Artificial Intelligence: A Review of Progress and Prospects in Medicine and Healthcare
Abstract
Andrew NG, a leading philosopher in the field of Artificial Intelligence (AI) once quoted “AI is the new electricity” which has the potential to transform and drive every industry. The most important driving factor for the AI transformation will be data. Clive Humby, a data science entrepreneur was once quoted saying “data is the new oil” and data analytics being the “combustion engine” will drive the AI led innovations. The rapid rise of Artificial Intelligence technologies in the past decade, has inspired industries to invest in every opportunity for integrating AI solutions to their products. Research, development, and innovation in the field of AI are shaping various industries like automobile, manufacturing, finance, retail, supply chain management, and education among others. The healthcare industry has also been adopting the ways of AI into various workflows within the domain. With the evolution in computing and processing powers coupled with hardware modernizations, the adoption of AI looks more feasible than ever. Research and Innovations are happening in almost every field of healthcare and hospital workflows with the target of making healthcare processes more efficient & accessible, increase the overall state of healthcare, reduce physician stress levels, and increase the patient satisfaction levels. The conventional ways in which healthcare and clinical workflows have been operating are now starting to see the change with the integration of many data driven AI solutions. The digital innovations are making life easy for healthcare professionals allowing them to spend more time listening to the problems of patients and consequently increasing the patient satisfaction levels. However, there are limitations and concerns on security of Protected Health Information which have to be addressed for a seamless amalgamation of AI systems into the healthcare domain. Many papers have been published which mostly talk about one particular field/problem in the healthcare domain. No publications have covered the opportunities provided by AI technologies to the entire healthcare domain. This review paper discusses in detail about the progress AI has been able to make in the healthcare domain holistically and what the future of AI looks like. The paper also discusses about the implementation opportunities various AI technologies like Machine Learning, Deep Learning, Reinforcement Learning, Natural Language Processing, Computer Vision provide in different fields of healthcare and clinical workflows and how Artificial Intelligence systems will boost the capabilities of healthcare professionals in restoring the human touch in patient-physician encounters. A physician’s intuition and judgement will always remain better suited since each case, each health condition, and each person is unique in its own way, but AI methods can help enhance the accuracy of diagnosis, assist physicians in making improved and precise clinical decisions.
Downloads
References
J. S. Maxmen, “The Post-Physician Era: Medicine in the Twenty-First Century,” eweb:14239.
P. C. Anderson, “The Post-Physician Era: Medicine in the 21st Century,” JAMA, vol. 237, no. 21, pp. 2336–2337, May 1977, doi: 10.1001/jama.1977.03270480076033.
J. S. Maxmen, “Long-Term Trends in Health Care: The Post-Physician Era Reconsidered BT - Indicators and Trends in Health and Health Care,” D. Schwefel, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987, pp. 109–115.
“Artificial Intelligence in Healthcare Market - Global Forecast to 2026.” https://www.marketsandmarkets.com/Market-Reports/artificial-intelligence-healthcare-market-54679303.html (accessed Sep. 26, 2021).
R. Shimonski, “AI in Healthcare,” AI in Healthcare, 2021. https://www.alliedmarketresearch.com/artificial-intelligence-in-healthcare-market.
S. J. MacEachern and N. D. Forkert, “Machine learning for precision medicine,” https://doi.org/10.1139/gen-2020-0131, vol. 64, no. 4, pp. 416–425, 2020, doi: 10.1139/GEN-2020-0131.
A. P, C. JM, and W. J, “Health Care Data Standards,” in Patient Safety: Achieving a New Standard for Care, Washington (DC): National Academies Press (US).
L. Hood and M. Flores, “A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory,” N. Biotechnol., vol. 29, no. 6, pp. 613–624, 2012, doi: https://doi.org/10.1016/j.nbt.2012.03.004.
Caroline Brogan, “New AI technology protects privacy in healthcare settings | Imperial News | Imperial College London.” https://www.imperial.ac.uk/news/222093/new-ai-technology-protects-privacy-healthcare/ (accessed Sep. 30, 2021).
L. Na, C. Yang, C.-C. Lo, F. Zhao, Y. Fukuoka, and A. Aswani, “Feasibility of Reidentifying Individuals in Large National Physical Activity Data Sets From Which Protected Health Information Has Been Removed With Use of Machine Learning,” JAMA Netw. Open, vol. 1, no. 8, pp. e186040–e186040, 2018, doi: 10.1001/jamanetworkopen.2018.6040.
A. Aswani, “Artificial intelligence advances threaten pri | EurekAlert!” https://www.eurekalert.org/news-releases/826934 (accessed Sep. 30, 2021).
G. A. Kaissis, M. R. Makowski, D. Rückert, and R. F. Braren, “Secure, privacy-preserving and federated machine learning in medical imaging,” Nat. Mach. Intell. 2020 26, vol. 2, no. 6, pp. 305–311, Jun. 2020, doi: 10.1038/s42256-020-0186-1.
G. Kaissis et al., “End-to-end privacy preserving deep learning on multi-institutional medical imaging,” Nat. Mach. Intell., vol. 3, no. 6, pp. 473–484, 2021, doi: 10.1038/s42256-021-00337-8.
“Future of Artificial Intelligence in Health Care | Deloitte US.” https://www2.deloitte.com/us/en/pages/life-sciences-and-health-care/articles/future-of-artificial-intelligence-in-health-care.html (accessed Sep. 08, 2021).
R. A, J. S, V. S. K, W. G, and H. JP, “Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data,” Sci. Rep., vol. 9, no. 1, Dec. 2019, doi: 10.1038/S41598-019-46649-Z.
G. Hinton, “Deep Learning—A Technology With the Potential to Transform Health Care,” JAMA, vol. 320, no. 11, pp. 1101–1102, Sep. 2018, doi: 10.1001/jama.2018.11100.
C. D. Naylor, “On the Prospects for a (Deep) Learning Health Care System,” JAMA, vol. 320, no. 11, pp. 1099–1100, Sep. 2018, doi: 10.1001/jama.2018.11103.
A. Esteva et al., “A guide to deep learning in healthcare,” Nat. Med., vol. 25, no. 1, pp. 24–29, Jan. 2019, doi: 10.1038/s41591-018-0316-z.
M. Zahiri, “Application of computer vision in surgical training and surgical robotics,” 2017. [Online]. Available: https://digitalcommons.unl.edu/dissertations/AAI10260082.
