Optimized Metaheuristic Integrated Neuro-Fuzzy Deep Learning Framework for EEG-Based Lie Detection

  • Tanmayi Nagale Thakur College of Engineering and Technology, Kandivali
  • Anand Khandare
Keywords: deep learning, concealed information test, eeg dataset

Abstract

EEG-based deception detection remains challenging due to three critical limitations: high inter-subject variability, which restricts generalization, the black-box nature of deep learning models that undermines forensic interpretability, and substantial computational overhead arising from high-dimensional multi-channel EEG data. Although recent state-of-the-art approaches report accuracies of 82–88%, they fail to provide the transparency required for legal and forensic admissibility. To address these limitations, this study aims to develop an accurate, computationally efficient, and explainable EEG-based deception detection framework suitable for real-world forensic applications. The primary contribution of this work is a novel hybrid neuro-fuzzy architecture that jointly integrates intelligent channel selection, complementary deep feature learning, and transparent fuzzy reasoning, enabling high performance without sacrificing interpretability. The proposed framework follows a five-stage pipeline: (1) intelligent channel selection using Type-2 fuzzy inference with ANFIS-based ranking and multi-objective evolutionary optimization (MOEA/D), reducing EEG dimensionality from 64 to 14 channels (78.1% reduction); (2) dual-path deep learning that combines EEGNet for spatial–temporal feature extraction with InceptionTime-Light for multi-scale temporal representations; (3) a fuzzy attention mechanism to generate interpretable feature importance weights; (4) an ANFIS-based classifier employing Takagi–Sugeno fuzzy rules for transparent decision-making; and (5) triple-level interpretability through channel importance visualization, attention-weighted features, and extractable linguistic rules. The framework is evaluated on two benchmark datasets, such as LieWaves (27 subjects, 5-channel EEG) and the Concealed Information Test (CIT) dataset (79 subjects, 16-channel EEG). Experimental results demonstrate superior performance, achieving 93.8% accuracy on LieWaves and 92.7% on the CIT dataset, representing an improvement of 5.3 % points over the previous best-performing methods, while maintaining balanced sensitivity (92.4%) and specificity (95.2%). In conclusion, this work establishes that neuro-fuzzy integration can simultaneously achieve high classification accuracy, computational efficiency, and forensic-grade explainability, thereby advancing the practical deployment of EEG-based deception detection systems in real-world forensic applications.

Downloads

Download data is not yet available.

References

Arif, M. S., Ahmed, M., & Khan, A. (2025). A synergy of convolutional neural networks for sensor-based EEG brain–computer interfaces to enhance motor imagery classification. Sensors, 25(2), Article 443. https://doi.org/10.3390/s25020443

Dong, Z., Li, R., Wu, Y., Nguyen, T. T., Chong, J., Ji, F., Tong, N., Chen, C., & Zhou, J. H. (2025). Brain foundation models: A survey on advancements in neural signal processing and brain discovery. arXiv preprint arXiv:2503.00580. https://arxiv.org/abs/2503.00580

Thamaraimanalan, T., & Gopal, D. (2025). Exploiting adaptive neuro-fuzzy inference systems for cognitive patterns in multimodal brain signal analysis. Scientific Reports, 15, Article 9029. https://doi.org/10.1038/s41598-025-93241-9

Alakuş, T. B., Güneş, M., & Türkoğlu, İ. (2024). LieWaves: Dataset for lie detection based on EEG signals and wavelets. Medical & Biological Engineering & Computing, 62, 1147–1165. https://doi.org/10.1007/s11517-024-03021-2

Al-Hashimi, Z., Abdullah, M. N., & Hussain, Z. M. (2024). Neurophysiological approaches to lie detection: A systematic review. Brain Sciences, 14(5), Article 489. https://doi.org/10.3390/brainsci14050489

Jain, S., & Srivastava, R. (2024). Multi-modality NDE fusion using encoder-decoder networks for identify multiple neurological disorders from EEG signals. Technology and Health Care, 32(6), 4587–4604. https://doi.org/10.1177/09287329241291334

Rahmani, M., Mohajelin, F., Khaleghi, N., Sheykhivand, S., & Danishvar, S. (2024). An automatic lie detection model using EEG signals based on the combination of type 2 fuzzy sets and deep graph convolutional networks. Sensors, 24(11), Article 3598. https://doi.org/10.3390/s24113598

