
Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1012-1027                                    e-ISSN: 2656-8632 

 
Manuscript received June 8, 2025; Revised August 20, 2025; Accepted August 30, 2025; date of publication September 1, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.977 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 1012               

RESEARCH ARTICLE  OPEN ACCESS 

MedProtect: Protecting Electronic Patient Data 
Using Interpolation-Based Medical Image 
Steganography 

Aditya Rizki Muhammad1 , Irsyad Fikriansyah Ramadhan1 , Ntivuguruzwa Jean De La 
Croix1,2 , Tohari Ahmad1 , Dieudonne Uwizeye3 , and Evelyne Kantarama4,5  
 

1 Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia 
2 African Center of Excellence in Internet of Things, College of Science and Technology, University of Rwanda,  
  Kigali, Rwanda 
3 Department of Development Studies, College of Arts and Social Sciences, University of Rwanda, Kigali,  
  Rwanda 
4 Department of Clinical Biology, College of Medicine and Health Sciences, University of Rwanda, Kigali,  
  Rwanda 
5 Department of Pathology, The University Teaching Hospital of Kigali, Kigali, Rwanda 

Corresponding author: Tohari Ahmad. (e-mail: tohari@its.ac.id; tohari@if.its.ac.id); Author(s) Email:  

Aditya Rizki Muhammad (e-mail:5025221272@student.its.ac.id), Irsyad Fikriansyah Ramadhan: (e-mail: 
5025211149@student.its.ac.id); Ntivuguruzwa Jean De La Croix (e-mail: 7025221024@student.its.ac.id); 
Dieudonne Uwizeye (e-mail: d.uwizeye@ur.ac.rw); Evelyne Kantarama (e-mail: ekantarama@cartafrica.org) 
 

Abstract Electronic Patient Records (EPRS) represent critical elements of digital healthcare systems, as 

they contain confidential and sensitive medical information essential for patient care and clinical decision-

making. Due to their sensitive nature, EPRs frequently face threats from unauthorized intrusions, security 

breaches and malicious attacks. Safeguarding such information has emerged as an urgent concern in 

medical data security. Steganography offers a compelling solution by hiding confidential data within 

conventional carrier objects like medical imagery. Unlike traditional cryptographic methods that merely 

alter the data representation, steganography conceals the existence of the information itself, thereby 

providing discretion, security, and resilience against unauthorized disclosure. However, embedding patient 

information inside medical images introduces a new challenge. The method must maintain the image's 

visual fidelity to prevent compromising diagnostic precision, while ensuring reversibility for complete 

restoration of both original imagery and concealed information. To address these challenges, this research 

proposes MedProtect, a reversible steganographic framework customized for medical applications. 

MedProtect procedure integrates pixel interpolation techniques and center-folding-based data 

transformation to insert sensitive records into medical imagery. This method combination ensures 

accurate data recovery of the original image while maintaining the image quality of the resulting image. To 

clarify the performance of MedProtect, this study evaluates two well-established image quality metrics, 

Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM). The discovery shows 

that the framework achieves PSNR values of 48.190 to 53.808 dB and SSIM scores between 0.9956 and 

0.9980. These outcomes display the high level of visual fidelity and imperceptibility achieved by the 

proposed method, underscoring its effectiveness as a secure approach for protecting electronic patient 

records within medical imaging systems. 

 

Keywords cyber security; data hiding; electronic patient records; information hiding; information security; 
medical data protection; steganography.  
 

I. Introduction 

As information technology continues to evolve rapidly, 
the medical industry has significantly benefited from 
these advancements, particularly in the efficient 
management and secure transmission of Electronic 
Patient Records (EPRs). These records encapsulate 
highly sensitive data, including patient demographics, 

clinical notes, and diagnostic outputs from imaging 
tools such as X-rays, MRIs, and CT scans. EPRs play 
a central role in enabling healthcare professionals to 
make informed decisions, improve diagnostic 
accuracy, and deliver personalized treatment plans [1], 
[2], [3]. However, due to their critical nature and 
confidentiality, EPRs have become increasingly 
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attractive targets for cybercriminals seeking 
unauthorized access. Although standards such as the 
Fast Healthcare Interoperability Resources (FHIR), 
developed by HL7, have improved interoperability and 
streamlined data exchange across healthcare systems, 
they do not directly address data-level security. FHIR 
focuses on structuring and formatting health data for 
seamless communication, but delegates the 
responsibility of securing that data to the underlying 
system environment. FHIR does not embed encryption 
mechanisms within its framework. Instead, it relies on 
external security protocols, such as HTTPS and OAuth 
2.0, to protect data in transit and during authentication 
[4], [5].  

This design leaves a potential vulnerability, primarily 
when EPRs are transmitted over less secure networks 
or stored in distributed environments. Therefore, it is 
imperative to explore complementary security 
mechanisms, such as encryption, watermarking, and 
steganography, that provide intrinsic protection at the 
data level. These methods can ensure confidentiality, 
integrity, and resilience against unauthorized access 
regardless of the external transmission protocols, 
addressing a critical gap in healthcare data protection 
strategies. 

Recent advances in the state of the art have 
highlighted information hiding as a vital component in 
securing sensitive data during transmission, 
particularly in domains requiring confidentiality, such as 
healthcare [6], [7], [8]. Among the most prominent 
techniques are cryptography and steganography. 
Cryptography ensures data confidentiality by 
converting readable information into an encrypted 
format that only authorized users with a valid 
decryption key can access [9]. However, despite its 
effectiveness, the visibly scrambled nature of 
encrypted content may raise suspicion and invite 
attempts at unauthorized analysis. Steganography 
addresses this limitation by concealing the very 
existence of the message, embedding it within 
seemingly innocuous cover media such as images, 
audio, video, or text files, resulting in a stego object 
[10]. Its key strength lies in imperceptibility, allowing 
sensitive data to be transmitted without alerting 
potential adversaries to its presence [11]. 

