A Reproducible Workflow for Liver Volume Segmentation and 3D Model Generation Using Open-Source Tools
Abstract
Complex liver resections related to hepatic tumors represent a major surgical challenge that requires precise preoperative planning supported by reliable three-dimensional (3D) anatomical models. In this context, accurate volumetric segmentation of the liver is a critical prerequisite to ensure the fidelity of printed models and to optimize surgical decision-making. This study compares different segmentation techniques integrated into open-source software to identify the most suitable approach for clinical application in resource-limited settings. Three semi-automatic methods, region growing, thresholding, and contour interpolation, were tested using the 3D Slicer platform and compared with a proprietary automatic method (Hepatic VCAR, GE Healthcare) and a manual segmentation reference, considered the gold standard. Ten anonymized abdominal CT volumes from the Medical Segmentation Decathlon dataset, encompassing various hepatic pathologies, were used to assess and compare the performance of each technique. Evaluation metrics included the Dice similarity coefficient (Dice), Hausdorff distance (HD), root mean square error (RMS), standard deviation (SD), and colorimetric surface discrepancy maps, enabling both quantitative and qualitative analysis of segmentation accuracy. Among the tested methods, the semi-automatic region growing approach demonstrated the highest agreement with manual segmentation (Dice = 0.935 ± 0.013; HD = 4.32 ± 0.48 mm), surpassing both other semi-automatic techniques and the automatic proprietary method. These results suggest that the region growing method implemented in 3D Slicer offers a reliable, accurate, and reproducible workflow for generating 3D liver models, particularly in surgical environments with limited access to advanced commercial solutions. The proposed methodology can potentially improve surgical planning, enhance training through realistic patient-specific models, and facilitate broader adoption of 3D printing in hepatobiliary surgery worldwide.
Downloads
References
J. M. Llovet, R. K. Kelley, A. G. Villanueva, A. G. Singal, E. Pikarsky, S. Roayaie, R. Lencioni, K. Koike, Zucman-Rossi, and R. S. Finn, "Hepatocellular carcinoma",Nature Reviews Disease Primers, vol.7", "1
N. Varghese, A. Majeed, S. Nyalakonda, T. Boortalary, D. Halegoua-DeMarzio, and H. Hann, "Review of Related Factors for Persistent Risk of Hepatitis B Virus-Associated Hepatocellular Carcinoma",Cancers, vol.16", "4
A. Nazir, M. Aqib, and M. Usman, "Etiology, Mechanism and Treatment of Liver Cancer",Liver Cancer - Genesis, Progression and Metastasis
H. Maki and K. Hasegawa", Advances in the surgical treatment of liver cancer",BioScience Trends, vol.16, pp.178–188", "3
J.Zhou, H. Sun, Z. Wang, W. Cong, M. Zeng, W. Zhou, P. Bie, L. Liu, T. Wen, M. Kuang, G. Han, Z. Yan, M. Wang, R. Liu, L. Lu, Z. Ren, Z. Zeng, P. Liang, C. Liang, M. Chen, F. Yan, W. Wang, J. Hou, Y. Ji, J. Yun, X. Bai, D. Cai, W. Chen, Y. Chen, W. Cheng, S. Cheng, C. Dai, W. Guo, Y. Guo, B. Hua, X. Huang, W. Jia, Q. Li, T. Li, X. Li, Y. Li, Y. Li, J. T. Liang, C. Ling, T. Liu, X. Liu, S. Lu, G. Lv, Y. Mao, Z. Meng, T. Peng, W. Ren, H. Shi, G. Shi, M. Shi, T. Song, K. Tao, J. Wang, K. Wang, L. Wang, W. Wang, X. Wang, Z. Wang, B. Xiang, B. Xing, J. Xu, Y. Yang, Y. Yang, S. Yang, Z. Yang, S. Ye, Z. Yin, Y. Zeng, B. Zhang, B. Zhang, L. Zhang, S. Zhang, T. Zhang, Y. Zhang, M. Zhao, Y. Zhao, H. Zheng, L. Zhou, J. Zhu, K. Zhu, R. Liu, Y. Shi, Y. Xiao, L. Zhang, C. Yang, Z. Wu, Z. Dai, M. Chen, J. Cai, W. Wang, X. Cai, Q. Li, F. Shen, S. Qin, G. Teng, J. Dong, and J. Fan, "Guidelines for the Diagnosis and Treatment of Primary Liver Cancer (2022 Edition)",Liver Cancer, vol.12, pp.405–444", "5
K. Damiris, H. Abbad, "Cellular based treatment modalities for unresectable hepatocellular carcinoma",World Journal of Clinical Oncology
T. Rossi, A. Williams, and Z. Sun, "Three-Dimensional Printed Liver Models for Surgical Planning and Intraoperative Guidance of Liver Cancer Resection: A Systematic Review",Applied Sciences (Switzerland), vol.13", "19
