A Comparative Study of Convolutional Neural Network in Detecting Blast Cells for Diagnose Acute Myeloid Leukemia

Keywords: acute myeloid leukemia, blast cells, convolution neural network, image classification

Abstract

Understanding blood plays a crucial role in obtaining information for monitoring health conditions and diagnosis of hematologic diseases such as acute myeloid leukemia. It is characterized by irregular expansion of immature white blood cells called blast cells in the blood and bone marrow. To diagnose acute myeloid leukemia, a sample of bone marrow is necessary to be examined under a microscope through bone marrow examination. As for minimizing human subjectivity and automating medical screening, this study performed image classification for detecting blast cells in leukocytes from microscopic images. We compared a well-established convolutional neural network architecture such as ResNet, ResNeXt, and EfficientNetV2. The model’s performance assessment was done by two evaluation levels which are at a macro level and per class level. The experiment results show ResNet architecture with 18 layers (ResNet 18) outperforms the remaining models at both levels. Furthermore, as the architecture utilizes residual learning, ResNet and ResNeXt models converge faster than EfficientNetV2 at the training phase. In addition, ResNet architecture with 50 layers (ResNet 50) outperforms the remaining models specifically at blast cell identification in case of medical screening. Therefore, this study concludes that ResNet 50 is the best model to detect blast cells under this condition. However, EfficientNetV2 shows a promising potential at a macro level to classify leukocytes in general. We expect this study to become a preliminary study to develop a convolution neural network architecture specifically to detect blast cells in leukocytes.

Downloads

Download data is not yet available.

References

V. V. B. Reddy and D. Morlote, “Examination of Blood and Marrow Cells,” in Williams Hematology, 10th ed., K. Kaushanky, M. A. Lichtman, J. T. Prchal, M. Levi, L. J. Burns, and D. C. Linch, Eds., McGraw Hill, 2021, pp. 11–30.

R. G. Bagasjvara, I. Candradewi, S. Hartati, and A. Harjoko, “Automated detection and classification techniques of Acute leukemia using image processing: A review,” in 2016 2nd International Conference on Science and Technology-Computer (ICST), IEEE, Oct. 2016, pp. 35–43. doi: 10.1109/ICSTC.2016.7877344.

A. Shah, S. S. Naqvi, K. Naveed, N. Salem, M. A. U. Khan, and K. S. Alimgeer, “Automated Diagnosis of Leukemia: A Comprehensive Review,” IEEE Access, vol. 9, pp. 132097–132124, 2021, doi: 10.1109/ACCESS.2021.3114059.

K. R. Kampen, “The discovery and early understanding of leukemia,” Leuk Res, vol. 36, no. 1, pp. 6–13, Jan. 2012, doi: 10.1016/j.leukres.2011.09.028.

E. J. Freireich, P. H. Wiernik, and D. P. Steensma, “The Leukemias: A Half-Century of Discovery,” Journal of Clinical Oncology, vol. 32, no. 31, pp. 3463–3469, Nov. 2014, doi: 10.1200/JCO.2014.57.1034.

G. H. Jackson and P. R. A. Taylor, “Acute Myeloid Leukaemia,” Drugs Aging, vol. 19, no. 8, pp. 571–581, 2002, doi: 10.2165/00002512-200219080-00003.

K. Riding, “Acute Myeloid Leukemias,” in Clinical Laboratory Hematology, 4th ed., S. B. McKenzie, K. Landis-Piwowar, and J. L. Williams, Eds., Pearson, 2020, pp. 583–605.

J. L. Liesveld and M. A. Lichtman, “Acute Myelogenous Leukemia,” in Williams Hematology, 10th ed., K. Kaushanky, M. A. Lichtman, J. T. Prchal, M. Levi, L. J. Burns, and D. C. Linch, Eds., McGraw Hill, 2021, pp. 1445–1521.

D. A. Arber et al., “The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia,” Blood, vol. 127, no. 20, pp. 2391–2405, May 2016, doi: 10.1182/blood-2016-03-643544.

D. A. Arber et al., “International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data,” Blood, vol. 140, no. 11, pp. 1200–1228, Sep. 2022, doi: 10.1182/BLOOD.2022015850.

Y. Dong et al., “Leukemia incidence trends at the global, regional, and national level between 1990 and 2017,” Exp Hematol Oncol, vol. 9, no. 1, pp. 1–11, Jun. 2020, doi: 10.1186/S40164-020-00170-6/FIGURES/5.