A. S. Nair, V. Naik, N. Busa, and B. K. Rayani, “Triton sponge and canister app for estimating surgical blood loss,” Saudi J. Anaesth., vol. 13, no. 4, p. 390, Oct. 2019, doi: 10.4103/SJA.SJA_38_19.
X. Jia and M. Q. H. Meng, “A deep convolutional neural network for bleeding detection in Wireless Capsule Endoscopy images,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2016-Octob, pp. 639–642, Oct. 2016, doi: 10.1109/EMBC.2016.7590783.
A. R. Hassan and M. A. Haque, “Computer-aided gastrointestinal hemorrhage detection in wireless capsule endoscopy videos,” Comput. Methods Programs Biomed., vol. 122, no. 3, pp. 341–353, Dec. 2015, doi: 10.1016/J.CMPB.2015.09.005.
N. Padoy, T. Blum, S. A. Ahmadi, H. Feussner, M. O. Berger, and N. Navab, “Statistical modeling and recognition of surgical workflow,” Med. Image Anal., vol. 16, no. 3, pp. 632–641, Apr. 2012, doi: 10.1016/J.MEDIA.2010.10.001.
Y. Jin et al., “SV-RCNet: Workflow recognition from surgical videos using recurrent convolutional network,” IEEE Trans. Med. Imaging, vol. 37, no. 5, pp. 1114–1126, May 2018, doi: 10.1109/TMI.2017.2787657.
B. A. Wormer et al., “Impact of implementing an electronic health record on surgical resident work flow, duty hours, and operative experience.,” Am. Surg., vol. 81, no. 2, pp. 172–177, Feb. 2015.
B. LA, B. J, and E. AG, “The impact of electronic health record systems on clinical documentation times: A systematic review,” Health Policy, vol. 122, no. 8, pp. 827–836, Aug. 2018, doi: 10.1016/J.HEALTHPOL.2018.05.014.
C. P et al., “Impact of electronic health record technology on the work and workflow of physicians in the intensive care unit,” Int. J. Med. Inform., vol. 84, no. 8, pp. 578–594, Aug. 2015, doi: 10.1016/J.IJMEDINF.2015.04.002.
L. N. Dyrbye and T. D. Shanafelt, “Physician Burnout: A Potential Threat to Successful Health Care Reform,” JAMA, vol. 305, no. 19, pp. 2009–2010, May 2011, doi: 10.1001/JAMA.2011.652.
M. X. Chen et al., “Gmail Smart Compose: Real-Time Assisted Writing,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 2287–2295, May 2019, Accessed: Oct. 02, 2021. [Online]. Available: https://arxiv.org/abs/1906.00080v1.
D. Gopinath, M. Agrawal, L. Murray, S. Horng, D. Karger, and D. Sontag, “Fast, Structured Clinical Documentation via Contextual Autocomplete Clinical Documentation with Contextual Autocomplete,” Proc. Mach. Learn. Res., vol. 106, pp. 1–26, 2020.
P. J. Liu, “Learning to Write Notes in Electronic Health Records,” Aug. 2018, Accessed: Oct. 02, 2021. [Online]. Available: https://arxiv.org/abs/1808.02622v1.
C. Yu, J. Liu, and S. Nemati, “Reinforcement Learning in Healthcare: A Survey,” Aug. 2019, Accessed: Oct. 01, 2021. [Online]. Available: https://arxiv.org/abs/1908.08796.
B. Chakraborty and S. A. Murphy, “Dynamic Treatment Regimes,” Annu. Rev. Stat. its Appl., vol. 1, p. 447, 2014, doi: 10.1146/ANNUREV-STATISTICS-022513-115553.
W. EH, A. BT, D. C, H. M, S. J, and B. A, “Improving chronic illness care: translating evidence into action,” Health Aff. (Millwood)., vol. 20, no. 6, pp. 64–78, 2001, doi: 10.1377/HLTHAFF.20.6.64.
K. Humphrey and K. Humphrey, “Using Reinforcement Learning to Personalize Dosing Strategies in a Simulated Cancer Trial with High Dimensional Data,” 2017, Accessed: Oct. 05, 2021. [Online]. Available: https://repository.arizona.edu/handle/10150/625341.
I. Ahn, J. Park, A. I, and P. J, “Drug scheduling of cancer chemotherapy based on natural actor-critic approach,” vol. 106, no. 2–3, pp. 121–129, Nov. 2011, doi: 10.1016/J.BIOSYSTEMS.2011.07.005.
P. R, M. N, and H. WM, “Reinforcement learning-based control of drug dosing for cancer chemotherapy treatment,” Math. Biosci., vol. 293, pp. 11–20, Nov. 2017, doi: 10.1016/J.MBS.2017.08.004.
Y. Zhao, D. Zeng, M. A. Socinski, and M. R. Kosorok, “Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer,” Biometrics, vol. 67, no. 4, pp. 1422–1433, Dec. 2011, doi: 10.1111/J.1541-0420.2011.01572.X.
Z. Y, K. MR, and Z. D, “Reinforcement learning design for cancer clinical trials,” Stat. Med., vol. 28, no. 26, pp. 3294–3315, Nov. 2009, doi: 10.1002/SIM.3720.
D. Bertsimas and H. Wiberg, “Machine Learning in Oncology: Methods, Applications, and Challenges,” JCO Clin. Cancer Informatics, no. 4, pp. 885–894, Oct. 2020, doi: 10.1200/CCI.20.00072.
J.-N. Eckardt, K. Wendt, M. Bornhäuser, and J. M. Middeke, “Reinforcement Learning for Precision Oncology,” Cancers (Basel)., vol. 13, no. 18, p. 4624, Sep. 2021, doi: 10.3390/cancers13184624.
P. Yazdjerdi, N. Meskin, M. Al-Naemi, A. E. Al Moustafa, and L. Kovács, “Reinforcement learning-based control of tumor growth under anti-angiogenic therapy,” Comput. Methods Programs Biomed., vol. 173, pp. 15–26, May 2019.
A. Hassani and M. B. Naghibi S., “Reinforcement learning based control of tumor growth with chemotherapy,” 2010 Int. Conf. Syst. Sci. Eng. ICSSE 2010, pp. 185–189, 2010, doi: 10.1109/ICSSE.2010.5551776.