Sudha, T., & Bharathi, V. (2024). Neuro-fuzzy artificial intelligent modeling for cognitive state classification using EEG signal analysis. SN Computer Science, 5, Article 792. https://doi.org/10.1007/s42979-024-03173-w

Xue, J., Song, Y., Wu, P., Cheng, J., & Pan, G. (2024). Graph neural network based on brain inspired forward-forward mechanism for motor imagery classification in brain-computer interfaces. Frontiers in Neuroscience, 18, Article 1309594. https://doi.org/10.3389/fnins.2024.1309594

Ye, L., Wang, H., & Zhang, X. (2025). Ensemble fuzzy deep learning for brain tumor detection. Scientific Reports, 15, Article 5234. https://doi.org/10.1038/s41598-025-90572-5

Yeganejou, M., Keshmiri, M., & Dick, S. (2024). DCNFIS: Deep convolutional neuro-fuzzy inference system. IEEE Transactions on Fuzzy Systems, 32(3), 1234–1247. https://doi.org/10.1109/TFUZZ.2024.3358741

Aghaeipoor, F., Sabokrou, M., & Fernández, A. (2023). Fuzzy rule-based explainer systems for deep neural networks: From local explainability to global understanding. IEEE Transactions on Fuzzy Systems, 31(9), 3069–3080. https://doi.org/10.1109/TFUZZ.2023.3247821

Alakuş, T. B., & Türkoğlu, İ. (2023). LSTMNCP: Lie detection from EEG signals with novel hybrid deep learning method. Multimedia Tools and Applications, 83, 15847–15873. https://doi.org/10.1007/s11042-023-16847-z

Kang, Q., Li, F., & Gao, J. (2023). Exploring the functional brain network of deception in source-level EEG via partial mutual information. Electronics, 12(7), Article 1633. https://doi.org/10.3390/electronics12071633

Lee, S., Shin, J., Hong, K. S., & Naseer, N. (2023). Artificial neural network models: Implementation of functional near-infrared spectroscopy-based spontaneous lie detection in an interactive scenario. Frontiers in Computational Neuroscience, 17, Article 1286664.https://doi.org/10.3389/fncom.2023.1286664

Munia, T. T. K., & Aviyente, S. (2023). An empirical comparison of deep learning explainability approaches for EEG using simulated ground truth. Scientific Reports, 13(1), Article 17709. https://doi.org/10.1038/s41598-023-43871-8

AlArfaj, A. A., & Mahmoud, H. A. H. (2022). A deep learning model for EEG-based lie detection test using spatial and temporal aspects. Computers, Materials & Continua, 73(3), 5655–5669.https://doi.org/10.32604/cmc.2022.031135

Al-Qaysi, Z. T., Suzani, M. S., Zaidan, B. B., Zaidan, A. A., & Naji, A. W. (2022). A survey for lie detection methodology using EEG signal processing. Journal of Al-Qadisiyah for Computer Science and Mathematics, 14(2), 112–128. https://doi.org/10.30772/qjcm.v14i2.903

Chan, G. Y., Lee, C. S., & Heng, S. H. (2022). On the combination of adaptive neuro-fuzzy inference system and deep residual network for improving detection rates on intrusion detection. PLOS ONE, 17(12), Article e0278819. https://doi.org/10.1371/journal.pone.0278819

Chen, T., Shang, C., Yang, J., Li, F., & Shen, Q. (2022). A hybrid interpretable deep structure based on adaptive neuro-fuzzy inference system, decision tree, and K-means for intrusion detection. Scientific Reports, 12, Article 20545. https://doi.org/10.1038/s41598-022-23765-x

Javaid, H., Dilawari, A., Khan, U. G., & Wajid, B. (2022). EEG guided multimodal lie detection with audio-visual cues. In 2022 2nd IEEE International Conference on Artificial Intelligence (ICAI) (pp. 71–78). IEEE. https://doi.org/10.1109/ICAI55435.2022.9773469

Sharma, T., Verma, N. K., & Masood, S. (2022). Depress-DCNF: A deep convolutional neuro-fuzzy model for detection of depression episodes using IoMT. Applied Soft Computing, 122, Article 108802.https://doi.org/10.1016/j.asoc.2022.108802