Steganographic techniques generally fall into two 
categories: spatial domain and transform domain 
methods. Transform domain approaches apply 
mathematical transformations, such as the Discrete 
Cosine Transform (DCT) or Discrete Wavelet 
Transform (DWT), to the cover medium prior to data 
embedding to enhance robustness against 
compression, noise, and signal processing attacks. 
However, they often incur higher computational costs. 
In contrast, spatial domain techniques embed secret 
data by directly modifying the pixel intensity values of 

the image. These methods are generally more 
straightforward, faster and computationally efficient, 
but they are often less resistant to image processing 
and statistical attacks [12], [13], [14], [15]. Although 
selecting an appropriate steganographic method 
requires a careful trade-off between imperceptibility, 
robustness, and computational efficiency, the spatial 
domain is mainly preferred in medical data protection 
due to its adaptiveness and robustness in resisting 
steganalysis attacks [16]. 

Sensitive Electronic Patient Records (EPRs) are 
routinely exchanged across institutional boundaries 
and often traverse untrusted networks, particularly in 
telemedicine, remote diagnostics, and mobile health 
contexts  Medical images used in these workflows have 
unique and strict requirements such as embedded data 
must be concealed securely, both the payload and the 
host image must remain confidential, and the original 
image must be perfectly recoverable to preserve 
diagnostic fidelity [16]. Yet, existing reversible 
steganography methods face practical limitations in this 
context, including capacity-fidelity trade-offs, visible 
artifacts around edges, overflow/underflow risks in 
higher bit-depth modalities, and reliance on 
cryptographic keys to ensure data recoverability. While 
keys can help control access and recovery, key 
management itself introduces operational complexity 
and potential failure when secure key distribution 
cannot be guaranteed [17]. These factors motivate 
medical image-tailored, efficient, and reversible 
schemes that guarantee lossless recovery of both the 
hidden data and the original image while minimizing 
clinical risk and integration overhead.  

Researchers have explored interpolation-based 
embedding and center folding method, motivated by 
these requirements. Interpolation, widely used for 
image upscaling, estimates new pixel values based on 
known reference pixels. In steganographic use, these 
interpolated pixels become embedding sites while the 
original reference pixels remain untouched, thereby 
increasing capacity and enabling exact, high-quality 
reconstruction as shown in prior work [18], [19]. Center 
folding, on the other hand, maps pixel intensities 
toward a central reference before embedding to create 
headroom, preventing overflow/underflow and 
reducing visible changes at very dark or bright regions. 
During extraction, this mapping is precisely inverted 
[18], [19]. 

Building on existing interpolation-based approaches 
for securing EPRs, this research proposes MedProtect, 
a novel keyless reversible steganography method that 
combines image interpolation techniques and center 
folding strategy. The main contributions of this study 
are:  

1. This study develops a new method that integrates 

a center folding strategy to preserve the fidelity of 
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medical images while embedding sensitive 

information. This approach achieves excellent 

visual quality of the medical image and maintains 

imperceptibility, as demonstrated by a Peak 

Signal-to-Noise Ratio (PSNR) of 53.808 dB 

achieved on a chest X-ray image.  

2. By leveraging image interpolation, MedProtect 

generates additional embedding space within 

interpolated pixels of the original medical image, 

thereby increasing the capacity of the EPRs to be 

concealed in a single image. At the same time, 

MedProtect adopts a keyless reversible 

embedding approach. By eliminating the reliance 

on secret keys, the method further reduces the 

likelihood of key interception during transmission 

and strengthens the overall security of the 

embedded data. 

The paper is organized as follows: Section 2 reviews 
the recent related work from the state-of-the-art. 
Section 3 details the approach proposed for 
MedProtect. Section 4 presents experimental results. 
Section 5 concludes the study with suggestions for 
possible future work. 

 

II. State-of-the-art 

Effective healthcare data management plays a vital role 
in supporting accurate clinical decisions and 
safeguarding patient well-being. Despite its 
importance, several obstacles persist, including data 
acquisition variability, data integrity challenges, and the 
necessity for secure data exchange. Addressing these 
issues is essential to utilize the potential of healthcare 
information fully. Ensuring data consistency and quality 
is fundamental to trustworthy decision-making 
processes. According to Mavrogiorgos et al. [20], 
integrating data from diverse sources, such as EPRs, 
clinical systems, and medical devices, often results in 
fragmented, redundant, or incomplete datasets.  

Beyond ensuring data accuracy and integrity, 
safeguarding the transmission of Electronic Patient 

Records (EPRs) is a crucial aspect of digital 
healthcare. Since EPRs contain highly sensitive patient 
information, any compromise during data transfer can 
lead to severe privacy breaches and legal issues. As 
healthcare systems increasingly adopt digital 
technologies, robust security mechanisms become 
indispensable. One such approach is steganography, 
which enhances transmission security by concealing 
confidential EPR data within medical images, thereby 
reducing the risk of unauthorized access [6]. 
Steganography is a data hiding technique that involves 
concealing sensitive information within a cover medium 
to protect it from unauthorized access. Fig. 1 illustrates 
steganography in medical images, where a standard 
medical image is used to embed secret data, such as 
Electronic Patient Records (EPRs). A steganographic 
data concealment process ensures that the hidden 
information remains imperceptible, preserving the 
visual integrity of the image while securely embedding 
the data. The resulting output, known as a stego image, 
is then transmitted or stored without revealing the 
presence of embedded data. Only authorized users 
with the appropriate extraction mechanism can retrieve 
the concealed information, making steganography an 
effective tool for enhancing data privacy and security in 
digital healthcare systems [10].  