T. Zhu, K. Li, L. Kuang, P. Herrero, and P. Georgiou, “An insulin bolus advisor for type 1 diabetes using deep reinforcement learning,” Sensors (Switzerland), vol. 20, no. 18, pp. 1–15, Sep. 2020.
D. E, D. P, and M. SG, “An Actor-Critic based controller for glucose regulation in type 1 diabetes,” Comput. Methods Programs Biomed., vol. 109, no. 2, pp. 116–125, Feb. 2013, doi: 10.1016/J.CMPB.2012.03.002.
E. Daskalaki, P. Diem, and S. G. Mougiakakou, “Model-Free Machine Learning in Biomedicine: Feasibility Study in Type 1 Diabetes,” PLoS One, vol. 11, no. 7, Jul. 2016, doi: 10.1371/JOURNAL.PONE.0158722.
P. D. Ngo, S. Wei, A. Holubová, J. Muzik, and F. Godtliebsen, “Control of Blood Glucose for Type-1 Diabetes by Using Reinforcement Learning with Feedforward Algorithm,” Comput. Math. Methods Med., vol. 2018, 2018, doi: 10.1155/2018/4091497.
M. K. Bothe et al., “The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas,” Expert Rev. Med. Devices, vol. 10, no. 5, pp. 661–673, 2013, doi: 10.1586/17434440.2013.827515.
A. E. Gaweda, M. K. Muezzinoglu, G. R. Aronoff, A. A. Jacobs, J. M. Zurada, and M. E. Brier, “Individualization of pharmacological anemia management using reinforcement learning,” Neural Networks, vol. 18, no. 5–6, pp. 826–834, Jul. 2005, doi: 10.1016/J.NEUNET.2005.06.020.
G. AE, M. MK, J. AA, A. GR, and B. ME, “Model predictive control with reinforcement learning for drug delivery in renal anemia management,” Conf. Proc. ... Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf., vol. 2006, pp. 5177–5180, 2006, doi: 10.1109/IEMBS.2006.260685.
J. M. Malof and A. E. Gaweda, “Optimizing drug therapy with reinforcement learning: The case of anemia management,” Proc. Int. Jt. Conf. Neural Networks, pp. 2088–2092, 2011, doi: 10.1109/IJCNN.2011.6033485.
J. D. Martín-Guerrero, F. Gomez, E. Soria-Olivas, J. Schmidhuber, M. Climente-Martí, and N. V. Jiménez-Torres, “A reinforcement learning approach for individualizing erythropoietin dosages in hemodialysis patients,” Expert Syst. Appl., vol. 36, no. 6, pp. 9737–9742, Aug. 2009, doi: 10.1016/J.ESWA.2009.02.041.
A. Raghu, M. Komorowski, and S. Singh, “Model-Based Reinforcement Learning for Sepsis Treatment,” Nov. 2018, Accessed: Oct. 05, 2021. [Online]. Available: https://arxiv.org/abs/1811.09602v1.
A. Raghu, M. Komorowski, L. A. Celi, P. Szolovits, and M. Ghassemi, “Continuous State-Space Models for Optimal Sepsis Treatment - a Deep Reinforcement Learning Approach,” May 2017, Accessed: Oct. 05, 2021. [Online]. Available: https://arxiv.org/abs/1705.08422v1.
X. Peng et al., “Improving Sepsis Treatment Strategies by Combining Deep and Kernel-Based Reinforcement Learning,” AMIA ... Annu. Symp. proceedings. AMIA Symp., vol. 2018, pp. 887–896, Jan. 2019, Accessed: Oct. 05, 2021. [Online]. Available: https://arxiv.org/abs/1901.04670v1.
M. Lu, Z. Shahn, D. Sow, F. Doshi-Velez, and L. H. Lehman, “Is Deep Reinforcement Learning Ready for Practical Applications in Healthcare? A Sensitivity Analysis of Duel-DDQN for Hemodynamic Management in Sepsis Patients,” AMIA Annu. Symp. Proc., vol. 2020, p. 773, 2020, Accessed: Oct. 02, 2021. [Online]. Available: /pmc/articles/PMC8075511/.
T. N. Alotaiby, S. A. Alshebeili, T. Alshawi, I. Ahmad, and F. E. Abd El-Samie, “EEG seizure detection and prediction algorithms: a survey,” EURASIP J. Adv. Signal Process. 2014 20141, vol. 2014, no. 1, pp. 1–21, Dec. 2014, doi: 10.1186/1687-6180-2014-183.
P. J. Schulte, A. A. Tsiatis, E. B. Laber, and M. Davidian, “Q- and A-learning methods for estimating optimal dynamic treatment regimes,” Stat. Sci., vol. 29, no. 4, pp. 640–661, 2014.
A. Ertefaie, S. Shortreed, and B. Chakraborty, “Q-learning Residual Analysis: Application to The Effectiveness of Sequences of Antipsychotic Medications for Patients with Schizophrenia,” Stat. Med., vol. 35, no. 13, p. 2221, Jun. 2016, doi: 10.1002/SIM.6859.
E. P. Balogh et al., “Improving Diagnosis in Health Care,” Improv. Diagnosis Heal. Care, pp. 1–472, Dec. 2015, doi: 10.17226/21794.
S. J. Fakih and T. K. Das, “LEAD: A methodology for learning efficient approaches to medical diagnosis,” IEEE Trans. Inf. Technol. Biomed., vol. 10, no. 2, pp. 220–228, Apr. 2006, doi: 10.1109/TITB.2005.855538.
M. Olivecrona, T. Blaschke, O. Engkvist, and H. Chen, “Molecular De Novo Design through Deep Reinforcement Learning,” J. Cheminform., vol. 9, no. 1, Apr. 2017, Accessed: Oct. 05, 2021. [Online]. Available: https://arxiv.org/abs/1704.07555v2.
A. Serrano, B. Imbernón, H. Pérez-Sánchez, J. M. Cecilia, A. Bueno-Crespo, and J. L. Abellán, “Accelerating drugs discovery with deep reinforcement learning: An early approach,” ACM Int. Conf. Proceeding Ser., Aug. 2018, doi: 10.1145/3229710.3229731.
Y.-T. E, F. G, K. M, M. S, T. M, and H. I, “Encouraging Physical Activity in Patients With Diabetes: Intervention Using a Reinforcement Learning System,” J. Med. Internet Res., vol. 19, no. 10, Oct. 2017, doi: 10.2196/JMIR.7994.