Agnihotri, C., Mengade, J., Sevak, B., & Utekar, V. (2021). Cognitive based lie detection. International Journal of Engineering Research & Technology (IJERT), 9(3), 452–456. https://www.ijert.org/cognitive-based-lie-detection

Bablani, A., Edla, D. R., Kupilli, V., & Dharavath, R. (2021). Lie detection using fuzzy ensemble approach with novel defuzzification method for classification of EEG signals. IEEE Transactions on Instrumentation and Measurement, 70, Article 3001811. https://doi.org/10.1109/TIM.2021.3082985

Chopra, S., Yadav, S., Sharma, A. K., & Dhatterwal, J. S. (2021). Taxonomy of adaptive neuro-fuzzy inference system in modern engineering sciences. Computational Intelligence and Neuroscience, 2021, Article 6455592. https://doi.org/10.1155/2021/6455592

Edla, D. R., Dodia, S., Bablani, A., & Kuppili, V. (2021). An efficient deep learning paradigm for deceit identification test on EEG signals. ACM Transactions on Management Information Systems, 12(3), Article 18. https://doi.org/10.1145/3458791

Gallardo-Antolín, A., & Montero, J. M. (2021). Detecting deception from gaze and speech using a multimodal attention LSTM-based framework. Applied Sciences, 11(14), Article 6393. https://doi.org/10.3390/app11146393

Alakus, T. B., Gonen, M., & Turkoglu, I. (2020). Database for an emotion recognition system based on EEG signals and various computer games – GAMEEMO. Biomedical Signal Processing and Control, 60, Article 101951. https://doi.org/10.1016/j.bspc.2020.101951

Baghel, N., Singh, D., Dutta, M. K., Burget, R., & Myska, V. (2020). Truth identification from EEG signal by using convolution neural network: Lie detection. In 2020 43rd International Conference on Telecommunications and Signal Processing (TSP) (pp. 550–553). IEEE. https://doi.org/10.1109/TSP49548.2020.9163497

Dodia, S., Edla, D. R., Bablani, A., & Cheruku, R. (2020). Lie detection using extreme learning machine: A concealed information test based on short-time Fourier transform and binary bat optimization using a novel fitness function. Computational Intelligence, 36(3), 1152–1171. https://doi.org/10.1111/coin.12256

Kohan, M. D., Motie NasrAbadi, A., Sharifi, A., & Shamsollahi, M. B. (2020). Interview based connectivity analysis of EEG in order to detect deception. Medical Hypotheses, 136, Article 109517.https://doi.org/10.1016/j.mehy.2019.109517

Manimurugan, S., Majdi, A. Q., Mohmmed, M., Narmatha, C., & Varatharajan, R. (2020). Intrusion detection in networks using crow search optimization algorithm with adaptive neuro-fuzzy inference system. Microprocessors and Microsystems, 79, Article 103261.https://doi.org/10.1016/j.micpro.2020.103261

Gao, J., Lu, L., Yang, Y., Yu, X., Tian, H., & Rao, N. (2019). Deception decreases brain complexity. IEEE Journal of Biomedical and Health Informatics, 23(1), 164–174. https://doi.org/10.1109/JBHI.2018.2842104

Marsman, J. (2019). Using EEG and machine learning to perform lie detection. In International Conference on Computer Science and Information Technology (pp. 1–6). https://www.researchgate.net/publication/335095404

Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T. H., & Faubert, J. (2019). Deep learning-based electroencephalography analysis: A systematic review. Journal of Neural Engineering, 16(5), Article 051001. https://doi.org/10.1088/1741-2552/ab260c

Aslan, M., Baykara, M., & Alakus, T. B. (2024). LieWaves: Dataset for lie detection based on EEG signals and wavelets. Medical & Biological Engineering & Computing, 62(7), 1571–1588. https://doi.org/10.1007/s11517-024-03021-2

Wolsink, L. N., Meijer, E., Smulders, F., & Orthey, R. (2025, July 2). The Concealed Information Test with a continuously moving stimulus. OSF Preprints. https://doi.org/10.17605/OSF.IO/DKTCF

Published
2026-01-20
How to Cite
[1]
T. Nagale and A. Khandare, “Optimized Metaheuristic Integrated Neuro-Fuzzy Deep Learning Framework for EEG-Based Lie Detection”, j.electron.electromedical.eng.med.inform, vol. 8, no. 1, pp. 324-339, Jan. 2026.
Section
Medical Engineering