In recent years, various steganographic algorithms 
have been developed to strengthen the security of 
EPRs. However, many of these methods still face 
challenges related to image quality degradation, which 
can raise concerns about the reliability of clinical 
interpretations derived from the altered images [17]. To 
address this limitation, researchers in medical image 
steganography have adopted pixel interpolation to 
enhance data embedding. As illustrated in Fig. 2, 
interpolation is a core image processing technique 
used to estimate pixel values when resizing or scaling 
images. Within the context of steganography, 
interpolated pixels offer additional embedding 
locations, helping to maintain the visual integrity of the 
stego image. Standard interpolation methods include 
nearest neighbor, bilinear, and bicubic interpolation, 

 
Fig. 1. General concept of steganography in 
medical images 

 
Fig. 2. Interpolation concept 
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each balancing processing complexity and image 
fidelity differently [21]. 

 In steganography, interpolation techniques are 
commonly employed to upscale images and create 
new pixel values that serve as potential embedding 
sites for secret data. A foundational contribution in this 
domain was made by Jung and Yoo [22], who 
introduced a data hiding method based on Neighbor 
Mean Interpolation (NMI). Their approach involves 
initially downscaling the original image to one-quarter 
of its size, followed by upscaling using NMI to produce 
an interpolated image suitable for data embedding. 
This method achieved low computational complexity 
while preserving acceptable image quality. Building on 
this work, Lee and Huang [23] proposed the 
Interpolation by Neighboring Pixels (INP) technique to 
enhance the visual fidelity of stego images. By 
employing more accurate neighbor pixel references 
during the interpolation process, their method improved 
the precision of pixel value estimation, resulting in 
better preservation of image quality after data 
embedding.  

 Further advancements in interpolation-based 
steganography were introduced, which developed an 
extended interpolation method that maximized pixel 
value differences between neighboring regions. This 
enhancement significantly increased the embedding 
capacity while preserving acceptable image quality. 
Building on this foundation, recent studies have 
continued to refine interpolation techniques to improve 
steganographic performance. For instance, Malik et al. 
[24] utilized the Pixel Intensity Range (PIR) within 
interpolated images to achieve high Peak Signal-to-
Noise Ratio (PSNR) values, indicating strong visual 

fidelity. In another contribution, Punia et al. [25] 
proposed an interpolation-driven steganographic 
approach specifically designed for Internet of Things 
(IoT) applications. Their method demonstrated both 
high payload capacity and superior PSNR, making it 
particularly effective in resource-constrained and 
bandwidth-sensitive environments. These studies 
highlight the potential of interpolation techniques to 
improve data embedding efficiency while preserving 
image integrity. They provide the theoretical basis for 
our proposed steganographic model, which 
incorporates interpolation to support reversible data 
hiding with minimal visual distortion. 

To significantly enhance the imperceptibility of stego 
images, Lu et al. [18] proposed a reversible data hiding 
(RDH) scheme based on center folding with dual 
images. In this method, secret data is preprocessed by 
dividing it into k-bit segments, each converted into a 
decimal value and then folded into a reduced range 
centered around zero. These folded values are 
subsequently split into two components and embedded 
into dual stego images using a reversible averaging 
technique. While this approach improves security and 
reversibility of the original image by requiring both 
stego images for complete data extraction, this method 
introduces a problem in transmission overhead due to 
the generation of two stego images instead of one.  

Building upon this theoretical foundation, 
MedProtect proposes a novel interpolation-based 
medical image steganography to protect the electronic 
patient record. Based on the benefits of interpolation 
techniques and center folding strategy, MedProtect 
aims to ensure secure, reversible data hiding with 
minimal visual distortion, thus safeguarding patient 

 
Fig. 3. Example of data embedding in a NxN medical image using the proposed method. 
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privacy without compromising the diagnostic quality of 
medical images. MedProtect is well-aligned with the 
need for robust, efficient, and clinically viable data 
protection mechanisms in digital healthcare systems. 

 

III. Proposed Method 

This section introduces MedProtect and its end-to-end 
workflow, as shown in Fig. 3. Briefly, we center‑fold the 

EPR payload to limit distortion and generate 
embedding sites via image interpolation. At the 
receiver, these steps are exactly inverted to recover 
both the payload and the original image. The following 
subsections detail each stage and the associated 
parameter. 

 

A. EPR data embedding into the cover medical 

image 

 In the embedding process, the proposed approach to 
conceal the data involves eight steps, from the inputs 
to the transmissible outputs. To enhance clarity and 
reproducibility, the pseudocode of the embedding 
process is presented in Algorithm 1, and the 
corresponding flowchart is illustrated in Fig. 4. The 
sequence of the process is detailed below:  

Step 1: Load the EPRs into their binary forms (𝑑) and 

divide the data into chunks of 𝑘 Bits, as depicted in Fig. 

5.  

Step 2: Using every chunk from the previous steps, 
MedProtect transforms the chunks using the center 
folding strategy, as stated in Eq. (1) [18], [26]. The 𝑑 is 

the decimal value of the chunk, and 𝑑′ is the result. This 

process aims to reduce the distortion in stego images. 
Step 3: MedProtect splits 𝑑′  by creating 𝑑1

′  and 𝑑2
′  

using Eq. (2) [18] and Eq. (3) [18], [27], respectively. 
This value is used to create the medical stego image. 
After obtaining the 𝑑1

′  and 𝑑2
′ , MedProtect continues 

 

 
Fig. 4. Flowchart for embedding and extracting process 

1 1 1 1 0 1 0 0 1 . . . 
Fig. 5. secret data chunk with k = 3 
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the bits concealment process by interpolating the 
original medical image to be further used for data 

concealment. 

𝑑′ = 𝑑 − 2𝑘−1 (1) 

  

𝑑1
′ = ⌊

𝑑′

2
⌋ (2) 

𝑑2
′ = ⌈

𝑑′

2
⌉ (3) 

Step 4: MedProtect creates a new medical cover 
image array with a size of (3𝑁 − 2 × 3𝑁 − 2) where 𝑁 

equals the width and the height of the original medical 
image. Fig. 6 illustrates the array created from the 
original medical image with 𝑁 equals two. 