F. EM et al., “Can the artificial intelligence technique of reinforcement learning use continuously-monitored digital data to optimize treatment for weight loss?,” J. Behav. Med., vol. 42, no. 2, pp. 276–290, Apr. 2019, doi: 10.1007/S10865-018-9964-1.
T. McKelvey, M. Ahmad, A. Teredesai, and C. Eckert, “Interpretable Machine Learning in Healthcare,” Aug. 2018.
V. K. Ankur Teredesai , Muhammad Aurangzeb Ahmad , Carly Eckert M.D., “‘ Housekeeping ’ Explainable Models for,” vol. i, 2018, [Online]. Available: https://learning.acm.org/binaries/content/assets/leaning-center/webinar-slides/2018/explanaiblemodelsforhealthcareai_webinarslides.pdf.
D. W. Apley and J. Zhu, “Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models,” J. R. Stat. Soc. Ser. B Stat. Methodol., vol. 82, no. 4, pp. 1059–1086, Dec. 2016, Accessed: Oct. 09, 2021. [Online]. Available: https://arxiv.org/abs/1612.08468v2.
M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why Should I Trust You?’ Explaining the Predictions of Any Classifier,” doi: 10.1145/2939672.2939778.
S. M. Lundberg, P. G. Allen, and S.-I. Lee, “A Unified Approach to Interpreting Model Predictions,” Accessed: Oct. 09, 2021. [Online]. Available: https://github.com/slundberg/shap.
A. Shrikumar, P. Greenside, and A. Kundaje, “Learning Important Features Through Propagating Activation Differences,” 34th Int. Conf. Mach. Learn. ICML 2017, vol. 7, pp. 4844–4866, Apr. 2017, Accessed: Oct. 09, 2021. [Online]. Available: https://arxiv.org/abs/1704.02685v2.
G. Montavon, A. Binder, S. Lapuschkin, W. Samek, and K.-R. Müller, “Layer-Wise Relevance Propagation: An Overview,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11700 LNCS, pp. 193–209, 2019, doi: 10.1007/978-3-030-28954-6_10.
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization,” Oct. 2016, doi: 10.1007/s11263-019-01228-7.
A. Chattopadhyay, A. Sarkar, P. Howlader, and V. N. Balasubramanian, “Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks,” Oct. 2017, doi: 10.1109/WACV.2018.00097.
N. Emanuele, de S. Nandita, B. Adrian, C. Angel, Alberich Bayarri Christoph D, Becker Francesca, and J. Visser, “What the radiologist should know about artificial intelligence - an ESR white paper,” Insights Imaging, vol. 10, no. 1, Dec. 2019, doi: 10.1186/S13244-019-0738-2.
L. Chiwome, O. M. Okojie, A. K. M. J. Rahman, F. Javed, and P. Hamid, “Artificial Intelligence: Is It Armageddon for Breast Radiologists?,” Cureus, vol. 12, no. 6, p. e8923, Jun. 2020, doi: 10.7759/cureus.8923.
C. Lugo-Fagundo, B. Vogelstein, A. Yuille, and E. K. Fishman, “Deep Learning in Radiology: Now the Real Work Begins,” J. Am. Coll. Radiol., vol. 15, no. 2, pp. 364–367, Feb. 2018, doi: 10.1016/J.JACR.2017.08.007.
P. Lakhani and B. Sundaram, “Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks,” https://doi.org/10.1148/radiol.2017162326, vol. 284, no. 2, pp. 574–582, Apr. 2017, doi: 10.1148/RADIOL.2017162326.
T. Kooi et al., “Large scale deep learning for computer aided detection of mammographic lesions,” Med. Image Anal., vol. 35, pp. 303–312, Jan. 2017, doi: 10.1016/J.MEDIA.2016.07.007.
J. Pontabry, F. Rousseau, C. Studholme, M. Koob, and J. L. Dietemann, “A discriminative feature selection approach for shape analysis: Application to fetal brain cortical folding,” Med. Image Anal., vol. 35, pp. 313–326, Jan. 2017, doi: 10.1016/J.MEDIA.2016.07.005.
H. Wang et al., “A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation,” J. Xray. Sci. Technol., vol. 26, no. 2, pp. 171–187, Jan. 2018, doi: 10.3233/XST-17302.
S. M. McKinney et al., “International evaluation of an AI system for breast cancer screening,” Nat. 2020 5777788, vol. 577, no. 7788, pp. 89–94, Jan. 2020, doi: 10.1038/s41586-019-1799-6.
D. Jill, “The promise of artificial intelligence in diagnosing illness | CIO.” https://www.cio.com/article/3305951/the-promise-of-artificial-intelligence-in-diagnosing-illness.html (accessed Oct. 14, 2021).
“Shortage of pathologists affecting care levels in low, middle income countries - Health news, Medibulletin.” https://medibulletin.com/shortage-of-pathologists-affecting-care-levels-in-low-middle-income-countries/ (accessed Oct. 14, 2021).
D. P. Association, “About Digital Pathology.” https://digitalpathologyassociation.org/about-digital-pathology (accessed Oct. 14, 2021).
R. Singh, L. Chubb, L. Pantanowitz, and A. Parwani, “Standardization in digital pathology: Supplement 145 of the DICOM standards,” J. Pathol. Inform., vol. 2, no. 1, p. 23, 2011, doi: 10.4103/2153-3539.80719.
L. Pantanowitz, A. Sharma, A. B. Carter, T. Kurc, A. Sussman, and J. Saltz, “Twenty Years of Digital Pathology: An Overview of the Road Travelled, What is on the Horizon, and the Emergence of Vendor-Neutral Archives,” J. Pathol. Inform., vol. 9, p. 40, Nov. 2018, doi: 10.4103/jpi.jpi_69_18.
L. Y et al., “Artificial Intelligence-Based Breast Cancer Nodal Metastasis Detection: Insights Into the Black Box for Pathologists,” Arch. Pathol. Lab. Med., vol. 143, no. 7, pp. 859–868, 2019, doi: 10.5858/ARPA.2018-0147-OA.
D. Al Mouiee et al., “Classifying Retinal Degeneration in Histological Sections Using Deep Learning.,” Transl. Vis. Sci. Technol., vol. 10, no. 7, p. 9, Jun. 2021, doi: 10.1167/TVST.10.7.9.
