Classification of Normal and Abnormal Heart Sounds Using Empirical Mode Decomposition and First Order Statistic

Keywords: Heart Sound, EMD, First Order Statistic, Mutual Information, k-NN, k-Fold Cross Validation

Abstract

Analysis of heart sound signals for automatic segmentation and classification has revealed in recent decades that it has the potential to detect pathology accurately in clinical applications. Various audio signal processing techniques have been used to reduce the subjectivity of heart sound analysis. This study aims to classify normal and abnormal heart sound signals. The feature extraction process was optimized by EMD and calculated using five first-order statistical parameters: mean, variance, kurtosis, skewness, and entropy. The classification system is optimized with a mutual information algorithm to select traits that can significantly improve system performance. In addition, the selection of the optimal system configuration also includes the k-fold cross-validation and kNN methods with k values ​​and the proper distance type. Based on the test results, the highest accuracy of 98.2% was obtained when the value of k = 1 and the type of cosine distance on kNN with a five-fold cross-validation system evaluation model.

Downloads

Download data is not yet available.

References

A. K. Dwivedi, S. A. Imtiaz, and E. Rodriguez-Villegas, “Algorithms for automatic analysis and classification of heart sounds-A systematic review,” IEEE Access, 2019, doi: 10.1109/ACCESS.2018.2889437.

A. K. Bhoi, K. S. Sherpa, and B. Khandelwal, “Multidimensional analytical study of heart sounds: A review,” Int. J. Bioautomation, 2015.

S. Li, F. Li, S. Tang, and W. Xiong, “A Review of Computer-Aided Heart Sound Detection Techniques,” BioMed Research International. 2020, doi: 10.1155/2020/5846191.

M. Yildirim, “Diagnosis of Heart Diseases Using Heart Sound Signals with the Developed Interpolation, CNN, and Relief Based Model,” Trait. du Signal, vol. 39, no. 3, pp. 907–914, 2022, doi: 10.18280/ts.390316.

“Classification of Normal and Murmur Hearts Sound using the Fractal Method,” Int. J. Adv. Trends Comput. Sci. Eng., 2020, doi: 10.30534/ijatcse/2020/181952020.

A. L. Padilla-Ortiz and D. Ibarra, “Lung and heart sounds analysis: State-of-the-art and future trends,” Crit. Rev. Biomed. Eng., 2018, doi: 10.1615/CritRevBiomedEng.2018025112.

M. Singh and A. Cheema, “Heart Sounds Classification using Feature Extraction of Phonocardiography Signal,” Int. J. Comput. Appl., 2013, doi: 10.5120/13381-1001.

A. Rizal, V. A. P. Handzah, and P. D. Kusuma, “Heart Sounds Classification Using Short-Time Fourier Transform and Gray Level Difference Method,” Ing. des Syst. d’Information, vol. 27, no. 3, pp. 369–376, 2022, doi: 10.18280/isi.270302.

W. Zeng, Z. Lin, C. Yuan, Q. Wang, F. Liu, and Y. Wang, “A new learning and classification framework for the detection of abnormal heart sound signals using hybrid signal processing and neural networks,” in Chinese Control Conference, CCC, 2020, doi: 10.23919/CCC50068.2020.9189522.

F. Safara, S. Doraisamy, A. Azman, A. Jantan, and S. Ranga, “Wavelet packet entropy for heart murmurs classification,” Adv. Bioinformatics, 2012, doi: 10.1155/2012/327269.

R. Thomas, L. L. Hsi, S. C. Boon, and E. Gunawan, “Heart sound segmentation using fractal decomposition,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2016, doi: 10.1109/EMBC.2016.7592153.

X. Cheng, P. Wang, and C. She, “Biometric identification method for heart sound based on multimodal multiscale dispersion entropy,” Entropy, 2020, doi: 10.3390/e22020238.

A. H. Salman, N. Ahmadi, R. Mengko, A. Z. R. Langi, and T. L. R. Mengko, “Empirical mode decomposition (EMD) based denoising method for heart sound signal and its performance analysis,” Int. J. Electr. Comput. Eng., 2016, doi: 10.11591/ijece.v6i5.pp2197-2204.

M. Mishra, S. Banerjee, D. C. Thomas, S. Dutta, and A. Mukherjee, “Detection of third heart sound using variational mode decomposition,” IEEE Trans. Instrum. Meas., 2018, doi: 10.1109/TIM.2018.2805198.