G. Chen, X. Li, G. Wu, Wang, B. Fang, X. Xiong, R. Yang, L. Tan, S. Zhang, and J. Dong, "The use of virtual reality for the functional simulation of hepatic tumors (case control study)",International Journal of Surgery, vol.8, pp.72–78", "1
S. J. Wigmore, D. N. Redhead, X. J. Yan, J. Casey, K. Madhavan, C. H. C. Dejong, E. J. Currie, and O. J. Garden, "Virtual hepatic resection using three-dimensional reconstruction of helical computed tomography angioportograms",Annals of Surgery, vol.233, pp.221–226", "2
A. Valls-Esteve, A. Tejo-Otero, P. Lustig-Gainza, I. Buj-Corral, F. Fenollosa-Artés, J. Rubio-Palau, I. Barber-Martinez de la Torre, J. Munuera, C. Fondevila, and L. Krauel, "Patient-Specific 3D Printed Soft Models for Liver Surgical Planning and Hands-On Training",Gels, vol.9", "4
Y. Ye, H. Wang, J. Gao, and E. Kostallari, "Editorial: Chronic Liver Disease: New Targets and New Mechanisms",Frontiers in Molecular Biosciences, vol.9
C. E. Mawyin-Muñoz, F. J. Salmerón-Escobar, and J. A. Hidalgo-Acosta, "From Virtual Patients to AI-Powered Training: The Evolution of Medical Simulation",Bionatura Journal, vol.1, pp.1–12", "4
L. Bresler, M. Perez, J. Hubert, J.P. Henry, and C. Perrenot, "Residency training in robotic surgery: The role of simulation",Journal of Visceral Surgery, vol.157, pp.S123–S129", "3
P. Y. Ng, E. C. Bing, A. Cuevas, A. Aggarwal, B. Chi, S. Sundar, M. Mwanahamuntu, M. Mutebi, R. Sullivan, and G. Parham, "Virtual reality and surgical oncology",Ecancermedicalscience, vol.17, pp.1–15
M. Laspro, L. Groysman, A. V. Verzella, L. Kimberly, and R. Flores, "The Use of Virtual Reality in Surgical Training: Implications for Education, Patient Safety, and Global Health Equity",Surgeries (Switzerland), vol.4, pp.635–646", "4
T. Mori, K. Ikeda, N. Takeshita, K. Teramura, and M. Ito, "Validation of a novel virtual reality simulation system with the focus on training for surgical dissection during laparoscopic sigmoid colectomy",BMC Surgery, vol.22, pp.1–8", "1
R. D. Jacinda, N. P. Yossy, M. D. Kurniatie, I. Hawari, A. W. Setiawan, P. Adidharma, M. Prasetya, M. I. Desem, and T. Asmaria, "Modelling of Human Cerebral Blood Vessels for Improved Surgical Training: Image Processing and 3D Printing",Journal of Electronics, Electromedical Engineering, and Medical Informatics, vol.7, pp.142–153", "1
K. Wang, C. Ho, C. Zhang, and B. Wang, "A Review on the 3D Printing of Functional Structures for Medical Phantoms and Regenerated Tissue and Organ Applications",Engineering, vol.3, pp.653–662", "5
S. Manohar, L. Sechopoulos, M. A. Anastasio, L. Maier-Hein, and R. Gupta, "Super phantoms: advanced models for testing medical imaging technologies",Communications Engineering, vol.3, pp.1–6", "1
Z. Zhao, Y. Ma, A. Mushtaq, V. Radhakrishnan, Y. Hu, H. Ren, W. Song, and Z. T. H. Tse, "Engineering functional and anthropomorphic models for surgical training in interventional radiology: A state-of-the-art review",Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol.237, pp.3–17", "1
L.E. Carvalho, A.C. Sobieranski, and A. von Wangenheim, "3D Segmentation Algorithms for Computerized Tomographic Imaging: a Systematic Literature Review",Journal of Digital Imaging, vol.31, pp.799–850", "6
S. Palazzo, G. Zambetta, and R. Calbi, "An overview of segmentation techniques for CT and MRI images: Clinical implications and future directions in medical diagnostics",Medical Imaging Process & Technology, vol.7, pp.7227", "1
H. El malali, A. Assir, "Automatic Mammogram image Breast Abnormality Detection and localization based on the combination of k-means and Genetic algorithms methods",International Journal of Advanced Trends in Computer Science and Engineering, vol.9, pp.76–83", "1.5
H. EL malali, A. Assir, M. Harmouchi, A. Mouhsen, "2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)"
N. Zaitoun and M. J. Aqel, "Survey on Image Segmentation Techniques",Procedia Computer Science, vol.65, pp.797–806