L. Pantanowitz et al., “An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study,” Lancet Digit. Heal., vol. 2, no. 8, pp. e407–e416, Aug. 2020, doi: 10.1016/S2589-7500(20)30159-X.
S. Mishra, “Malaria Parasite Detection using Efficient Neural Ensembles,” J. Electron. Electromed. Eng. Med. Informatics, vol. 3, no. 3, pp. 119–133, Oct. 2021, doi: 10.35882/jeeemi.v3.i3.2.
L. A. J et al., “Deeply Supervised UNet for Semantic Segmentation to Assist Dermatopathological Assessment of Basal Cell Carcinoma,” J. imaging, vol. 7, no. 4, Apr. 2021, doi: 10.3390/JIMAGING7040071.
L. YJ et al., “Deep Learning Fast Screening Approach on Cytological Whole Slides for Thyroid Cancer Diagnosis,” Cancers (Basel)., vol. 13, no. 15, Aug. 2021, doi: 10.3390/CANCERS13153891.
W. L. Yun, U. Rajendra Acharya, Y. V. Venkatesh, C. Chee, L. C. Min, and E. Y. K. Ng, “Identification of different stages of diabetic retinopathy using retinal optical images,” Inf. Sci. (Ny)., vol. 178, no. 1, pp. 106–121, Jan. 2008, doi: 10.1016/J.INS.2007.07.020.
T. Schlegl et al., “Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning,” Ophthalmology, vol. 125, no. 4, pp. 549–558, Apr. 2018, doi: 10.1016/J.OPHTHA.2017.10.031.
B. C, J. S, and S. M, “Deep Learning-Based Diabetic Retinopathy Severity Grading System Employing Quadrant Ensemble Model,” J. Digit. Imaging, vol. 34, no. 2, pp. 440–457, Apr. 2021, doi: 10.1007/S10278-021-00418-5.
B. MN et al., “Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning,” BMC Med. Inform. Decis. Mak., vol. 19, no. 1, Jul. 2019, doi: 10.1186/S12911-019-0842-8.
W. L. Alyoubi, M. F. Abulkhair, and W. M. Shalash, “Diabetic retinopathy fundus image classification and lesions localization system using deep learning,” Sensors, vol. 21, no. 11, Jun. 2021, doi: 10.3390/S21113704.
J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” Apr. 2018, Accessed: Oct. 15, 2021. [Online]. Available: https://arxiv.org/abs/1804.02767.
B. P, P. KD, J. N, F. DE, and B. NM, “Comparing humans and deep learning performance for grading AMD: A study in using universal deep features and transfer learning for automated AMD analysis,” Comput. Biol. Med., vol. 82, pp. 80–86, Mar. 2017, doi: 10.1016/J.COMPBIOMED.2017.01.018.
P. M. Burlina, N. Joshi, K. D. Pacheco, D. E. Freund, J. Kong, and N. M. Bressler, “Use of Deep Learning for Detailed Severity Characterization and Estimation of 5-Year Risk among Patients with Age-Related Macular Degeneration,” JAMA Ophthalmol., vol. 136, no. 12, pp. 1359–1366, Dec. 2018, doi: 10.1001/JAMAOPHTHALMOL.2018.4118.
M. MR et al., “Local configuration pattern features for age-related macular degeneration characterization and classification,” Comput. Biol. Med., vol. 63, pp. 208–218, Aug. 2015, doi: 10.1016/J.COMPBIOMED.2015.05.019.
R. Zhao, Z. Chen, and Z. Chi, “Convolutional Neural Networks for Branch Retinal Vein Occlusion recognition?,” 2015 IEEE Int. Conf. Inf. Autom. ICIA 2015 - conjunction with 2015 IEEE Int. Conf. Autom. Logist., pp. 1633–1636, Sep. 2015, doi: 10.1109/ICINFA.2015.7279547.
Z. Chen, H. Zhang, Z. Chi, and H. Fu, “Hierarchical local binary pattern for branch retinal vein occlusion recognition,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9008, pp. 687–697, Jan. 2015, doi: 10.1007/978-3-319-16628-5_49.
S. F. Weng, J. Reps, J. Kai, J. M. Garibaldi, and N. Qureshi, “Can Machine-learning improve cardiovascular risk prediction using routine clinical data?,” PLoS One, vol. 12, no. 4, p. e0174944, Apr. 2017, doi: 10.1371/JOURNAL.PONE.0174944.
T. J. W. Dawes et al., “Machine Learning of Three-dimensional Right Ventricular Motion Enables Outcome Prediction in Pulmonary Hypertension: A Cardiac MR Imaging Study,” https://doi.org/10.1148/radiol.2016161315, vol. 283, no. 2, pp. 381–390, Jan. 2017, doi: 10.1148/RADIOL.2016161315.
A. ZI et al., “An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction,” Lancet (London, England), vol. 394, no. 10201, pp. 861–867, Sep. 2019, doi: 10.1016/S0140-6736(19)31721-0.
G. CD et al., “Development and Validation of a Deep-Learning Model to Screen for Hyperkalemia From the Electrocardiogram,” JAMA Cardiol., vol. 4, no. 5, pp. 428–436, May 2019, doi: 10.1001/JAMACARDIO.2019.0640.
K. C et al., “Machine learning prediction in cardiovascular diseases: a meta-analysis,” Sci. Rep., vol. 10, no. 1, Dec. 2020, doi: 10.1038/S41598-020-72685-1.
J. myoung Kwon et al., “A deep learning algorithm to detect anaemia with ECGs: a retrospective, multicentre study,” Lancet Digit. Heal., vol. 2, no. 7, pp. e358–e367, Jul. 2020, doi: 10.1016/S2589-7500(20)30108-4.
P. Hsieh, “AI In Medicine: Rise Of The Machines.” https://www.forbes.com/sites/paulhsieh/2017/04/30/ai-in-medicine-rise-of-the-machines/?sh=79d133eeabb0 (accessed Oct. 17, 2021).
C. E. Gutierrez et al., “Optimization and validation of diffusion MRI-based fiber tracking with neural tracer data as a reference,” Sci. Reports 2020 101, vol. 10, no. 1, pp. 1–18, Dec. 2020, doi: 10.1038/s41598-020-78284-4.
