Deep Learning Based Ovarian Cancer Classification Using EfficientNetB2 with Attention Mechanism

Keywords: Ovarian Cancer, Cancer Subtype Classification, Histopathological Image Analysis, Deep Learning, EfficientNetB2

Abstract

Ovarian cancer is a gynecological malignancy comprising multiple histopathological subtypes. Traditional diagnostic tools like histopathology and CA-125 tests suffer from limitations, including inter-observer variability, low specificity, and time-consuming procedures, often leading to delayed or incorrect diagnoses, which are subjective and error-prone. Conventional machine learning models, such as K-Nearest Neighbors (KNN) and Support Vector Machine (SVM), have been applied but often struggle with high-dimensional image data and fail to extract deep morphological features. This study proposes a DL-based framework to classify ovarian cancer subtypes from histopathological images, aiming to enhance diagnostic accuracy and clinical decision-making. Initially, Deep learning was applied using pre-trained architectures such as VGG-16, Xception, and EfficientNetB2. However, the standout innovation in this study is the integration of EfficientNetB2 with Convolutional Block Attention Module (CBAM), an attention mechanism module. An attention mechanism allows the model to focus on the most informative regions of the image, thereby improving diagnostic precision. The proposed system was trained and validated on a diverse, well-structured dataset, achieving high accuracy and strong generalization capability. EfficientNetB2 with CBAM outperformed other models, achieving a 91% accuracy rate compared to 52% for VGG-16, 72% for Xception, and 82% for the baseline EfficientNetB2 model. This attention-enhanced, scalable AI model demonstrates strong potential for clinical application. It provides faster and more efficient classification of ovarian cancer subtypes compared to conventional approaches. The framework has the potential to improve survival outcomes for patients with ovarian cancer. The proposed system demonstrates a significant improvement in ovarian cancer subtype classification (High-Grade Serous Carcinoma, Low-Grade Serous Carcinoma, Clear-Cell, Endometrioid, and Mucinous Carcinoma). It provides a practical tool for aiding early diagnosis and treatment planning, with potential for integration into clinical workflows.

Downloads

Download data is not yet available.

References

P. Gaona-Luviano, L. A. Medina-Gaona, and K. Magaña-Pérez, “Epidemiology of ovarian cancer,” Chin. Clin. Oncol., vol. 9, no. 4, pp. 47–47, Aug. 2020, doi: 10.21037/cco-20-34.

H. S. Zelisse et al., “Improving histotyping precision: The impact of immunohistochemical algorithms on epithelial ovarian cancer classification,” Hum. Pathol., vol. 151, p. 105631, Sept. 2024, doi: 10.1016/j.humpath.2024.105631.

R. U. K, A. P. Elango, R. Subramanian, and S. Ks, “The Evolving Landscape of Ovarian Cancer: Innovations in Biotechnology and Artificial Intelligence- Based Screening and Treatment,” Curr. Treat. Options Oncol., vol. 26, no. 7, pp. 622–637, July 2025, doi: 10.1007/s11864-025-01331-7.

A. R. Yadav and S. K. Mohite, “Cancer- A Silent Killer: An Overview,” Asian J. Pharm. Res., vol. 10, no. 3, pp. 213–216, Aug. 2020, doi: 10.5958/2231-5691.2020.00036.2.

M. Itani et al., “Imaging of abdominal and pelvic infections in the cancer patient,” Abdom. Radiol. N. Y., vol. 46, no. 6, pp. 2920–2941, 2021, doi: 10.1007/s00261-020-02896-7.

N. K. Bhoi, H. Singh, and H. S. Nanda, Eds., Advanced Functional and Composite Materials: Fabrication, Characterization, and Applications. New York: CRC Press, 2025.

D. Goyal, B. Pratap, S. Gupta, S. Raj, R. R. Agrawal, and I. Kishor, Eds., Recent Advances in Sciences, Engineering, Information Technology & Management. London: CRC Press, 2025. doi: 10.1201/9781003598152.

V. V. P. Wibowo, Z. Rustam, S. Hartini, F. Maulidina, I. Wirasati, and W. Sadewo, “Ovarian cancer classification using K-Nearest Neighbor and Support Vector Machine,” J. Phys. Conf. Ser., vol. 1821, no. 1, p. 012007, Mar. 2021, doi: 10.1088/1742-6596/1821/1/012007.