H. Kantarjian et al., “Acute myeloid leukemia: current progress and future directions,” Blood Cancer J, vol. 11, no. 2, p. 41, Feb. 2021, doi: 10.1038/s41408-021-00425-3.

C. Récher et al., “Long-term survival after intensive chemotherapy or hypomethylating agents in AML patients aged 70 years and older: a large patient data set study from European registries,” Leukemia, vol. 36, no. 4, pp. 913–922, Apr. 2022, doi: 10.1038/s41375-021-01425-9.

P. Font et al., “Inter-observer variance with the diagnosis of myelodysplastic syndromes (MDS) following the 2008 WHO classification,” Ann Hematol, vol. 92, no. 1, pp. 19–24, Jan. 2013, doi: 10.1007/S00277-012-1565-4/TABLES/4.

P. Font et al., “Interobserver variance in myelodysplastic syndromes with less than 5 % bone marrow blasts: unilineage vs. multilineage dysplasia and reproducibility of the threshold of 2 % blasts,” Ann Hematol, vol. 94, no. 4, pp. 565–573, Mar. 2015, doi: 10.1007/S00277-014-2252-4/TABLES/4.

S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning. Cambridge University Press, 2014. doi: 10.1017/CBO9781107298019.

Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

C. Matek, S. Schwarz, K. Spiekermann, and C. Marr, “Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks,” Nat Mach Intell, vol. 1, no. 11, pp. 538–544, Nov. 2019, doi: 10.1038/s42256-019-0101-9.

C. Matek, S. Krappe, C. Münzenmayer, T. Haferlach, and C. Marr, “Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set,” Blood, vol. 138, no. 20, pp. 1917–1927, Nov. 2021, doi: 10.1182/blood.2020010568.

S. J. Azzahra, R. Sigit, H. Yuniarti, Y. Hernaningsih, and A. Imannurohma, “Identification of Acute Myeloid Leukemia (AML) Subtypes: M1, M2, M3 on White Blood Cells Using Microscopic Images,” IES 2023 - International Electronics Symposium: Unlocking the Potential of Immersive Technology to Live a Better Life, Proceeding, pp. 454–459, 2023, doi: 10.1109/IES59143.2023.10242476.

A. Setiawan, A. Harjoko, T. Ratnaningsih, E. Suryani, Wiharto, and S. Palgunadi, “Classification of cell types in Acute Myeloid Leukemia (AML) of M4, M5 and M7 subtypes with support vector machine classifier,” in 2018 International Conference on Information and Communications Technology (ICOIACT), IEEE, Mar. 2018, pp. 45–49. doi: 10.1109/ICOIACT.2018.8350822.

C. Jung, M. Abuhamad, D. Mohaisen, K. Han, and D. H. Nyang, “WBC image classification and generative models based on convolutional neural network,” BMC Med Imaging, vol. 22, no. 1, pp. 1–16, Dec. 2022, doi: 10.1186/S12880-022-00818-1/TABLES/18.

Z. Zhu, Z. Ren, S. Lu, S. Wang, and Y. Zhang, “DLBCNet: A Deep Learning Network for Classifying Blood Cells,” Big Data and Cognitive Computing 2023, Vol. 7, Page 75, vol. 7, no. 2, p. 75, Apr. 2023, doi: 10.3390/BDCC7020075.

S. Ansari, A. H. Navin, A. B. Sangar, J. V. Gharamaleki, and S. Danishvar, “A Customized Efficient Deep Learning Model for the Diagnosis of Acute Leukemia Cells Based on Lymphocyte and Monocyte Images,” Electronics (Basel), vol. 12, no. 2, p. 322, Jan. 2023, doi: 10.3390/ELECTRONICS12020322.

A. Abhishek, N. Santhanam, R. K. Jha, R. Sinha, and K. Jha, “Multi Class Classification of Acute Leukemia using Transfer Learning,” 2022 International Conference for Advancement in Technology, ICONAT 2022, 2022, doi: 10.1109/ICONAT53423.2022.9726083.

P. K. Das, B. Sahoo, and S. Meher, “An Efficient Detection and Classification of Acute Leukemia using Transfer Learning and Orthogonal Softmax Layer-based Model,” IEEE/ACM Trans Comput Biol Bioinform, 2022, doi: 10.1109/TCBB.2022.3218590.