P. Kickingereder et al., “Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study,” Lancet Oncol., vol. 20, no. 5, pp. 728–740, May 2019, doi: 10.1016/S1470-2045(19)30098-1.
K. E. Emblem et al., “A generic support Vector Machine Model for Preoperative glioma survival associations 1,” Radiol. n Radiol., vol. 275, no. 1, 2015, doi: 10.1148/radiol.14140770.
I. Karabayir, S. M. Goldman, S. Pappu, and O. Akbilgic, “Gradient boosting for Parkinson’s disease diagnosis from voice recordings,” BMC Med. Inform. Decis. Mak., vol. 20, no. 1, Sep. 2020, doi: 10.1186/S12911-020-01250-7.
J. Xu and M. Zhang, “Use of Magnetic Resonance Imaging and Artificial Intelligence in Studies of Diagnosis of Parkinson’s Disease,” ACS Chem. Neurosci., vol. 10, no. 6, pp. 2658–2667, Jun. 2019, doi: 10.1021/ACSCHEMNEURO.9B00207.
B. N et al., “Artificial intelligence in neurodegenerative disease research: use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis,” Acta Neuropathol., vol. 135, no. 2, pp. 227–247, Feb. 2018, doi: 10.1007/S00401-017-1785-8.
Y. W. Chien, S. Y. Hong, W. T. Cheah, L. H. Yao, Y. L. Chang, and L. C. Fu, “An Automatic Assessment System for Alzheimer’s Disease Based on Speech Using Feature Sequence Generator and Recurrent Neural Network,” Sci. Rep., vol. 9, no. 1, Dec. 2019, doi: 10.1038/S41598-019-56020-X.
O. Hughes, “Using AI assessment to tackle dementia in ultra-early stages.” https://www.digitalhealth.net/2019/09/using-ai-assessment-tackle-dementia-ultra-early-stages/ (accessed Oct. 19, 2021).
M. Nagamine et al., “Abstract WP395: Detection of Hemorrhagic Expansion With Ai,” Stroke, vol. 51, no. Suppl_1, Feb. 2020, doi: 10.1161/str.51.suppl_1.WP395.
B. P et al., “Prediction of stroke thrombolysis outcome using CT brain machine learning,” NeuroImage. Clin., vol. 4, pp. 635–640, 2014, doi: 10.1016/J.NICL.2014.02.003.
C. Fernandez-Lozano et al., “Random forest-based prediction of stroke outcome,” Sci. Rep., vol. 11, no. 1, Dec. 2021, doi: 10.1038/S41598-021-89434-7.
M. Monteiro et al., “Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study,” Lancet Digit. Heal., vol. 2, no. 6, pp. e314–e322, Jun. 2020, doi: 10.1016/S2589-7500(20)30085-6.
R. Raj et al., “Machine learning-based dynamic mortality prediction after traumatic brain injury,” Sci. Rep., vol. 9, no. 1, pp. 1–13, Dec. 2019, doi: 10.1038/S41598-019-53889-6.
“With Hopes of Helping Paralyzed Patients Regain Movement, Intel and Brown University Deploy AI | Intel Newsroom.” https://newsroom.intel.com/news/hopes-helping-paralyzed-patients-regain-movement-intel-brown-university-deploy-ai/#gs.dj6uhx (accessed Oct. 20, 2021).
“Neurodata Without Borders – The Kavli Foundation.” https://www.nwb.org/ (accessed Oct. 18, 2021).
S. MA et al., “A new approach for locating the minor apical foramen using an artificial neural network,” Int. Endod. J., vol. 45, no. 3, pp. 257–265, Mar. 2012, doi: 10.1111/J.1365-2591.2011.01970.X.
M. A. Saghiri, F. Garcia-Godoy, J. L. Gutmann, M. Lotfi, and K. Asgar, “The Reliability of Artificial Neural Network in Locating Minor Apical Foramen: A Cadaver Study,” J. Endod., vol. 38, no. 8, pp. 1130–1134, Aug. 2012, doi: 10.1016/j.joen.2012.05.004.
M. C. Kılıc et al., “Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs,” Dentomaxillofacial Radiol., vol. 50, no. 6, Sep. 2021, doi: 10.1259/DMFR.20200172.
S. K. Jung and T. W. Kim, “New approach for the diagnosis of extractions with neural network machine learning,” Am. J. Orthod. Dentofac. Orthop., vol. 149, no. 1, pp. 127–133, Jan. 2016, doi: 10.1016/J.AJODO.2015.07.030.
M. Johari, F. Esmaeili, A. Andalib, S. Garjani, and H. Saberkari, “Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: an ex vivo study,” http://dx.doi.org/10.1259/dmfr.20160107, vol. 46, no. 2, Jan. 2017, doi: 10.1259/DMFR.20160107.
J. De Tobel, P. Radesh, D. Vandermeulen, and P. W. Thevissen, “An automated technique to stage lower third molar development on panoramic radiographs for age estimation: a pilot study.,” J. Forensic Odontostomatol., vol. 35, no. 2, p. 42, Dec. 2017, Accessed: Oct. 20, 2021. [Online]. Available: /pmc/articles/PMC6100230/.
M. Aubreville et al., “Automatic Classification of Cancerous Tissue in Laserendomicroscopy Images of the Oral Cavity using Deep Learning,” Sci. Reports 2017 71, vol. 7, no. 1, pp. 1–10, Sep. 2017, doi: 10.1038/s41598-017-12320-8.
S. Imangaliyev, M. H. van der Veen, C. M. C. Volgenant, B. J. F. Keijser, W. Crielaard, and E. Levin, “Deep Learning for Classification of Dental Plaque Images,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10122 LNCS, pp. 407–410, 2016, doi: 10.1007/978-3-319-51469-7_34.
J.-H. Lee, D. Kim, S.-N. Jeong, and S.-H. Choi, “Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm,” J. Periodontal Implant Sci., vol. 48, no. 2, pp. 114–123, Apr. 2018, doi: 10.5051/JPIS.2018.48.2.114.
F. Casalegno et al., “Caries Detection with Near-Infrared Transillumination Using Deep Learning:,” https://doi.org/10.1177/0022034519871884, vol. 98, no. 11, pp. 1227–1233, Aug. 2019, doi: 10.1177/0022034519871884.
T. Hiraiwa et al., “A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography,” https://doi.org/10.1259/dmfr.20180218, vol. 48, no. 3, Nov. 2018, doi: 10.1259/DMFR.20180218.
