Network-Based Molecular Features Selection to Predict the Drug Synergy in Cancer Cells
Abstract
Identifying synergistic drug combinations in cancer treatment is challenging due to the complex molecular circuitry of cancer and the exponentially increasing number of drugs. Therefore, computational approaches for predicting drug synergy are crucial in guiding experimental efforts toward finding rational combination therapies. This research selects the molecular features of cancer cells with a diffusion network-based approach. Additionally, a model is developed using non-linear regression algorithms, namely Random Forest, Extremely Randomized Tree, and XGBoost, to predict the synergy score of drug combinations against the selected cancer cell features. The data used are drug combination screening data and cancer cell molecules provided by AstraZeneca-Sanger DREAM Challenge. The feature selection results demonstrate the relevance of cancer cell molecular features selected by the diffusion network. The prediction results indicate that the Random Forest algorithm shows a good correlation value of 0.570 in the model with a small dataset. In contrast, for the model with an instance or row size larger than the number of features or columns, the XGBoost algorithm achieves a good correlation value of 0.932.
INDEX TERMS cancer, drug combination, drug synergy, network diffusion kernel, non-linear regression.
Downloads
Copyright (c) 2023 Syarifah Aini, Wisnu Ananta Kusuma, Medria Kusuma Dewi Hardhienata, Mushthofa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlikel 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).