A. Sorayaie Azar et al., “Application of machine learning techniques for predicting survival in ovarian cancer,” BMC Med. Inform. Decis. Mak., vol. 22, no. 1, p. 345, Dec. 2022, doi: 10.1186/s12911-022-02087-y.

M. Zhou, F. Lin, Q. Hu, Z. Tang, and C. Jin, “AI-Enabled Diagnosis of Spontaneous Rupture of Ovarian Endometriomas: A PSO Enhanced Random Forest Approach,” IEEE Access, vol. 8, pp. 132253–132264, 2020, doi: 10.1109/ACCESS.2020.3008473.

A. Şahin, A. Sahin, N. Özcan, N. Ozcan, G. Nur, and G. Nur, “Ovarian Cancer Prediction Using PCA, K-PCA, ICA and Random Forest,” Akıllı Sist. Ve Uygulamaları Derg., vol. 4, no. 2, pp. 103–108, 2021, doi: 10.54856/jiswa.202112168.

Y. Jung et al., “Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder,” Sci. Rep., vol. 12, no. 1, p. 17024, Oct. 2022, doi: 10.1038/s41598-022-20653-2.

Q. L. Thanh and T. M. Nguyen, “EfficientSkinCaSV2B3: An Efficient Framework Towards Improving Skin Classification and Segmentation,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 5, 2024, doi: 10.14569/IJACSA.2024.0150595.

L. K. Hema et al., “Region-Based Segmentation and Classification for Ovarian Cancer Detection Using Convolution Neural Network,” Contrast Media Mol. Imaging, vol. 2022, p. 5968939, 2022, doi: 10.1155/2022/5968939.

“(PDF) Hybrid Vision Transformer and Xception Model for Reliable CT-Based Ovarian Neoplasms Diagnosis,” ResearchGate, June 2025, doi: 10.1016/j.ibmed.2025.100227.

M. Wu, C. Yan, H. Liu, and Q. Liu, “Automatic classification of ovarian cancer types from cytological images using deep convolutional neural networks,” Biosci. Rep., vol. 38, no. 3, p. BSR20180289, June 2018, doi: 10.1042/BSR20180289.

R. Zhou et al., “Survival prediction of ovarian serous carcinoma based on machine learning combined with pathological images and clinical information,” AIP Adv., vol. 14, no. 4, p. 045324, Apr. 2024, doi: 10.1063/5.0196414.

H. Farahani et al., “Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images,” Mod. Pathol., vol. 35, no. 12, pp. 1983–1990, Dec. 2022, doi: 10.1038/s41379-022-01146-z.

K. R. Kasture and E. Al, “A New Deep Learning method for Automatic Ovarian Cancer Prediction & Subtype classification,” Turk. J. Comput. Math. Educ. TURCOMAT, vol. 12, no. 12, pp. 1233–1242, May 2021, doi: 10.17762/turcomat.v12i12.7569.

K. R. Kasture, B. B. Sayankar, and P. N. Matte, “Multi-class Classification of Ovarian Cancer from Histopathological Images using Deep Learning - VGG-16,” in 2021 2nd Global Conference for Advancement in Technology (GCAT), Oct. 2021, pp. 1–6. doi: 10.1109/GCAT52182.2021.9587760.

“Ovarian Cancer Subtype Classification.” Accessed: Aug. 07, 2025. [Online]. Available: https://www.kaggle.com/datasets/sunilthite/ovarian-cancer-classification-dataset

H. L. Duc, T. T. Minh, K. V. Hong, and H. L. Hoang, “84 Birds Classification Using Transfer Learning and EfficientNetB2,” in Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications, T. K. Dang, J. Küng, and T. M. Chung, Eds., Singapore: Springer Nature, 2022, pp. 698–705. doi: 10.1007/978-981-19-8069-5_50.

K. Kansal, T. B. Chandra, and A. Singh, “ResNet-50 vs. EfficientNet-B0: Multi-Centric Classification of Various Lung Abnormalities Using Deep Learning,” Procedia Comput. Sci., vol. 235, pp. 70–80, 2024, doi: 10.1016/j.procs.2024.04.007.