T. Tamang, S. Baral, and M. P. Paing, “Classification of White Blood Cells: A Comprehensive Study Using Transfer Learning Based on Convolutional Neural Networks,” Diagnostics, vol. 12, no. 12, p. 2903, Nov. 2022, doi: 10.3390/diagnostics12122903.

A. Acevedo, S. Alférez, A. Merino, L. Puigví, and J. Rodellar, “Recognition of peripheral blood cell images using convolutional neural networks,” Comput Methods Programs Biomed, vol. 180, p. 105020, Oct. 2019, doi: 10.1016/J.CMPB.2019.105020.

M. Hosseini, D. Bani-Hani, and S. S. Lam, “Leukocytes Image Classification Using Optimized Convolutional Neural Networks,” Expert Syst Appl, vol. 205, p. 117672, Nov. 2022, doi: 10.1016/J.ESWA.2022.117672.

C. Jung, M. Abuhamad, D. Mohaisen, K. Han, and D. Nyang, “WBC image classification and generative models based on convolutional neural network.,” BMC Med Imaging, vol. 22, no. 1, p. 94, May 2022, doi: 10.1186/s12880-022-00818-1.

S. Srimahima, G. Yuvarani, and L. K. Nandhini, “White Blood Cells Classification Using Deep Learning Technique,” Lecture Notes in Networks and Systems, vol. 520, pp. 79–86, 2023, doi: 10.1007/978-981-19-5331-6_9/COVER.

K. Clark et al., “The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository,” J Digit Imaging, vol. 26, no. 6, pp. 1045–1057, Dec. 2013, doi: 10.1007/s10278-013-9622-7.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jun. 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated Residual Transformations for Deep Neural Networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jul. 2017, pp. 5987–5995. doi: 10.1109/CVPR.2017.634.

M. Tan and Q. V. Le, “EfficientNetV2: Smaller Models and Faster Training,” Proceedings of the 38th International Conference on Machine Learning, pp. 10096–10106, Apr. 2021, Accessed: Dec. 21, 2022. [Online]. Available: http://arxiv.org/abs/2104.00298

G. Menardi and N. Torelli, “Training and assessing classification rules with imbalanced data,” Data Min Knowl Discov, vol. 28, no. 1, pp. 92–122, Jan. 2014, doi: 10.1007/S10618-012-0295-5/METRICS.

K. P. Murphy, Machine Learning A Probabilistic Perspective. The MIT Press, 2012.

L. Li, M. Doroslovacki, and M. H. Loew, “Approximating the Gradient of Cross-Entropy Loss Function,” IEEE Access, vol. 8, pp. 111626–111635, 2020, doi: 10.1109/ACCESS.2020.3001531.

D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, Dec. 2014, Accessed: Dec. 29, 2022. [Online]. Available: http://arxiv.org/abs/1412.6980

D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, Apr. 1997, doi: 10.1109/4235.585893.

A. Vaswani et al., “Attention Is All You Need,” Adv Neural Inf Process Syst, vol. 30, Jun. 2017, Accessed: Dec. 21, 2022. [Online]. Available: http://arxiv.org/abs/1706.03762

X. Liu, Y. Hu, and J. Chen, “Hybrid CNN-Transformer model for medical image segmentation with pyramid convolution and multi-layer perceptron,” Biomed Signal Process Control, vol. 86, p. 105331, Sep. 2023, doi: 10.1016/J.BSPC.2023.105331.

S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans Knowl Data Eng, vol. 22, no. 10, pp. 1345–1359, 2010, doi: 10.1109/TKDE.2009.191.

J. Vanschoren, “Meta-Learning,” in Automated Machine Learning: Methods, Systems, Challenges, F. Hutter, L. Kotthoff, and J. Vanschoren, Eds., Springer, Cham, 2019, pp. 35–61. doi: 10.1007/978-3-030-05318-5_2.

T. M. Hospedales, A. Antoniou, P. Micaelli, and A. J. Storkey, “Meta-Learning in Neural Networks: A Survey,” IEEE Trans Pattern Anal Mach Intell, vol. 44, no. 9, pp. 1–1, Sep. 2021, doi: 10.1109/TPAMI.2021.3079209.

Published
2024-01-30
How to Cite
[1]
Ahmad Badruzzaman and Aniati Murni Arymurhty, “A Comparative Study of Convolutional Neural Network in Detecting Blast Cells for Diagnose Acute Myeloid Leukemia”, j.electron.electromedical.eng.med.inform, vol. 6, no. 1, pp. 84-91, Jan. 2024.
Section
Research Paper