
Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 869-880                                                e-ISSN: 2656-8632 

 
Manuscript received 10 May 2025; Revised 21 June 2025; Accepted 30 June 2025; Available online 5 July 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.949 

Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 

International License (CC BY-SA 4.0).  

 869               

RESEARCH ARTICLE  OPEN ACCESS 

Improving Accuracy and Efficiency of Medical 
Image Segmentation Using One-Point-Five U-
Net Architecture with Integrated Attention and 
Multi-Scale Mechanisms 
 

Muhammad Anang Fathur Rohman1 , Heri Prasetyo1 , Ery Permana Yudha1 , Chih-
Hsien Hsia2  

1 Department of Informatics, Universitas Sebelas Maret, Surakarta, Indonesia  
2 Department of Computer Science and Information Engineering, National Ilan University, Yilan, Taiwan 

Corresponding author: Heri Prasetyo. (e-mail: heri.prasetyo@staff.uns.ac.id), Author(s) Email: Muhammad 

Anang Fathur Rohman (anangmuhammad245@student.uns.ac.id), Heri Prasetyo (e-mail: 
heri.prasetyo@staff.uns.ac.id), Ery Permana Yudha (email: erypermana@staff.uns.ac.id), Chih-Hsien Hsia (email: 

hsiach@niu.edu.tw) 
 

Abstract Medical image segmentation is essential for supporting computer-aided diagnosis (CAD) 

systems by enabling accurate identification of anatomical and pathological structures across various 

imaging modalities. However, automated medical image segmentation remains challenging due to low 

image contrast, significant anatomical variability, and the need for computational efficiency in clinical 

applications. Furthermore, the scarcity of annotated medical images due to high labelling costs and the 

requirement of expert knowledge further complicates the development of robust segmentation models. 

This study aims to address these challenges by proposing One-Point-Five U-Net, a novel deep learning 

architecture designed to improve segmentation accuracy while maintaining computational efficiency. The 

main contribution of this work lies in the integration of multiple advanced mechanisms into a compact 

architecture: ghost modules, Multi-scale Residual Attention (MRA), Enhanced Parallel Attention (EPA) in 

skip connections, the Convolutional Block Attention Module (CBAM), and Multi-scale Depthwise 

Convolution (MSDC) in the decoder. The proposed method was trained and evaluated on four public 

datasets: CVC-ClinicDB, Kvasir-SEG, BUSI, and ISIC2018. One-Point-Five U-Net achieved sensitivity, 

specificity, accuracy, DSC, and IoU of of 94.89%, 99.63%, 99.23%, 95.41%, and 91.27% on CVC-ClinicDB; 

91.11%, 98.60%, 97.33%, 90.93%, and 83.84% on Kvasir-SEG; 85.35%, 98.65%, 96.81%, 87.02%, and 78.18% 

on BUSI; and 87.67%, 98.11%, 93.68%, 89.27%, and 83.06% on ISIC2018. These results outperform several 

state-of-the-art segmentation models. In conclusion, One-Point-Five U-Net demonstrates superior 

segmentation accuracy with only 626,755 parameters and 28.23 GFLOPs, making it a highly efficient and 

effective model for clinical implementation in medical image analysis.    

Keywords: Medical image segmentation; Deep Learning; One-Point-Five U-Net; Efficient Model 

I. Introduction  

Medical image segmentation has become a key 
research focus in computer-aided diagnosis (CAD) 
systems [1]. Its primary objective is to differentiate 
anatomical  and pathological structures within various 
medical imaging modalities. Medical image 
segmentation is crucial  for assisting clinicians in 
performing quantitative pathological assessments and 
provides a reliable foundation for clinical diagnosis [2]. 
However, automating the segmentation process 
remains challenging due to several inherent issues [3]. 

First, medical images typically exhibit low contrast, 
which blurs the boundaries between different objects 
[4]. Second, significant variations exist in the shape, 
size, and location of pathological regions across 
different patients [5]. Third, there is a high demand for 
segmentation methods that are both fast and reliable in 
clinical applications [6]. Fourth, obtaining a huge 
amount of labeled medical images is difficult due to the 
high cost and specialized expertise required for 
annotation [7]. Furthermore, variations in imaging 
devices and acquisition settings often result in 
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inconsistent image quality, necessitating higher 
robustness and adaptability from segmentation 
algorithms. 