J.P. Cocquerez, S. Philipp, Ph. Bolon, and J.M. Chassery, "Analyse d’images : filtrage et segmentation"
S. Ray and H. Turi, "Determination of Number of Clusters in K-Means Clustering and Application in Colour Image Segmentation"
J. Egger, T. Kapur, A. Fedorov, S. Pieper, J. V. Miller, H. Veeraraghavan, B. Freisleben, A. J. Golby, C. Nimsky, and R. Kikinis, "GBM volumetry using the 3D slicer medical image computing platform",Scientific Reports, vol.3
M. Puesken, B. Buerke, R. Fortkamp, R. Koch, H. Seifarth, Heindel, and J. Weßling, "Liver lesion segmentation in MSCT: Effect of slice thickness on segmentation quality, measurement precision and interobserver variability",RoFo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgebenden Verfahren, vol.183, pp.372–380", "4
Z. Amla, S. Khehra, A. Mathialagan, and E. Lugez, "Review of the Free Research Software for Computer-Assisted Interventions",Journal of Imaging Informatics in Medicine, vol.37, pp.386–401", "1
W. Cai, B. He, Y. Fan, C. Fang, and F. Jia, "Comparison of liver volumetry on contrast-enhanced CT images: One semiautomatic and two automatic approaches",Journal of Applied Clinical Medical Physics, vol.17, pp.118–127", "6
S. Yamaguchi, K. Satake, Y. Yamaji, Y. Chen, and H. T. Tanaka, "Three-dimensional semiautomatic liver segmentation method for non-contrast computed tomography based on a correlation map of locoregional histogram and probabilistic atlas",Computers in Biology and Medicine, vol.55, pp.79–85
D. C. Le, K. Chinnasarn, J. Chansangrat, N. Keeratibharat, and P. Horkaew, "Semi-automatic liver segmentation based on probabilistic models and anatomical constraints",Scientific Reports, vol.11, pp.1–19", "1
Z. Yang, Y. Zhao, M. Liao, S. Di, and Y. Zeng, "Semi-automatic liver tumor segmentation with adaptive region growing and graph cuts",Biomedical Signal Processing and Control, vol.68, pp.102670", "April
A. Affane, M. A. Chetoui, J. Lamy, G. Lienemann, R. Peron, P. Beaurepaire, G. Dollé, M. Lèbre, B. Magnin, O. Merveille, M. Morvan, P. Ngo, T. Pelletier, H. S. Rositi, S. Salmon, J. Finet, B. Kerautret, N. Passat, and A. Vacavant, "The R-Vessel-X Project"", "2021
Lamy, Pelletier, Lienemann, Magnin, Kerautret, Passat, Finet, and Vacavant"The 3D Slicer RVXLiverSegmentation plug-in for interactive liver anatomy reconstruction from medical images",Journal of Open Source Software, vol.7, pp.3920", "73
F. Semeraro, A. Quintart, S. F. Izquierdo, and J. C. Ferguson, "TomoSAM: A 3D Slicer extension using SAM for tomography segmentation",SoftwareX, vol.31, pp.1–8
Y. Shen, X. Shao, B. I. Romillo, D. Dreizin, and M. Unberath, "FastSAM-3DSlicer: A 3D-Slicer Extension for 3D Volumetric Segment Anything Model with Uncertainty Quantification", vol.1, pp.1–9
M. Bektaş, C. M. Chia, G. L. Burchell, F. Daams, H. J. Bonjer, and D. L. van der Pee, t"Artificial intelligence-aided ultrasound imaging in hepatopancreatobiliary surgery: where are we now?",Surgical Endoscopy, vol.38, pp.4869–4879", "9
A. Essamlali, V. Millot-Maysounabe, M. Chartier, G. Salin, A. Becq, L. Arrivé, M. D. Camus, J. Szewczyk, and I. Claude, "Bile Duct Segmentation Methods Under 3D Slicer Applied to ERCP: Advantages and Disadvantages",International Journal of Biomedical Engineering and Clinical Science, pp.1–12", "X
Z. Shaukat, Q. A. Farooq, S. Tu, C. Xiao, and S. Ali, "A state-of-the-art technique to perform cloud-based semantic segmentation using deep learning 3D U-Net architecture",BMC Bioinformatics, vol.23, pp.1–21", "1
S. Anand and L. Priya, "Digital Image Fundamentals",A Guide for Machine Vision in Quality Control
S. Gerth, J. Claußen, A. Eggert, N. Wörlein, M. Waininger, T. Wittenberg, and N. Uhlmann, "Semiautomated 3D root segmentation and evaluation based on X-ray CT imagery",Plant Phenomics, vol.2021
P. K. Sahoo, S. Soltani, and A. K. C. Wong, "A survey of thresholding techniques",Computer Vision, Graphics and Image Processing, vol.41, pp.233–260", "2
R. Adams and L. Bischof, "Seeded Region Growing",IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.16, pp.641–647", "6