Step 5: At this step, the MedProtect approach 
continues by allocating every pixel from the original 
image into the cover image array. As illustrated in Fig. 
6, the variables 𝐴, 𝐷, 𝑀, and 𝑃  represent the location 

where the original pixel is placed in the new cover 
medical image. 

Step 6: MedProtect then calculates the pixel pairs that 
lie horizontally and vertically between the original pixels 
by taking the average of the two surrounding original 
pixels. Referring to Fig. 6, to calculate the values of 𝑏 

and 𝑐, there is a computation of the average of 𝐴 and 

𝐷, then assigning the value to both 𝑏 and 𝑐. Similarly, 

to calculate the values of 𝑒 and 𝑖, average the values 

of 𝐴  and 𝑀 . Likewise, the values of ℎ  and 𝑙  are 

obtained by averaging 𝐷 and 𝑃, and assigned to both 

ℎ  and 𝑙 . For 𝑛  and 𝑜 , the average of 𝑀  and 𝑃  is 

computed and assigned to both 𝑛  and 𝑜 . These 

interpolated pixel pairs are then used to represent the 
bits of the EPRs, following the process outlined in Step 
8. 

Step 7: To complete the interpolation process, 
MedProtect assigns the remaining empty pixels using 
the average of their surrounding pixels. For example, 
the new values in 𝑓  are computed by averaging the 

values of,b,c,e,g,i. ,j,k. For averaging purposes, any 
surrounding pixel that is unavailable has a value of 0. 

Step 8: In this final stage of the EPRs sensitive data 
concealment, for each pixel pair produced from Step 6, 
update the first and second-pixel values only if their 

values are in the numerical range of [2𝑘−1, 256  −  2𝑘−1] 
(to prevent overflow/underflow) using Eq. (4) [18], [28] 
and Eq. (5) [18] respectively. In this equation, the 𝑆𝑣𝑎𝑙1 
and 𝑆𝑣𝑎𝑙2  are the resulting stego pixel values from 

adjusting the first pixel pair (𝑃𝑣𝑎𝑙1) and the second pixel 

pair (𝑃𝑣𝑎𝑙2) respectively. Applying these updates across 

all pairs produces the final stego image for 
transmission.  

𝑆𝑣𝑎𝑙1 = 𝑃𝑣𝑎𝑙1 + 𝑑1
′  (4) 

𝑆𝑣𝑎𝑙2 = 𝑃𝑣𝑎𝑙2 − 𝑑2
′  (5) 

B. Extracting the embedded EPRs data and 

restoration of the original medical image 

To validate the integrity of the proposed embedding 
process, both the hidden EPR data and the original 

A b c D 

e f g h 

i j k l 

M n o P 

Fig. 6. Cover array produced from original 
image with the size N = 2. 

Algorithm 1. Embedding Process 

(1) Load binary data 

(2) Split binary data into chunks of size 𝑘 

(3) Initialize empty lists 𝑑′, 𝑑1
′ , 𝑑2

′  

(4) For each chunk do: 

(5) Convert chunk to decimal value 𝑑 

(6) Append (𝑑 − 2𝑘−1) to 𝑑′ 

(7) Append ⌊
𝑑′

2
⌋ to 𝑑1

′  

(8) Append ⌈
𝑑′

2
⌉ to 𝑑2

′  

(9) End for 

(10) Load original image 𝑂[𝑁, 𝑁] 

(11) Create cover image 𝐶[3𝑁 − 2,3𝑁 − 2] initialized with 
zeroes 

(12) Place original pixels at scaled positions (𝑖 × 3, 𝑗 × 3) 

 Perform horizontal interpolation: 

(13) For every row with original pixels in 𝐶(𝑖 = 0,3, 6, … ) 
do: 

(14) Fill the gaps between the horizontal original 
pixels with the average of original pixels 

(15) End for 

 Perform vertical interpolation: 

(16) For every column in C do: 

(17) Fill the gaps between the vertical original pixels 
with the average of original pixels 

(18) End for 

(19) For every zeroes value in 𝐶 do: 

(20) Fill with the average of 3 × 3 area 

(21) End for 

(22) For every horizontal and vertical pixel in between 
the original pixels do: 

(23) 𝑝𝑖𝑥𝑒𝑙 = 𝑝𝑖𝑥𝑒𝑙 + 𝑑1
′  

(24) 𝑝𝑖𝑥𝑒𝑙 = 𝑝𝑖𝑥𝑒𝑙 − 𝑑2
′  

(25) End for 

(26) Create stego image from 𝐶 
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medical image are extracted and assessed. The 
pseudocode for the extraction process is provided in 
Algorithm 2 to illustrate the steps involved clearly. The 
extraction process begins by loading the stego image 
and identifying the pixel pairs that were interpolated 
between the original pixels during the embedding 
process. These interpolated pairs are critical, as they 
serve as the locations where data may have been 
embedded. 

For each extracted pixel pair (𝑝𝑖 , 𝑝𝑗 ), the absolute 

difference 𝐷 = |𝑝𝑖 − 𝑝𝑗| is calculated. If 𝐷 = 0, no data 

was embedded at that location. Otherwise, the 
embedded bit(s) for the EPRs are recovered using a 
predefined extraction function in Eq. (6) [18]. In this 
equation the 𝑆𝑣𝑎𝑙1  and 𝑆𝑣𝑎𝑙2  are the extracted stego 

pixel pair from the stego image, the 𝑘, is the chunk size 

used in the embedding process. After all data bits have 

been retrieved, the original medical image is 
reconstructed by discarding the interpolated pixels and 
retaining only those located at the original coordinate 
positions. This restoration ensures the reversibility of 
the process, preserving the diagnostic quality of the 
image without introducing visual artifacts. 

