from standard measurements uses a standard infant warmer. When using the PID control used in the microcontroller detects the set temperature difference value with the actual temperature, the difference in value will be input to the PID control. The error value becomes PWM input on the PID control, the PID control will process the error value and determine the output value for the heater, the temperature sensor will read the actual temperature value which will be compared again with the temperature setting, the PID control will continue to process the error value and determine the PWM output value. until the actual temperature is equal to the setting temperature or the error value is zero

Downloads

Download data is not yet available.

References

[1] R. M. M. da Silva, A. Zilly, H. Ferreira, L. Pancieri, J. C. Pina, and D. F. de Mello, “Factors related to duration of hospitalization and death in premature newborns*,” Rev. da Esc. Enferm., vol. 55, pp. 1–8, 2021, doi: 10.1590/S1980-220X2019034103704.
[2] “WHO Child Growth Standards,” Dev. Med. Child Neurol., vol. 51, no. 12, pp. 1002–1002, 2009, doi: 10.1111/j.1469-8749.2009.03503.x.
[3] R. Sutan and S. Berkat, “Does cultural practice affects neonatal survival- a case control study among low birth weight babies in Aceh Province, Indonesia,” BMC Pregnancy Childbirth, vol. 14, no. 1, pp. 1–13, 2014, doi: 10.1186/1471-2393-14-342.
[4] J. Green, P. Darbyshire, A. Adams, and D. Jackson, “Looking like a proper baby: Nurses’ experiences of caring for extremely premature infants,” J. Clin. Nurs., vol. 24, no. 1–2, pp. 81–89, 2015, doi: 10.1111/jocn.12608.
[5] R. Tessier et al., “Kangaroo Mother Care: A method for protecting high-risk low-birth-weight and premature infants against developmental delay,” Infant Behav. Dev., vol. 26, no. 3, pp. 384–397, 2003, doi: 10.1016/S0163-6383(03)00037-7.
[6] M. Watkinson, “Temperature control of premature infants in the delivery room,” Clin. Perinatol., vol. 33, no. 1, pp. 43–53, 2006, doi: 10.1016/j.clp.2005.11.018.
[7] M. Leneuve-dorilas, A. Favre, G. Carles, and A. Louis, “the importance of reducing health inequalities ST AC,” vol. 7058, no. November, 2017, doi: 10.1080/14767058.2017.1403578.
[8] M. Z. H. D. W. H. K. Sun, “Central Real-time Monitoring System for Premature Baby Incubator,” 2020 IEEE 3rd Int. Conf. Saf. Prod. Informatiz., pp. 385–390, 2020, doi: 10.1109/IICSPI51290.2020.9332206.
[9] J. P. Baker, “Historical Perspective,” pp. 321–328, 2000.
[10] K. Dey and U. K. Deb, “Modeling and Simulation of Heat Transfer Phenomenon from Infant Radiant Warmer for a Newborn Baby,” Open J. Model. Simul., vol. 09, no. 02, pp. 111–123, 2021, doi: 10.4236/ojmsi.2021.92007.
[11] R. Antonucci, A. Porcella, and V. Fanos, “The infant incubator in the neonatal intensive care unit : unresolved issues and future developments,” vol. 37, pp. 587–598, 2009, doi: 10.1515/JPM.2009.109.
[12] M. Koli, P. Ladge, B. Prasad, R. Boria, and N. J. Balur, “Intelligent Baby Incubator,” Proc. 2nd Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2018, no. Iceca, pp. 1036–1042, 2018, doi: 10.1109/ICECA.2018.8474763.
[13] T. A. Tisa, Z. A. Nisha, and M. A. Kiber, “Design of an Enhanced Temperature Control System for Neonatal Incubator,” Bangladesh J. Med. Phys., vol. 5, no. 1, pp. 53–61, 2013, doi: 10.3329/bjmp.v5i1.14668.
[14] D. Trevisanuto, I. Coretti, N. Doglioni, A. Udilano, F. Cavallin, and V. Zanardo, “Effective temperature under radiant infant warmer : Does the device make a difference ? ଝ,” vol. 82, pp. 720–723, 2011, doi: 10.1016/j.resuscitation.2011.02.019.
[15] O. Yeler and M. F. Koseoglu, “Performance prediction modeling of a premature baby incubator having modular thermoelectric heat pump system,” Appl. Therm. Eng., vol. 182, no. February 2020, p. 116036, 2021, doi: 10.1016/j.applthermaleng.2020.116036.
[16] J. L. Ralphe, S. G. Silva, R. B. Dail, and D. H. Brandon, “The Association Between Very Premature Infant Body Temperatures Over Time and Respiratory Care,” Biol. Res. Nurs., vol. 23, no. 3, pp. 331–340, 2021, doi: 10.1177/1099800420969865.
[17] H. Andersson, “Implementation of PID control using Arduino microcontrollers for glucose measurements and micro incubator applications,” 2015.
