Design of Phototherapy Radiometer with a Measurement Stability Improvement
Abstract
The amount of radiation given from the phototherapy lamp (Blue Light) who not right for neonates with hyperbilirubin is feared to cause the bilirubin levels in not decrease accordance with the calculated dose. The purpose of this study is to make a Blue Light calibration device with a stable measurement. The contribution of this research is by determine a sensor who able to measure the irradiation value more accurately between TCS3200 and AS7262 sensor. TCS3200 sensor measures the wavelengths of 470nm, 524nm and 640nm and AS7262 sensor can measure wavelengths of 430-670nm. The results of both sensors are stored in the Electrically Erasable Programmable Read-Only Memory, with the amount of data and the length of measurement can be adjusted according to user needs. Measurement the irradiation value of two sensors is done simultaneously using 3 Watt Light Emitting Diode lamp as a Blue Light simulation where the lamp is placed directly above the sensor and distance of the lamp to the sensor is 10cm, 20cm, 30cm, and 40cm. The average uncertainty value with TCS3200 sensor is 14.65 and the average uncertainty value with AS7262 sensor is 2.17. Type A uncertainty value is based on results of repeated measurements that show how close the measurement results are to the actual value (stable measurement results). The results showed that the average uncertainty value on AS7262 sensor is relatively small, so its mean the measurement results of AS7262 sensor are stable. The author suggests using sensors who capable of reading the value of light radiation without conversion. The results of this study can be implemented to measure the intensity of the lamp and be used as a reference to determining the time of lamp replacement.
Downloads

Copyright (c) 2021 Ayu Dini Megantari, Syaifudin Syaifudin, Endang Dian Setioningsih

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlikel 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).