𝑑 = |𝑆𝑣𝑎𝑙1 − 𝑆𝑣𝑎𝑙2| + 2(𝑘−1) (6) 

IV. Experiments and Results 

A. Experimental Dataset and Evaluation Metrics 

To evaluate the proposed MedProtect, we used cover 
images from the CT Medical Images dataset provided 
in TCGA-LUAD - The Cancer Imaging Archive (TCIA) 
[29] and from MIDAS/National Alliance for Medical 
Image Computing (NAMIC) [30], along with secret data 
of varying sizes (ranging from 1 to 100 kb) generated 
using the Lorem Ipsum text source [31]. All images 
were normalized to 512 x 512 pixels and converted to 
8-bit greyscale to ensure dataset uniformity and reduce 
computational complexity, as shown in Fig. 7.  

Moreover, MedProtect is assessed using PSNR and 
structural similarity index measure (SSIM), which are 
the key evaluation metrics in steganographic methods 
evaluation. The equation for PSNR is stated in Eq. (7) 
[32], which depends on the mean squared error (MSE) 
formula in Eq. (8) [33], [34]. The SSIM formula that 
evaluates the similarity between the cover and stego 
image is stated in Eq. (9) [35], [36]. The cover medical 
image is represented by the variable 𝐶, and the medical 
stego image is referred to as 𝑆. The 𝑣 and 𝑤 variable 

are the dimension of the image. The variables 𝑥𝑖 and 𝑥𝑗 

represent the average pixel intensity, 𝑣𝑖  and 𝑣𝑗 

represent the intensity variance, with 𝑣𝑖,𝑗 representing 

the covariance. To assess robustness under commonly 
encountered lossy conditions. In addition to these 
quality-based metrics, we report the Bit Error Rate 
(BER) by counting the number of incorrectly extracted 
bits after the images were subjected to JPEG 
Compression. Furthermore, we are incorporating an 
independent two-sample t-test to statistically evaluate 
the differences in pixel distributions between cover and 
stego images. 

PSNR = 10 × log10 (
2552

MSE
) (7) 

MSE =
1

𝑣 × 𝑤
∑ ∑(𝐶(𝑖, 𝑗) − 𝑆(𝑖, 𝑗))

2
𝑤

𝑗=1

𝑣

𝑖=1

 (8) 

SSIM =
(2𝑥𝑖𝑥𝑗 + 𝐶1)(2𝑣𝑖,𝑗 + 𝐶2)

(𝑥𝑖
2 + 𝑥𝑗

2 + 𝐶1)(𝑣𝑖
2 + 𝑣𝑗

2 + 𝐶2)
 (9) 

B. Experimental results 

Algorithm 2. Extraction Process 

(1) Load the stego image 𝑆 

(2) Initialize empty array 𝑠𝑑𝑏 

(3) For 𝑖 ← 0 to ℎ𝑒𝑖𝑔ℎ𝑡(𝑆) in steps of 3 do: 

(4) For 𝑗 ← 0 to 𝑤𝑖𝑑𝑡ℎ(𝑆) − 3 in steps of 3 do: 

(5) 𝑎 ← 𝑆[𝑖, 𝑗 + 1], 𝑏 ← 𝑆[𝑖, 𝑗 + 2] 

(6) 𝐷 = |𝑎 − 𝑏| 

(7) If 𝐷 > 0 do: 

(8) 
Append 𝑠𝑑𝑏 with binary form of 

𝐷 + 2(𝑘−1) 

(9) Else do: 

(10) Continue 

(11) End if 

(12) End for 

(13) End for 

(14) For 𝑗 ← 0 to 𝑤𝑖𝑑𝑡ℎ(𝑆) in steps of 3 do: 

(15) For 𝑖 ← 0 to ℎ𝑒𝑖𝑔ℎ𝑡(𝑆) − 3 in steps of 3 do: 

(16) 𝑎 ← 𝑆[𝑖 + 1, 𝑗], 𝑏 ← 𝑆[𝑖 + 2, 𝑗] 

(17) 𝐷 = |𝑎 − 𝑏| 

(18) If 𝐷 > 0 do: 

(19) 
Append 𝑠𝑑𝑏 with binary form of 

𝐷 + 2(𝑘−1) 

(20) Else do: 

(21) Continue 

(22) End if 

(23) End for 

(24) End for 

(25) Initialize original image array 𝑂 [
(𝑁+2)

3
,

(𝑁+2)

3
] 

(26) For 𝑖 ← 0 to ℎ𝑒𝑖𝑔ℎ𝑡(𝑆) do: 

(27) For 𝑗 ← 0 to 𝑤𝑖𝑑𝑡ℎ(𝑆) do: 

(28) 𝑂[𝑖, 𝑗] = 𝑆[3 × 𝑖, 3 × 𝑗] 

(29) End for 

(30) End for 

(31) Create original image from 𝑂 

(32) Return the extracted data in 𝑠𝑑𝑏 
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The results in Table 1 and Fig. 8 demonstrate the 
effectiveness of the proposed method in maintaining 
high visual fidelity, particularly in less complex 
anatomical regions, such as the chest and legs. As 

presented in Table 1, the PSNR values (in dB), 
reflecting a closer similarity between the cover and 
stego medical images generated by MedProtect. These 
values are reported for seven anatomical image 

    
(A) (B) (C) (D) 

   
(E) (F) (G) 

 
Fig. 7. Illustration of sample cover medical images. A: Hand, B: Leg, C: Chest, D: Abdominal, E: Head, 
F: Brain1, and G: Brain2 

 
Table 1. Experimental results in PSNR with k = 3 
Cover 
Image 

Test payload sizes in kilobits (kb) 

1 10 20 30 40 50 60 70 80 90 100 

Hand 53.497 53.440 53.375 53.313 53.266 53.205 53.147 53.076 53.019 52.969 52.919 

Leg 53.992 53.929 53.860 53.797 53.736 53.654 53.601 53.539 53.472 53.411 53.351 

Chest 54.143 54.079 54.010 53.939 53.874 53.800 53.735 53.677 53.603 53.549 53.482 

Head 48.279 48.262 48.244 48.226 48.208 48.190 48.169 48.153 48.135 48.118 48.102 