N. E. Huang et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A, vol. 454, pp. 903–995, 1998, doi: 10.1098/rspa.1998.0193.

G. Rilling, P. Flandrin, and G. Paulo, “On Empirical Mode Decomposition and Its Algorithms,” in IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, 2003.

X. Chen, J. Shao, Y. Long, C. Que, J. Zhang, and J. Fang, “Identification of Velcro rales based on Hilbert–Huang transform,” Phys. A Stat. Mech. its Appl., vol. 401, no. 8, pp. 34–44, May 2014, doi: 10.1016/j.physa.2014.01.018.

M. Lozano, J. A. Fiz, and R. Jané, “Estimation of Instantaneous Frequency from Empirical Mode Decomposition on Respiratory Sounds Analysis,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (2013), 2013, pp. 981–984, doi: 10.1109/EMBC.2013.6609667.

S. Charleston-Villalobos, R. González-Camarena, G. Chi-Lem, and T. Aljama-Corrales, “Crackle Sounds Analysis By Empirical Mode Decomposition,” IEEE Eng. Med. Biol. Mag., vol. 26, no. February, pp. 40–47, 2007, doi: 10.1109/MEMB.2007.289120.

C. H. Chiu, T. M. Choi, X. Dai, B. Shen, and J. H. Zheng, “Optimal Advertising Budget Allocation in Luxury Fashion Markets with Social Influences: A Mean-Variance Analysis,” Prod. Oper. Manag., vol. 27, no. 8, pp. 1611–1629, 2018, doi: 10.1111/poms.12886.

T. M. Choi, J. Zhang, and T. C. E. Cheng, “Quick Response in Supply Chains with Stochastically Risk Sensitive Retailers*,” Decis. Sci., vol. 49, no. 5, pp. 932–957, 2018, doi: 10.1111/deci.12303.

J. Rubio-Herrero, M. Baykal-Gürsoy, and A. Jas̈kiewicz, “A price-setting newsvendor problem under mean-variance criteria,” Eur. J. Oper. Res., vol. 247, no. 2, pp. 575–587, 2015, doi: 10.1016/j.ejor.2015.06.006.

N. Secomandi, “A tutorial on portfolio-based control algorithms for merchant energy trading operations,” J. Commod. Mark., vol. 4, no. 1, pp. 1–13, 2016, doi: 10.1016/j.jcomm.2016.10.003.

M. Tekin and S. Özekici, “Mean-Variance Newsvendor Model with Random Supply and Financial Hedging,” IIE Trans. (Institute Ind. Eng., vol. 47, no. 9, pp. 910–928, 2015, doi: 10.1080/0740817X.2014.981322.

N. Foroozesh, R. Tavakkoli-Moghaddam, S. M. Mousavi, and B. Vahdani, “A new comprehensive possibilistic group decision approach for resilient supplier selection with mean–variance–skewness–kurtosis and asymmetric information under interval-valued fuzzy uncertainty,” Neural Comput. Appl., vol. 31, no. 11, pp. 6959–6979, 2019, doi: 10.1007/s00521-018-3506-1.

L. T. DeCarlo, “On the meaning and use of kurtosis.,” Psychol. Methods, vol. 2, no. 3, pp. 292–307, 1997, doi: 10.1037//1082-989x.2.3.292.

M. K. Cain, Z. Zhang, and K. H. Yuan, “Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation,” Behav. Res. Methods, vol. 49, no. 5, pp. 1716–1735, 2017, doi: 10.3758/s13428-016-0814-1.

J. Shohat, “Inequalities for Moments of Frequency Functions and for Various Statistical Constants,” vol. 21, no. 1, pp. 361–375, 1929, doi: https://psycnet.apa.org/doi/10.1093/biomet/21.1-4.361.

H. Scheffe, “The Analysis of Variance,” Wiley, New York, vol. 72, p. 477, 1959.

Published
2023-04-14
How to Cite
[1]
Hilman Fauzi, Achmad Rizal, Mazaya ’Aqila, Alvin Oktarianto, and Ziani Said, “Classification of Normal and Abnormal Heart Sounds Using Empirical Mode Decomposition and First Order Statistic”, j.electron.electromedical.eng.med.inform, vol. 5, no. 2, pp. 82-88, Apr. 2023.
Section
Research Paper