Advancements within Molecular Engineering for Regenerative Medicine and Biomedical Applications an Investigation Analysis towards A Computing Retrospective

  • Zarif Bin Akhtar MPhil Research Postgraduate Student, Master of Philosophy (MPhil) in Machine Learning and Machine Intelligence, Department of Engineering, University of Cambridge, Cambridge, United Kingdom https://orcid.org/0009-0004-5498-6458
  • Anik Das Gupta Master of Engineering in Electrical and Computer Engineering, Gina Cody school of Engineering and Computer Science, Concordia University, Montreal, Canada
Keywords: Artificial Intelligence (AI), Biomedical Engineering (BME), Biomedical Instrumentations Measurement and Applications, Deep Learning, Machine Learning, Molecular Engineering, Regenerative Medicine

Abstract

The field of molecular engineering in medicine has witnessed remarkable progress in recent years, revolutionizing healthcare, diagnostics, and therapy development. However, the pandemic showcased there is still more requirement for progress along with further detailed investigation which is paramount and also a necessity moving forward. This research investigation delves into the interdisciplinary realm of molecular engineering, exploring its impact on regenerative medicine, biomaterials, tissue engineering, and the innovation from various advanced biotechnologies which has accelerated health science. The main objective for this research aims at providing an in depth investigative exploration of biomaterial applications with their respective roles within regenerative medicine and its associated advancements along with, tissue engineering, organ-on-a-chip device peripheral mechanics functionality and how bioprinting is paving the way for the creation of functional tissues and organs with a case study analysis on drug discovery, immune engineering, to the field of precision medicine, gene editing with the insight towards drug discovery processing, design and screening pipelined for biologics and the how therapeutics and drugs will play out in future healthcare. This exploration also provides many meaningful and remarkable conclusions on the advanced technologies which are explored and investigated throughout the step-by-step systematic technical computing methods approached for the research.

Downloads

Download data is not yet available.

References

Gallo, Jiri; Holinka, Martin; Moucha, Calin S. (2014-08-11). "Antibacterial Surface Treatment for Orthopaedic Implants". International Journal of Molecular Sciences. 15 (8): 13849–13880. doi:10.3390/ijms150813849. PMC 4159828. PMID 25116685.

Huang, Jinhua; Su, Liang; Kowalski, Jeffrey A.; Barton, John L.; Ferrandon, Magali; Burrell, Anthony K.; Brushett, Fikile R.; Zhang, Lu (2015-07-14). "A subtractive approach to molecular engineering of dimethoxybenzene-based redox materials for non-aqueous flow batteries". J. Mater. Chem. A. 3 (29): 14971–14976. doi:10.1039/c5ta02380g. ISSN 2050-7496.

Wu, Mingyan; Xiao, Xingcheng; Vukmirovic, Nenad; Xun, Shidi; Das, Prodip K.; Song, Xiangyun; Olalde-Velasco, Paul; Wang, Dongdong; Weber, Adam Z. (2013-07-31). "Toward an Ideal Polymer Binder Design for High-Capacity Battery Anodes". Journal of the American Chemical Society. 135 (32): 12048–12056. doi:10.1021/ja4054465. PMID 23855781. S2CID 12715155.

Choi, Jaecheol; Kim, Kyuman; Jeong, Jiseon; Cho, Kuk Young; Ryou, Myung-Hyun; Lee, Yong Min (2015-06-30). "Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries". ACS Applied Materials & Interfaces. 7 (27): 14851–14858. doi:10.1021/acsami.5b03364. PMID 26075943.

Tan, Shi; Ji, Ya J.; Zhang, Zhong R.; Yang, Yong (2014-07-21). "Recent Progress in Research on High-Voltage Electrolytes for Lithium-Ion Batteries". ChemPhysChem. 15 (10): 1956–1969. doi:10.1002/cphc.201402175. ISSN 1439-7641. PMID 25044525.

Zhu, Ye; Li, Yan; Bettge, Martin; Abraham, Daniel P. (2012-01-01). "Positive Electrode Passivation by LiDFOB Electrolyte Additive in High-Capacity Lithium-Ion Cells". Journal of the Electrochemical Society. 159 (12): A2109–A2117. doi:10.1149/2.083212jes. ISSN 0013-4651.

Liang, Yanliang; Chen, Zhihua; Jing, Yan; Rong, Yaoguang; Facchetti, Antonio; Yao, Yan (2015-04-11). "Heavily n-Dopable π-Conjugated Redox Polymers with Ultrafast Energy Storage Capability". Journal of the American Chemical Society. 137 (15): 4956–4959. doi:10.1021/jacs.5b02290. PMID 25826124.

Surwade, Sumedh P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.; Unocic, Raymond R.; Veith, Gabriel M.; Dai, Sheng; Mahurin, Shannon M. (2015). "Water desalination using nanoporous single-layer graphene". Nature Nanotechnology. 10 (5): 459–464. Bibcode:2015NatNa..10..459S. doi:10.1038/nnano.2015.37. OSTI 1185491. PMID 25799521.