Abdominal 53.149 53.099 53.041 52.986 52.933 52.875 52.828 52.776 52.715 52.673 52.621 

Brain1 48.971 48.951 48.928 48.907 48.885 48.862 48.841 48.820 48.797 48.776 48.754 

Brain2 49.384 49.361 49.337 49.313 49.290 49.264 49.242 49.218 49.193 49.170 49.146 

 
Table 2. Experimental results in SSIM with k = 3 
Cover 
Image 

Test payload sizes in kilobits (kb) 

1 10 20 30 40 50 60 70 80 90 100 

Hand 0.9982 0.9981 0.9981 0.9980 0.9980 0.9979 0.9979 0.9978 0.9977 0.9977 0.9976 

Leg 0.9983 0.9982 0.9982 0.9981 0.9981 0.9980 0.9979 0.9978 0.9978 0.9977 0.9976 

Chest 0.9982 0.9982 0.9981 0.9981 0.9980 0.9979 0.9979 0.9978 0.9978 0.9977 0.9976 

Head 0.9970 0.9970 0.9969 0.9969 0.9968 0.9967 0.9967 0.9966 0.9966 0.9965 0.9965 

Abdominal 0.9975 0.9974 0.9974 0.9973 0.9973 0.9972 0.9972 0.9971 0.9971 0.9970 0.9970 

Brain1 0.9966 0.9966 0.9965 0.9964 0.9964 0.9963 0.9962 0.9961 0.9961 0.9960 0.9959 

Brain2 0.9960 0.9959 0.9959 0.9958 0.9957 0.9956 0.9956 0.9955 0.9954 0.9953 0.9953 
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categories: Hand, Leg, Chest, Head, Abdominal, 
Brain1, and Brain2, under varying payload sizes 
ranging from 1 to 100 kb. For all tested images, the 
PSNR values remain promising, as they are still within 
the admissible steganographic range (>30 dB).  

Based on this foundation, the data also highlight a 
fundamental steganographic trade-off: PSNR 
predictably decreases across all medical images as 
payload size increases. This inverse correlation 
emphasizes the necessary compromise between 
steganographic capacity and image quality. For 
example, Chest images consistently achieve the 
highest PSNR, starting at 54.143 dB for 1 kb and 
decreasing slightly to 53.482 dB for 100 kb. While this 
reduction may appear modest, it exemplifies a 
limitation where the more EPR embedded will result in 
image degradation.  

Anatomical characteristic further modulates this 
trend. In contrast to the Chest results, Head and Brain1 
yield the lowest PSNR values, remaining nearly 
constant at 48.190 and 48.863. This suggests the 
method minorunderperforms when embedding occurs 
in bright, near‑saturated regions with limited intensity 

headroom, resulting in small modifications that become 
more conspicuous and reduce fidelity. Performance is 
further hindered by large smooth, low‑texture areas 

that offer little local variance or mid–high frequency 
energy, weakening perceptual masking and 
constraining embedding strength. These factors 

explain the reduced performance observed for the 
Head and Brain1 images. Nevertheless, the PSNR 
values resulted from MedProtect remain high in 
absolute terms, showing that visual fidelity is still well 
preserved despite the decline.  

 
Fig. 8. Average PSNR for all images under the 
MedProtect 

The graph in Fig. 8 demonstrates how the proposed 
MedProtect method consistently maintains high visual 
quality after embedding EPRs. Chest images achieved 
the highest average PSNR (53.808 dB), followed 
closely by Leg (53.667 dB), Hand (53.202 dB). On the 
Abdominal image where overlapping organs create 
edge intersection, the method slightly has a lower result 
at 52.881 dB. However, due to its high density from 
intricate bone trabecular patterns and detailed 
anatomical structures, the head image exhibits 

Table 3. MSE obtained from the experimentation of the MedProtect with k = 3  
Cover 
Image 

Test payload sizes in kilobits (kb) 

1 10 20 30 40 50 60 70 80 90 100 

Hand 0.2907 0.2945 0.2989 0.3032 0.3065 0.3108 0.3150 0.3203 0.3244 0.3282 0.3320 

Leg 0.2594 0.2632 0.2674 0.2713 0.2751 0.2803 0.2838 0.2879 0.2924 0.2965 0.3006 

Chest 0.2505 0.2542 0.2583 0.2625 0.2665 0.2711 0.2752 0.2789 0.2836 0.2872 0.2917 

Head 0.9664 0.9702 0.9743 0.9783 0.9824 0.9866 0.9912 0.9949 0.9990 1.0029 1.0067 

Abdominal 0.3149 0.3185 0.3229 0.3270 0.3310 0.3354 0.3391 0.3432 0.3480 0.3514 0.3556 

Brain1 0.8241 0.8280 0.8322 0.8364 0.8405 0.8450 0.8491 0.8533 0.8578 0.8619 0.8663 

Brain2 0.7494 0.7532 0.7575 0.7616 0.7658 0.7703 0.7743 0.7786 0.7830 0.7871 0.7915 

 
Table 4. BER obtained from the JPEG compression (%) 
Cover 
Image 

Test payload sizes in kilobits (kb) 

1 10 20 30 40 50 60 70 80 90 100 Average 

Hand 12.58 12.86 12.03 12.73 12.41 12.45 12.02 12.20 12.03 12.12 12.93 12.40 

Leg 12.15 12.76 12.60 12.08 12.11 12.42 12.82 12.37 12.30 12.12 12.58 12.39 

Chest 12.14 12.42 12.58 12.85 12.49 12.58 12.07 12.11 12.75 12.45 12.13 12.42 

Head 12.40 12.56 12.25 12.53 12.61 12.22 12.47 12.05 12.32 12.38 12.41 12.38 

Abdominal 12.95 12.20 12.83 12.25 12.90 12.38 12.14 12.76 12.19 12.63 12.73 12.54 

Brain1 12.79 12.17 12.03 12.37 13.00 12.50 12.90 12.18 12.38 12.91 12.53 12.52 

Brain2 12.15 12.76 12.60 12.08 12.11 12.42 12.82 12.37 12.30 12.12 12.58 12.43 
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performance degradation resulting in a PSNR of 
48.190. Subsequently, followed by Brain1 and Brain2, 
characterized by their anatomical details, yield PSNR 
values of 48.863 and 49.265 respectively. Although the 
values showing lower PSNR than other objects, the 
results still remain within an acceptable diagnostic 
range.  