[18] A. Rahmatillah, I. F. Hidayat, and A. P. Putra, “PID control design and implementation for laboratory scale infant incubator temperature using FOPDT model PID Control Design and Implementation for Laboratory Scale Infant Incubator Temperature Using FOPDT Model,” vol. 060007, no. December, 2020.
[19] Z. S. A. Rahman and F. S. A. Hussain, “Smart Incubator Based on PID Controller Smart Incubator Based on PID Controller,” no. September, 2018, doi: 10.13140/RG.2.2.21917.77282.
[20] S. Lin, G. Wang, D. Xia, L. Kong, C. Li, and W. Yi, “Design of temperature control system for infant radiant warmer based on Kalman filter-fuzzy PID Design of temperature control system for infant radiant warmer based on Kalman filter-fuzzy PID,” pp. 0–6, 2020, doi: 10.1088/1742-6596/1684/1/012140.
[21] D. B. Zimmer, A. A. P. Inks, N. Clark, and C. Sendi, “Design , Control , and Simulation of a Neonatal Incubator,” no. 3, pp. 6018–6023, 2020.
[22] M. S. A. Nampira and A. Kholiq, “A Modification of Infant Warmer with Monitoring of Oxygen Saturation , Heart Rate and Skin Temperature,” vol. 3, no. 1, pp. 1–6, 2021.
[23] N. Al, I. Farola, and H. G. Ariswati, “Nine Channel Temperature Data Logger in Measuring the Effectiveness of the Sterilization Process of Medical Instruments with Dry Sterilization,” 2021.
[24] Y. A. K. Utama, “Design of PID Disturbance Observer with Neuro Fuzzy Inverse Model for Precise Temperature Control in Infant Incubator,” Proceeding - 1st Int. Conf. Inf. Technol. Adv. Mech. Electr. Eng. ICITAMEE 2020, pp. 179–184, 2020, doi: 10.1109/ICITAMEE50454.2020.9398509.
[25] S. Skoczowski, S. Domek, K. Pietrusewicz, and B. Broel-Plater, “A method for improving the robustness of PID control,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1669–1676, 2005, doi: 10.1109/TIE.2005.858705.
[26] Y. B. Khare and Y. Singh, “PID Control of Heat Exchanger System,” Int. J. Comput. Appl., vol. 8, no. 6, pp. 22–27, 2010, doi: 10.5120/1213-1742.
[27] P. M. Oliveira and J. D. Hedengren, “An APMonitor Temperature Lab PID Control Experiment for Undergraduate Students,” IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, vol. 2019-September, pp. 790–797, 2019, doi: 10.1109/ETFA.2019.8869247.
[28] E. R. Goldman, G. P. Anderson, P. A. Brozozog-Lee, and D. Zabetakis, “SdAb heterodimer formation using leucine zippers,” Sens. Technol. Glob. Heal. Mil. Med. Environ. Monit. III, vol. 8723, p. 872313, 2013, doi: 10.1117/12.2016145.
[29] D. A. C. Bento, “IoT: NodeMCU 12e X Arduino Uno, Results of an experimental and comparative survey,” Int. J. Adv. Res. Comput. Sci. Manag. Stud., vol. 6, no. 1, pp. 46–56, 2018.
[30] A. H. Kioumars and L. Tang, “ATmega and XBee-based wireless sensing,” ICARA 2011 - Proc. 5th Int. Conf. Autom. Robot. Appl., pp. 351–356, 2011, doi: 10.1109/ICARA.2011.6144908.
[31] E. R. Goldman, G. P. Anderson, P. A. Brozozog-Lee, and D. Zabetakis, “Arduino as a learning tool,” Sens. Technol. Glob. Heal. Mil. Med. Environ. Monit. III, vol. 8723, p. 872313, 2013, doi: 10.1117/12.2016145.
[32] V. V. Rankovska and G. D. Goranov, “Interrupts in Teaching Microcontrollers Using Arduino,” 2020 29th Int. Sci. Conf. Electron. 2020 - Proc., pp. 2–5, 2020, doi: 10.1109/ET50336.2020.9238228.
[33] A. C. Bento, “An Experimental Survey with NodeMCU12e+Shield with Tft Nextion and MAX30102 Sensor,” 11th Annu. IEEE Inf. Technol. Electron. Mob. Commun. Conf. IEMCON 2020, pp. 82–86, 2020, doi: 10.1109/IEMCON51383.2020.9284870.
[34] A. Carlos, “IoT: Results of an experimental survey with NodeMCU 12e, TFT Nextion and RTC DS1307,” Int. J. Adv. Res. Eng. Sci. Technol., vol. 5, no. 1, pp. 6–14, 2018, doi: 10.26527/ijarest.150205232442.
[35] A. C. Bento, “An Experimental and Applayed Survey with Internet of Things and Nodemcu12e with Tft Nextion,” 2018 Int. Conf. Recent Innov. Electr. Electron. Commun. Eng. ICRIEECE 2018, no. July, pp. 830–834, 2018, doi: 10.1109/ICRIEECE44171.2018.9008919.
Published
2022-10-29
How to Cite
[1]
A. Majid, Endang Dian Setioningsih, A. Kholiq, S. Y. Setiawan, and A. Suthar, “Comparative Analysis of PID and Fuzzy Temperature Control System on Infant Warmer”, j.electron.electromedical.eng.med.inform, vol. 4, no. 4, pp. 223–228, Oct. 2022.
Section
Research Paper