Acar, Handan; Ting, Jeffrey M.; Srivastava, Samanvaya; LaBelle, James L.; Tirrell, Matthew V. (2017). "Molecular engineering solutions for therapeutic peptide delivery". Chemical Society Reviews. 46 (21): 6553–6569. doi:10.1039/C7CS00536A. ISSN 0306-0012. PMID 28902203.

Lequieu, Joshua; Córdoba, Andrés; Hinckley, Daniel; de Pablo, Juan J. (2016-08-17). "Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation". ACS Central Science. 2 (9): 614–620. doi:10.1021/acscentsci.6b00170. ISSN 2374-7943. PMC 5043426. PMID 27725959.

Yan Q, Xiao LQ, Tan L, Sun W, Wu T, Chen LW, Mei Y, Shi B. Controlled release of simvastatin-loaded thermo-sensitive PLGA-PEG-PLGA hydrogel for bone tissue regeneration: in vitro and in vivo characteristics. J Biomed Mater Res A. 2015 Nov;103(11):3580-9. doi: 10.1002/jbm.a.35499. Epub 2015 May 29. PMID: 25969423.

Vinay R, KusumDevi V. Potential of targeted drug delivery system for the treatment of bone metastasis. Drug Deliv. 2016;23(1):21-9. doi: 10.3109/10717544.2014.913325. Epub 2014 May 19. PMID: 24839990.

Hasan A, Khattab A, Islam MA, Hweij KA, Zeitouny J, Waters R, Sayegh M, Hossain MM, Paul A. Injectable Hydrogels for Cardiac Tissue Repair after Myocardial Infarction. Adv Sci (Weinh). 2015 Jul 15;2(11):1500122. doi: 10.1002/advs.201500122. PMID: 27668147; PMCID: PMC5033116.

Sun X, Nunes SS. Overview of hydrogel-based strategies for application in cardiac tissue regeneration. Biomed Mater. 2015 Jun 4;10(3):034005. doi: 10.1088/1748-6041/10/3/034005. PMID: 26040708.

Chen W, Chen S, Morsi Y, El-Hamshary H, El-Newhy M, Fan C, Mo X. Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering. ACS Appl Mater Interfaces. 2016 Sep 21;8(37):24415-25. doi: 10.1021/acsami.6b06825. Epub 2016 Aug 31. PMID: 27559926.

Wang J, Zhang F, Tsang WP, Wan C, Wu C. Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering. Biomaterials. 2017 Mar;120:11-21. doi: 10.1016/j.biomaterials.2016.12.015. Epub 2016 Dec 20. PMID: 28024231.

Abdul Rahman R, Mohamad Sukri N, Md Nazir N, Ahmad Radzi MA, Zulkifly AH, Che Ahmad A, Hashi AA, Abdul Rahman S, Sha'ban M. The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering. Tissue Cell. 2015 Aug;47(4):420-30. doi: 10.1016/j.tice.2015.06.001. Epub 2015 Jun 10. PMID: 26100682.

Xu W, Wang Z, Liu Y, Wang L, Jiang Z, Li T, Zhang W, Liang Y. Carboxymethyl chitosan/gelatin/hyaluronic acid blended-membranes as epithelia transplanting scaffold for corneal wound healing. Carbohydr Polym. 2018 Jul 15;192:240-250. doi: 10.1016/j.carbpol.2018.03.033. Epub 2018 Mar 14. PMID: 29691018.

Bencherif S, Gsib O, Egles C (2017) Fibrin: An underrated biopolymer for skin tissue engineering. J Mol Biol Biotech 2: 1.

Monteiro IP, Shukla A, Marques AP, Reis RL, Hammond PT. Spray-assisted layer-by-layer assembly on hyaluronic acid scaffolds for skin tissue engineering. J Biomed Mater Res A. 2015 Jan;103(1):330-40. doi: 10.1002/jbm.a.35178. Epub 2014 Apr 3. PMID: 24659574.

Tresoldi C, Pacheco P, Patricia D, Elisa F, Roberta G, et al. (2017) Alginate/Gelatin Hydrogels to Coat Porous Tubular Scaffolds for Vascular Tissue Engineering. Eur Cell Mater: 33.

Rouwkema J, Khademhosseini A. Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks. Trends Biotechnol. 2016 Sep;34(9):733-745. doi: 10.1016/j.tibtech.2016.03.002. Epub 2016 Mar 28. PMID: 27032730.

Published
2024-01-07
How to Cite
[1]
Z. B. Akhtar and A. D. Gupta, “Advancements within Molecular Engineering for Regenerative Medicine and Biomedical Applications an Investigation Analysis towards A Computing Retrospective”, j.electron.electromedical.eng.med.inform, vol. 6, no. 1, pp. 54-72, Jan. 2024.
Section
Research Paper