 
Fig. 9. Average PSNR for all images under the 
MedProtect 

 

The SSIM result, as reported in Table 2, 
demonstrates high structural fidelity across all image 
types. As illustrated in Fig. 9, the highest average SSIM 
is observed in Leg images (0.9980), followed closely by 
Chest and Hand images (both 0.9979), Abdominal 
images (0.9972) and Head images (0.9967). Brain 

imaging shows progressive decline with Brain1 
(0.9963) and Brain2 achieving the lowest average 
SSIM (0.9956), though these values still indicate 
minimal perceptual distortion.  

As seen in Fig. 9, all categories maintain SSIM 
values above 0.995, highlighting the method's ability to 
preserve anatomical structure even at high payload 
levels. The preservation of SSIM close to unity across 
all anatomical images demonstrates the suitability of 
MedProtect for medical applications, where structural 
integrity is crucial for accurate diagnosis and clinical 
use. Table 3 presents the MSE values for the 
considered test cover medical images under increasing 
payload sizes (1–100 kb). 

The proposed MedProtect method consistently 
maintains low MSE values across all test cases, 
demonstrating its capacity to embed EPRs with 
minimal distortion. Chest images exhibit the lowest 
overall MSE (ranging from 0.2505 to 0.2917), followed 
closely by Leg (0.2594 to 0.3006) and Hand images 
(0.2907 to 0.3320). While Abdominal images show 
slightly higher MSE values (up to 0.3556), they remain 
within an acceptable range for clinical use. Brain2 
demonstrates moderate MSE values (0.7494 to 
0.7915), while Brain1 shows higher values (0.8241 to 
0.8663). The Head images show the highest MSE 
values (0.9664 to 1.0067), which aligns with earlier 
PSNR and SSIM results, indicating that this region is 
more sensitive to data embedding.  

   
(A) (B) (C) 

Fig. 10. Comparison of histogram for the cover and stego medical image. A: Cover Image, B: Stego 
image under 1 kb data, C: Stego image under 100 kb data.  
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Moreover, as shown in Fig. 10, the histograms of the 
stego medical images resemble the original cover 
image, demonstrating the visual and statistical 
consistency maintained by the proposed MedProtect 

method. Next, Fig. 11 showcases the comparison 
between the cover and stego image. The similarity of 
these figures indicates that the embedding process 
introduces negligible alterations to the pixel value 
distribution, ensuring that the perceptual quality of the 
medical images remains intact. Such preservation is 
crucial in clinical settings, where even minor distortions 
can affect diagnostic outcomes. The consistency 
across all histograms confirms that MedProtect is 
highly suitable for EPRs, enabling secure data 
embedding without compromising the diagnostic 
reliability of the host images.  

To simulate lossy conditions typical of clinical 
storage and transmission, we compressed the stego 
images using JPEG and measured the bit error rate 
(BER) after the extraction across payloads from 1-100 
kb. The proposed method achieved the result as shown 
in Table 4. The calculated average BER per cover 
image remains tightly concentrated with Hand at 
12.40%, Leg 12.39%, Chest 12.42%, Head 12.38%, 
Abdominal 12.54%, Brain1 12.52%, and Brain2 

12.43%, resulting in a total average across the image 
at 12.44%. This stability across both image types and 
payload sizes indicates the robustness of MedProtect 
under lossy recompression scenarios. 

In addition to other evaluations, an independent 
two-sample t-test was employed to statistically 
compare the pixel intensity distributions of each pair of 
cover and stego images. As shown in Table 5, the null 
hypothesis (H = 0) was retained for all image types, 
with p-values ranging from 0.8140 to 0.9273, all far 
above the 0.05 significance threshold. The 95% 
confidence intervals for the mean differences in each 
case spanned zero (e.g., Hand: -0.0853 to 0.0716), 
indicating that any observed differences in pixel values 
could be due to random artifacts rather than a well-
designed change introduced by the embedding 
process. Overall, the evaluation results affirm that the 
proposed method is well-suited for medical 
applications, where maintaining visual and statistical 
characteristics of images is important. 

C. Results Comparisons 

Fig. 12 presents a comparative analysis of the PSNR 
performance of the proposed MedProtect method 
against Aminy et al. [37], Ananti et al. [38], Malik et al. 
[24], Karakus and Avci [39], and Hussain and Khoder 

  
(A) (B) 

Fig. 11. Representative visual comparisons. A: Cover image, B: Stego Image 

Table 5. Two-sample t-Test result comparing cover image and stego image 

Cover Image 

Two Sample t-Test 

H P-value CI - Lower CI - Upper 

Hand 0 0.8637 -0.0853 0.0716 

Leg 0 0.9273 -0.1398 0.1274 

Chest 0 0.8202 -0.1643 0.1301 

Head 0 0.8895 -0.1586 0.1376 

Abdominal 0 0.9152 -0.1781 0.1597 

Brain1 0 0.9208 -0.0730 0.0660 

Brain2 0 0.8140 -0.0447 0.0351 
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[40]. Five existing steganographic techniques. The 
evaluation focuses on two anatomical image 
categories, Hand and Leg, as well as their overall 
average, offering a comprehensive assessment of 
visual fidelity after data embedding.  