With the rapid advancement of deep learning, 
Convolutional Neural Networks (CNNs) have become 
widely utilized in medical  images. CNNs are known for 
their powerful feature representation, high degree of 
automation, and reliable segmentation outcomes [8]. 
The introduction of the Fully Convolutional Network 
(FCN) by [9] marked a significant milestone as it was 
the first end-to-end architecture designed explicitly for 
pixel-level prediction in segmentation applications. 
However, FCN still lacks precision in segmentation 
results due to its limited ability to capture the holistic 
relationship among pixels, often leading to inconsistent 
preservation of image structures [10]. To address this, 
[11] introduced a U-shaped convolutional neural 
network called U-Net. The encoder-decoder 
architecture of U-Net restores spatial information lost 
during downsampling, allowing it to retain fine details of 
small objects. U-Net performs well on small-scale 
datasets, making it suitable for medical image 
segmentation tasks. Due to these advantages, U-Net 
has become a benchmark in the field, inspiring 
numerous derivative works. 

Given the high parameter count of U-Net, [12] 
proposed Half U-Net, an asymmetric variant of the U-
Net architecture. This method integrates full-scale 
feature fusion from UNet3+, ghost modules, and 
uniform channel distribution at each level. Across three 
medical image datasets, Half U-Net successfully 
reduced the number of parameters by up to 98.6% 
without compromising segmentation performance, 
achieving results comparable to U-Net and its variants. 

Numerous studies have focused on enhancing 
segmentation accuracy through the use of deep 
learning. One common approach is the incorporation of 
attention mechanisms. For instance, [13] proposed the 
Attention U-Net, which replaces hard attention with soft 
attention and embeds it into the skip connections and 
upsampling paths. This strategy enables the model to 
focus on relevant local features while suppressing 
irrelevant background noise. Similarly, [14] introduced 
AGU-Net, which adds attention modules at the bridge 
layer of the U-Net to enhance feature extraction in the 
segmentation process. In another study, [15] proposed 
the use of pixel attention and channel attention 
modules arranged separately. Channel attention 
excels at encoding global information, while pixel 
attention captures localized information at the pixel 
level. [16] further improved this approach by arranging 
pixel and channel attention in parallel to combine global 
and local information at the pixel level effectively. 

Another technique often employed to improve 
accuracy is multi-scale feature extraction. By 

processing information at different scales, models can 
capture global context and fine details more effectively. 
[17] proposed a Multi-scale Depthwise Separable 
Convolution architecture that extracts multi-scale 
features while maintaining model efficiency through 
depthwise separable convolutions. Likewise, [18] 
introduced the Multi-scale Residual Attention (MRA) 
module, which combines multi-scale processing, 
residual connections, and attention mechanisms to 
capture and exploit features at different scales without 
suffering from degradation due to increased network 
depth. 

Building upon the insights from the aforementioned 
studies , we propose a novel architecture, One-Point-
Five U-Net, which aims to improve segmentation 
accuracy while maintaining computational efficiency. 
This architecture integrates the strengths of U-Net and 
Half U-Net, with the following modifications: (1) 
Replacing standard convolutions in the encoder with 
ghost modules as used in Half U-Net; (2) Inserting MRA 
modules between ghost modules in the encoder to 
enhance multi-scale attention-based feature extraction; 
(3) Incorporating Enhanced Parallel Attention (EPA) 
modules in the skip connections to emphasize 
essential features during feature fusion; (4) Adding a 
Convolutional Block Attention Module (CBAM) in the 
bridge layer to further refine salient features; and (5) 
Replacing standard convolutions in the second 
decoder with Multi-scale Depthwise Separable 
Convolutions (MSDC) to maintain efficiency while 
capturing multi-scale information. Through these 
innovations, One-Point-Five U-Net is expected to 
deliver accurate and robust medical image 
segmentation, providing effective support for clinical 
disease diagnosis and prevention. 

II. Methodology 

This research consists of six main stages: (1) collecting 
and preprocessing the dataset, (2) designing the neural 
network architecture, (3) performing hyperparameter 
tuning, (4) training the model, (5) evaluating the model, 
and (6) comparing the results with previous methods. 

A. Dataset 

This study utilizes four publicly available medical 
imaging datasets for segmentation tasks. The CVC-
ClinicDB dataset includes 612 colonoscopy images 
with polyp annotations, each with a resolution of 288 × 
368 pixels [19]. The Kvasir-SEG dataset contains 1,000 
endoscopic images with segmentation masks and 
varying resolutions [20]. The Breast Ultrasonic Images 
(BUSI) dataset comprises 780 breast ultrasound 
images [21]. However, only 647 images labelled as 
benign or malignant were used, excluding the normal 
class due to the absence of regions of interest. Lastly, 
the ISIC2018 dataset comprises 3,694 dermoscopic 
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skin lesion images with corresponding masks, divided 
into training, validation, and test sets, with a resolution 
of 1022 × 767 pixels [22]. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig.  1. Image augmentation results on CVC-
ClinicDB dataset (a) original, (b) vertical flip, (c) 
horizontal flip, (d) random rotation, (e) random 
brightness, and (f) grid distortion. 