L. Vincent, "Morphological Grayscale Reconstruction in Image Analysis: Applications and Efficient Algorithms",IEEE Transactions on Image Processing, vol.2, pp.176–201", "2
Lorensen and Cline"Marching Cubes: a High Resolution 3D Surface Construction Algorithm.",Computer Graphics (ACM), vol.21, pp.163–169", "4
A. Mehnert and P. Jackway, "An improved seeded region growing algorithm",Pattern Recognition Letters, vol.18, pp.1065–1071", "10
M. Sezgin, "Survey over image thresholding techniques and quantitative performance evaluation",Journal of Electronic Imaging, vol.13, pp.220", "1
A. B. Albu, T. Beugeling, and D. Laurendeau, "A morphology-based approach for interslice interpolation of anatomical slices from volumetric images",IEEE Transactions on Biomedical Engineering, vol.55, pp.2022–2038", "8
S. Molière, D. Hamzaoui, B. Granger, S. Montagne, A. Allera, M. Ezziane, A. Luzurier, R. Quint, M. Kalai, N. Ayache, H. Delingette, and R. Renard-Penna, "Reference standard for the evaluation of automatic segmentation algorithms: Quantification of inter observer variability of manual delineation of prostate contour on MRI",Diagnostic and Interventional Imaging, vol.105, pp.65–73", "2
H. Kaur, N. Kaur, and N. Neeru, "Evolution of multiorgan segmentation techniques from traditional to deep learning in abdominal CT images – A systematic review",Displays, vol.73, pp.102223", "April
O. U. Aydin, A. A. Taha, A. Hilbert, A. A. Khalil, I. Galinovic, B. Fiebach, D. Frey, and V. I. Madai, "Correction: On the usage of average Hausdorff distance for segmentation performance assessment: hidden error when used for ranking (European Radiology Experimental, (2021), 5, 1, (4), 10.1186/s41747-020-00200-2)",European Radiology Experimental, vol.6", "1
R. Cárdenes, de R. Luis-García, and M. Bach-Cuadra, "A multidimensional segmentation evaluation for medical image data",Computer Methods and Programs in Biomedicine, vol.96, pp.108–124", "2
K. H. Zou, S. K. Warfield, A. Bharatha, C. M.C. Tempany, R. Kaus, S. J. Haker, W. M. Wells, A. Jolesz, and R. Kikinis, "Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index",Academic Radiology, vol.11, pp.178–189", "2
A. A. Taha and A. Hanbury, "Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool",BMC Medical Imaging, vol.15", "1
E. Meixner, B. Glogauer, S. Klüter, F. Wagner, D. Neugebauer, L. Hoeltgen, L. Dinges, S. Harrabi, J. Liermann, M. Vinsensia, F. Weykamp, P. Hoegen-Saßmannshausen, J. Debus, and J. Hörner-Rieber, "Validation of different automated segmentation models for target volume contouring in postoperative radiotherapy for breast cancer and regional nodal irradiation",Clinical and Translational Radiation Oncology, vol.49, pp.0–6", "June
N. Konuthula, F. A. Perez, A. M. Maga, W. M. Abuzeid, K. Moe, B. Hannaford, and R. A. Bly, "Automated atlas-based segmentation for skull base surgical planning",International Journal of Computer Assisted Radiology and Surgery, vol.16, pp.933–941", "6
N. Wijnen, L. Brouwers, E. G. Jebbink, J. M. M. Heyligers, and M. Bemelman, "Comparison of segmentation software packages for in-hospital 3D print workflow",Journal of Medical Imaging, vol.8", "03
L. Juergensen, R. Rischen, J. Hasselmann, M. Toennemann, A. Pollmanns, G. Gosheger, and M. Schulze, "Insights into geometric deviations of medical 3d-printing: a phantom study utilizing error propagation analysis",3D Printing in Medicine, vol.10", "1
M. P. Chae, R. D. Chung, J. A. Smith, D. J. Hunter-Smith, and W. M. Rozen, "The accuracy of clinical 3D printing in reconstructive surgery: literature review and in vivo validation study",Gland Surgery, vol.10, pp.2293–2303", "7
L. Rundo, C. Han, Y. Nagano, J. Zhang, R. Hataya, C. Militello, A. Tangherloni, M. S. Nobile, C. Ferretti, D. Besozzi, M. C. Gilardi, S. Vitabile, G. Mauri, H. Nakayama, and P. Cazzaniga, "USE-Net: Incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets",Neurocomputing, vol.365, pp.31–43
Copyright (c) 2025 Badreddine Labakoum, Hamid El Malali, Amr Farhan, Azeddine Mouhsen, Aissam Lyazidi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlikel 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).