Y. Ariji et al., “CT evaluation of extranodal extension of cervical lymph node metastases in patients with oral squamous cell carcinoma using deep learning classification,” Oral Radiol. 2019 362, vol. 36, no. 2, pp. 148–155, Jun. 2019, doi: 10.1007/S11282-019-00391-4.
Y. Ariji et al., “Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of artificial intelligence,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol., vol. 127, no. 5, pp. 458–463, May 2019, doi: 10.1016/J.OOOO.2018.10.002.
J. Krois et al., “Deep Learning for the Radiographic Detection of Periodontal Bone Loss,” Sci. Reports 2019 91, vol. 9, no. 1, pp. 1–6, Jun. 2019, doi: 10.1038/s41598-019-44839-3.
P. Basilio, “AI behind potential blood test for ovarian cancer | MDLinx,” MDLinx, 2017. https://www.mdlinx.com/article/ai-behind-potential-blood-test-for-ovarian-cancer/lfc-1230 (accessed Oct. 22, 2021).
E. A, R. CN, and E. RJ, “Artificial Intelligence Systems as Prognostic and Predictive Tools in Ovarian Cancer,” Ann. Surg. Oncol., vol. 22, no. 12, pp. 3970–3975, Nov. 2015, doi: 10.1245/S10434-015-4475-6.
E. Kawakami et al., “Application of artificial intelligence for preoperative diagnostic and prognostic prediction in epithelial ovarian cancer based on blood biomarkers,” Clin. Cancer Res., vol. 25, no. 10, pp. 3006–3015, 2019, doi: 10.1158/1078-0432.CCR-18-3378.
A. M and H. K, “Artificial Intelligence in Ovarian Cancer Diagnosis,” Anticancer Res., vol. 40, no. 8, pp. 4795–4800, Aug. 2020, doi: 10.21873/ANTICANRES.14482.
O. Holmström et al., “Point-of-Care Digital Cytology With Artificial Intelligence for Cervical Cancer Screening in a Resource-Limited Setting,” JAMA Netw. Open, vol. 4, no. 3, p. e211740, Mar. 2021, doi: 10.1001/jamanetworkopen.2021.1740.
S. P B, F. Faruqi, H. K S, and R. Kudva, “Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images,” Asian Pacific J. Cancer Prev., vol. 20, no. 11, pp. 3447–3456, Nov. 2019, doi: 10.31557/APJCP.2019.20.11.3447.
F. H. D. Araújo et al., “Deep learning for cell image segmentation and ranking,” Comput. Med. Imaging Graph., vol. 72, pp. 13–21, Mar. 2019, doi: 10.1016/J.COMPMEDIMAG.2019.01.003.
C.-W. Wang et al., “Artificial intelligence-assisted fast screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning,” Sci. Reports 2021 111, vol. 11, no. 1, pp. 1–14, Aug. 2021, doi: 10.1038/s41598-021-95545-y.
M. O. Ajao, N. V. Clark, T. Kelil, S. L. Cohen, and J. I. Einarsson, “Case Report: Three-Dimensional Printed Model for Deep Infiltrating Endometriosis,” J. Minim. Invasive Gynecol., vol. 24, no. 7, pp. 1239–1242, Nov. 2017, doi: 10.1016/J.JMIG.2017.06.006.
P. Vávra et al., “Recent Development of Augmented Reality in Surgery: A Review,” J. Healthc. Eng., vol. 2017, 2017, doi: 10.1155/2017/4574172.
Z. Zhao, Y. Deng, Y. Zhang, Y. Zhang, X. Zhang, and L. Shao, “DeepFHR: intelligent prediction of fetal Acidemia using fetal heart rate signals based on convolutional neural network,” BMC Med. Informatics Decis. Mak. 2019 191, vol. 19, no. 1, pp. 1–15, Dec. 2019, doi: 10.1186/S12911-019-1007-5.
J. Li et al., “Automatic classification of fetal heart rate based on convolutional neural network,” IEEE Internet Things J., vol. 6, no. 2, pp. 1394–1401, Apr. 2019, doi: 10.1109/JIOT.2018.2845128.
A. Kazantsev, J. Ponomareva, P. Kazantsev, R. Digilov, and P. Huang, “Development of e-health network for in-home pregnancy surveillance based on artificial intelligence,” Proc. - IEEE-EMBS Int. Conf. Biomed. Heal. Informatics Glob. Gd. Chall. Heal. Informatics, BHI 2012, pp. 82–84, 2012, doi: 10.1109/BHI.2012.6211511.
L. H et al., “Machine learning risk score for prediction of gestational diabetes in early pregnancy in Tianjin, China,” Diabetes. Metab. Res. Rev., vol. 37, no. 5, Jul. 2021, doi: 10.1002/DMRR.3397.
Jiayi et al., “An Innovative Artificial Intelligence–Based App for the Diagnosis of Gestational Diabetes Mellitus (GDM-AI): Development Study,” J Med Internet Res 2020;22(9)e21573 https//www.jmir.org/2020/9/e21573, vol. 22, no. 9, p. e21573, Sep. 2020, doi: 10.2196/21573.
Y. T. Wu et al., “Early Prediction of Gestational Diabetes Mellitus in the Chinese Population via Advanced Machine Learning,” J. Clin. Endocrinol. Metab., vol. 106, no. 3, pp. E1191–E1205, Mar. 2021, doi: 10.1210/CLINEM/DGAA899.
K.-S. Lee and K. H. Ahn, “Artificial Neural Network Analysis of Spontaneous Preterm Labor and Birth and Its Major Determinants,” J. Korean Med. Sci., vol. 34, no. 16, Apr. 2019, doi: 10.3346/JKMS.2019.34.E128.
R. Raja, I. Mukherjee, and B. K. Sarkar, “A Machine Learning-Based Prediction Model for Preterm Birth in Rural India,” J. Healthc. Eng., vol. 2021, 2021, doi: 10.1155/2021/6665573.
B. CL et al., “Performance of a deep learning based neural network in the selection of human blastocysts for implantation,” Elife, vol. 9, pp. 1–14, Sep. 2020, doi: 10.7554/ELIFE.55301.
V. M et al., “Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF,” Hum. Reprod., vol. 35, no. 4, pp. 770–784, 2020, doi: 10.1093/HUMREP/DEAA013.