Based on Fig. 12, Ananti et al. show the most 
significant limitation with average PSNR at 40.639 dB, 
followed by Aminy et al. [37] with an average PSNR of 
52.046 dB, indicating visual degradation that could 
potentially harm the diagnostic reliability. While Malik et 
al demonstrate improving PSNR with Hand at 55.245 
dB, Leg at 49.816, and an average of 52.530, the result 
still showcases inconsistencies across different 
anatomical regions. Following that, Karakus and Avci 
[39]Hussain and Khoder [40] achieve higher average 
PSNR values of 69.360 dB and 69.145 dB, 
respectively.  

Despite the MedProtect achieving consistent PSNR 
values of 53 dB across both Hand and Leg, which 
positions it competitively within the evaluated methods, 
it demonstrates an advantage through its keyless-
reversible steganography approach that enables 
complete restoration of the original medical image 
without requiring additional encryption keys. This 
keyless recovery eliminates the critical vulnerability of 
key management while ensuring perfect reconstruction 
of diagnostic images.  

D. Discussion 

This study aims to develop a new steganography 
method, MedProtect, to strengthen data transmission 
in the medical domain. The proposed method was 
tested on 7 different medical images and payload sizes 
ranging from 1kb to 100kb. Each medical image used 
was resized to 512 x 512 pixels and converted to 8-bit 
greyscale prior to embedding.  

The performance of the proposed method is 
assessed using PSNR, SSIM, and MSE. As shown in 
Fig. 8 and Fig. 9, MedProtect achieve the highest 
average PSNR at 53.808 dB for Chest image, and the 
highest average SSIM at 0.9980 for Leg image. The 
MSE resulted from the experiment further confirmed 
this, with the Chest image yielding the lowest error at 
0.2505 for 1 kb payload and only increasing slightly to 
0.2917 for 100 kb payload, indicating stable 
performance as the payload grows.  

To verify the robustness of MedProtect under lossy 
conditions, we provide the results of the bit error rate 
(BER) after the stego image is compressed under 
JPEG compression, as shown in Table 4. The results 
shows that BER remained stable, averaging at 12.44% 
with no significant increase as payload increases, 
demonstrating resilience against compression. 
Moreover, to compare the pixel intensity distribution 
between the cover image and the stego image, the 
method is evaluated with a two-sample t-test. From 
Table 5 the method achieves H = 0 for all tested 

 
 
Fig. 12. Comparison of the PSNR performance of the proposed MedProtect and the existing methods  
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images. This value indicates that there is no significant 
difference between the cover image and the stego 
image. The p-values that achieved at range 0.8140 to 
0.9208 further validate this claim. The confidence 
intervals (CI - Lower and CI - Upper), which spanned 
zero for every case, show that any observed difference 
in pixel values could be due to random artifacts rather 
than an intentional change from the embedding 
process.  

Despite these strengths, MedProtect tends to 
perform less effectively in bright, near-saturated 
regions where intensity headroom is limited. Even 
small alterations become more noticeable in such 
areas, leading to reduced visual fidelity. This condition 
happened in an image such as Head image, where it 
consists of dense bone regions with very bright areas, 
resulting in the lowest PSNR value among all the tested 
images at average of 48.190 dB. Similarly, in the Brain1 
image consisting of low texture with limited local 
variation, the method underperforms, resulting in a 
PSNR value of 48.863 dB. This can be explained 
because modifications are more easily detected in the 
low-texture area. Moreover, the increasing size of 
embedded data further influences the overall image 
quality. 

Nevertheless, MedProtect demonstrates 
competitive performance compared to existing 
methods in a 100kb payload size. For example, in the 
Hand and Leg images, MedProtect achieved PSNR 
values of 52.919 dB and 53.351 dB, respectively, while 
achieving an average of both images at 53.135 dB. This 
outperforms Ananti et al. [38], whose method achieved 
only 40.639 dB on average for the same images 
(40.426 dB for Hand and 40.852 dB for Leg), 
representing the lowest performance among the 
compared methods. Next, the method by Aminy et al. 
[37] reported a higher average result of 52.046 dB with 
values of 52.120 dB for the Hand image and 51.972 dB 
for the Leg image. Meanwhile, the interpolation 
steganography method by Malik [24] obtained slightly 
higher average result at 52.530 dB. Still, its results 
varied significantly between images, recording only 
49.815 dB for the Leg image while reaching 55.245 dB 
for the Hand image. In contrast, MedProtect surpasses 
these averages and delivers more consistent 
performance across different images, highlighting its 
robustness and reliability compared to existing 
approaches. Although Karakus and Avci [39] and 
Husein and Khoder [40] reported higher PSNR values. 
Where Karakus and Avci sit at an average of 69.350 
dB, Husein and Khoder at 69.145 dB for the average. 
MedProtect offers a distinct advantage through its 
keyless reversible steganography design. This feature 
is particularly valuable in the medical domain, where 
the ability to restore the original image perfectly is 

essential for ensuring diagnostic reliability and clinical 
trust. 

V. Conclusion 

This study introduces MedProtect, a keyless reversible 
steganography method aims to embed EPRs within 
medical images while preserving diagnostic quality 
securely. By combining center folding principles with 
advanced interpolation techniques, MedProtect is able 
to achieve high average PSNR ranging from 48.190 dB 
to 53.808 dB across all the tested images, showing the 
robustness of the method. Although the PSNR tends to 
decrease as the EPRs data rises, comparative results 
confirm that MedProtect achieves competitive 
performance with existing methods while preserving 
image integrity through its reversible approach, 
demonstrating strong potential for real-world clinical 
deployment. 

Future plans will include MedProtect to handle color 
and volumetric (3D) medical images, extending its 
usefulness across more imaging modalities. To enable 
deployment in time-sensitive healthcare workflows, 
further development will also optimize interpolation 
methods to speed up embedding and extraction while 
maintaining fidelity. Finally, further research will 
investigate more advanced transform-based 
approaches to conceal payloads better and reduce 
vulnerability to steganalysis, further enhancing security 
and perceptual transparency in medical data 
protection. This will bolster reliability, scalability, 
interoperability, and seamless clinical integration. 
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