M. Ghayoumi, Generative Adversarial Networks in Practice. New York: Chapman and Hall/CRC, 2023. doi: 10.1201/9781003281344.

R. Sharma, M. Al-Dhaifallah, and A. Shakoor, “FuseNet: Attention-learning based MRI–PET slice fusion for Alzheimer’s diagnosis,” Comput. Electr. Eng., vol. 127, p. 110556, Oct. 2025, doi: 10.1016/j.compeleceng.2025.110556.

Z. Ji et al., “CBAM-DeepConvNet: Convolutional Block Attention Module-Deep Convolutional Neural Network for asymmetric visual evoked potentials recognition,” Brain-Appar. Commun. J. Bacomics, vol. 4, no. 1, p. 2489396, Dec. 2025, doi: 10.1080/27706710.2025.2489396.

R. Hussain, A. Lalande, K. B. Girum, C. Guigou, and A. Bozorg Grayeli, “Automatic segmentation of inner ear on CT-scan using auto-context convolutional neural network,” Sci. Rep., vol. 11, no. 1, p. 4406, Feb. 2021, doi: 10.1038/s41598-021-83955-x.

“Transfer Learning-Based Automatic Detection of Coronavirus Disease 2019 (COVID-19) from Chest X-ray Images.” Accessed: Aug. 17, 2025. [Online]. Available: https://jbpe.sums.ac.ir/article_46930.html?_action=export&rc=46930&rf=ris

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.

M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” Sept. 11, 2020, arXiv: arXiv:1905.11946. doi: 10.48550/arXiv.1905.11946.

D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Jan. 30, 2017, arXiv: arXiv:1412.6980. doi: 10.48550/arXiv.1412.6980.

“Deep Learning.” Accessed: Nov. 03, 2025. [Online]. Available: https://www.deeplearningbook.org/

M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio, “Transfusion: Understanding Transfer Learning for Medical Imaging,” Oct. 29, 2019, arXiv: arXiv:1902.07208. doi: 10.48550/arXiv.1902.07208.

Y. Mao, S. Zheng, L. Li, R. Shi, and X. An, “Research on Rail Surface Defect Detection Based on Improved CenterNet,” Electronics, vol. 13, no. 17, p. 3580, Jan. 2024, doi: 10.3390/electronics13173580.

S. M. N. Nobel et al., “RETRACTED: Modern Subtype Classification and Outlier Detection Using the Attention Embedder to Transform Ovarian Cancer Diagnosis,” Tomography, vol. 10, no. 1, pp. 105–132, Jan. 2024, doi: 10.3390/tomography10010010.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017, pp. 2261–2269. doi: 10.1109/CVPR.2017.243.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,” Aug. 23, 2016, arXiv: arXiv:1602.07261. doi: 10.48550/arXiv.1602.07261.

“A Novel Multistage Transfer Learning for Ultrasound Breast Cancer Image Classification - PMC.” Accessed: Oct. 28, 2025. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC8775102/?utm_source=chatgpt.com

V. Kumar, C. Prabha, P. Sharma, N. Mittal, S. S. Askar, and M. Abouhawwash, “Unified deep learning models for enhanced lung cancer prediction with ResNet-50–101 and EfficientNet-B3 using DICOM images,” BMC Med. Imaging, vol. 24, no. 1, p. 63, Mar. 2024, doi: 10.1186/s12880-024-01241-4.

K. Ali, Z. A. Shaikh, A. A. Khan, and A. A. Laghari, “Multiclass skin cancer classification using EfficientNets – a first step towards preventing skin cancer,” Neurosci. Inform., vol. 2, no. 4, p. 100034, Dec. 2022, doi: 10.1016/j.neuri.2021.100034.

Published
2025-11-28
How to Cite
[1]
J. Kolekar, C. Pawar, A. Pande, and C. Raut, “Deep Learning Based Ovarian Cancer Classification Using EfficientNetB2 with Attention Mechanism”, j.electron.electromedical.eng.med.inform, vol. 8, no. 1, pp. 32-52, Nov. 2025.
Section
Medical Engineering