P. Khosravi et al., “Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization,” npj Digit. Med., vol. 2, no. 1, Dec. 2019, doi: 10.1038/S41746-019-0096-Y.
S. Rodriguez et al., “Machine learning identifies candidates for drug repurposing in Alzheimer’s disease,” Nat. Commun. 2021 121, vol. 12, no. 1, pp. 1–13, Feb. 2021, doi: 10.1038/s41467-021-21330-0.
R. Poplin et al., “A universal SNP and small-indel variant caller using deep neural networks,” Nat. Biotechnol. 2018 3610, vol. 36, no. 10, pp. 983–987, Sep. 2018, doi: 10.1038/nbt.4235.
Q. D, C. Y, and X. X, “DANN: a deep learning approach for annotating the pathogenicity of genetic variants,” Bioinformatics, vol. 31, no. 5, pp. 761–763, Mar. 2015, doi: 10.1093/BIOINFORMATICS/BTU703.
P. Rentzsch, D. Witten, G. M. Cooper, J. Shendure, and M. Kircher, “CADD: Predicting the deleteriousness of variants throughout the human genome,” Nucleic Acids Res., vol. 47, no. D1, pp. D886–D894, Jan. 2019, doi: 10.1093/NAR/GKY1016.
S. L et al., “Predicting the clinical impact of human mutation with deep neural networks,” Nat. Genet., vol. 50, no. 8, pp. 1161–1170, Aug. 2018, doi: 10.1038/S41588-018-0167-Z.
K. DR, R. YA, B. M, B. D, M. CY, and S. J, “Sequential regulatory activity prediction across chromosomes with convolutional neural networks,” Genome Res., vol. 28, no. 5, pp. 739–750, May 2018, doi: 10.1101/GR.227819.117.
A. B, D. A, W. MT, and F. BJ, “Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning,” Nat. Biotechnol., vol. 33, no. 8, pp. 831–838, Aug. 2015, doi: 10.1038/NBT.3300.
-Kenneth C Frazier, “Biopharmaceutical Research & Development: The Process Behind New Medicines.” Accessed: Nov. 02, 2021. [Online]. Available: http://phrma-docs.phrma.org/sites/default/files/pdf/rd_brochure_022307.pdf.
M. KK and P. MR, “Artificial intelligence in drug development: present status and future prospects,” Drug Discov. Today, vol. 24, no. 3, pp. 773–780, Mar. 2019, doi: 10.1016/J.DRUDIS.2018.11.014.
G. Hessler and K. H. Baringhaus, “Artificial intelligence in drug design,” Molecules, vol. 23, no. 10, Oct. 2018, doi: 10.3390/MOLECULES23102520.
R. Gómez-Bombarelli et al., “Automatic chemical design using a data-driven continuous representation of molecules,” ACS Cent. Sci., vol. 4, no. 2, pp. 268–276, Oct. 2016, doi: 10.1021/acscentsci.7b00572.
A. Kadurin et al., “The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology,” Oncotarget, vol. 8, no. 7, pp. 10883–10890, Dec. 2016, doi: 10.18632/ONCOTARGET.14073.
M. A. Kayala and P. Baldi, “ReactionPredictor: Prediction of Complex Chemical Reactions at the Mechanistic Level Using Machine Learning,” J. Chem. Inf. Model., vol. 52, no. 10, pp. 2526–2540, Oct. 2012, doi: 10.1021/CI3003039.
M. H. S. Segler and M. P. Waller, “Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction,” Chem. – A Eur. J., vol. 23, no. 25, pp. 5966–5971, May 2017, doi: 10.1002/CHEM.201605499.
E. E et al., “Use of a Novel Artificial Intelligence Platform on Mobile Devices to Assess Dosing Compliance in a Phase 2 Clinical Trial in Subjects With Schizophrenia,” JMIR Mhealth Uhealth 2017;5(2)e18 https//mhealth.jmir.org/2017/2/e18, vol. 5, no. 2, p. e7030, Feb. 2017, doi: 10.2196/MHEALTH.7030.
W. D. Heaven, “AI could help with the next pandemic—but not with this one | MIT Technology Review,” 2020. https://www.technologyreview.com/2020/03/12/905352/ai-could-help-with-the-next-pandemicbut-not-with-this-one/ (accessed Nov. 07, 2021).
S. K. Tamang, P. D. Singh, and B. Datta, “Forecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique,” Glob. J. Environ. Sci. Manag., vol. 6, no. Special Issue (Covid-19), pp. 53–64, Aug. 2020, doi: 10.22034/GJESM.2019.06.SI.06.
T. Chakraborty and I. Ghosh, “Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis,” Chaos, Solitons & Fractals, vol. 135, p. 109850, Jun. 2020, doi: 10.1016/J.CHAOS.2020.109850.
S. Deng, S. Wang, H. Rangwala, L. Wang, and Y. Ning, “Cola-GNN: Cross-location Attention based Graph Neural Networks for Long-term ILI Prediction,” in Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Oct. 2020, pp. 245–254, doi: 10.1145/3340531.3411975.
A. S. Ahuja, “The impact of artificial intelligence in medicine on the future role of the physician.,” PeerJ, vol. 7, p. e7702, 2019, doi: 10.7717/peerj.7702.
E. Korot et al., “Will AI Replace Ophthalmologists?,” Transl. Vis. Sci. Technol., vol. 9, no. 2, 2020, doi: 10.1167/TVST.9.2.2.
K. E. Karches, “Against the iDoctor: why artificial intelligence should not replace physician judgment,” Theor. Med. Bioeth. 2018 392, vol. 39, no. 2, pp. 91–110, Jul. 2018, doi: 10.1007/S11017-018-9442-3.
D. S, D. S, J. SS, B. CM, and A. MJ, “Machine Learning in Drug Discovery: A Review,” Artif. Intell. Rev., 2021, doi: 10.1007/S10462-021-10058-4.
K. E. Karches, “Against the iDoctor: why artificial intelligence should not replace physician judgment.,” Theor. Med. Bioeth., vol. 39, no. 2, pp. 91–110, Apr. 2018, doi: 10.1007/s11017-018-9442-3.
E. J. Topol, Deep medicine : how artificial intelligence can make healthcare human again. Basic Books, Inc., 2019.

Copyright (c) 2022 Saurav Mishra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlikel 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).