After collecting the datasets, all images were 
resized to 256 × 256 pixels to balance memory 
efficiency. Data augmentation was applied to the 
training sets of the CVC-ClinicDB, Kvasir-SEG, and 
BUSI datasets to increase data variability and reduce 
overfitting [23]. For the CVC-ClinicDB and KvasirSEG, 
the augmentation techniques included vertical flip, 
horizontal flip, random rotation, random brightness 
adjustment, and grid distortion. While for BUSI, the 
techniques included 90° rotation, 180° rotation, vertical 
flip, and horizontal flip. As a result of these 
augmentation strategies, the training sets increased to 
2,940 images for CVC-ClinicDB, 4,800 images for 

Kvasir-SEG, and 3,108 images for BUSI. Examples of 
augmented images from the CVC-ClinicDB dataset are 
shown in Fig.  1. 

B. Neural Network Architecture Design 

In this study, we propose a novel deep learning 
architecture called One-Point-Five U-Net, a modified 
version of the standard U-Net framework. This 
architecture integrates two types of decoders. The first 
decoder retains the basic concept of U-Net, in which 
each level applies a convolution operation followed by 
an upsampling process [11]. In contrast, the second 
decoder employs the Half-UNet decoder structure, 
which utilizes full-scale feature fusion to merge encoder 
and decoder features. This full-scale fusion directly 
combines features from the encoder and decoder 
without requiring memory-intensive concatenation 
operations. The architecture of One-Point-Five U-Net is 
depicted in Fig.  2. 

Inspired by the Half-UNet design, the encoder and 
decoder in the proposed model are designed with an 
equal number of filters at each level. Furthermore, 
standard convolutions in the encoder are replaced with 
Ghost Modules to reduce computational cost compared 
to basic convolution operations [24]. Each Ghost 
Module consists of a pointwise convolution followed by 
a depthwise convolution, referred to as a "cheap 
operation." The structure of the Ghost Module is shown 
in Fig. 3(a). 

 
Fig.  2. Overview of the proposed Method, One-Point-Five U-Net. This architecture comprises five main 
components: Ghost Module, MRA, EPA, CBAM, and MSDC. 
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To further enhance model performance, we 
introduce a Multi-scale Residual Attention (MRA) 
module between the two Ghost Modules. MRA 
combines three mechanisms: multi-scale processing, 
attention, and residual connections, as depicted in Fig.  
3 (b). Initially, a 1×1 convolution reduces the input 
feature map dimension H×W×C/8 (𝑋1) as shown in Eq. 
(1). Then, three parallel convolutional paths implement 

the multi-scale concept. The first path (𝑋2) uses a 
standard 3×3 convolution formulated in Eq. (2). The 

second path (𝑋3)  follows the InceptionV2 approach by 

decomposing a 5×5 convolution into two consecutive 
3×3 convolutions to reduce parameter count, as 
described in Eq. (3). Similarly, the third path (𝑋4)  
decomposes a 7×7 convolution into three consecutive 
3×3 convolutions as shown in Eq. (4). The outputs of all 

three paths (𝑋5)  are then merged to integrate 

information across multiple receptive fields like Eq. (5). 

The attention mechanism in MRA utilizes a 
Squeeze-and-Excitation (SE) block to emphasize 
relevant features after concatenation (𝑋6), formulated 
in Eq. (6). A 3×3 convolution is applied to restore the 

feature map dimensions to match the input size (𝑋7), 
Eq. (7). The result is then added to the original input 

(𝑋)  features, following the concept of residual 

connections as formulated in Eq. (8). This residual 

addition helps mitigate gradient vanishing and 
information degradation caused by convolutional 
operations.  

𝑋1 = 𝐶𝑜𝑛𝑣1𝑥1(𝑋)  (1) 

𝑋2 = 𝐶𝑜𝑛𝑣3𝑥3(𝑋1) (2) 

𝑋3 = Conv3×3(𝐶𝑜𝑛𝑣3𝑥3(𝑋1)) (3) 

𝑋4 = 𝐶𝑜𝑛𝑣3𝑥3 (Conv3×3(𝐶𝑜𝑛𝑣3𝑥3(𝑋1)))  (4) 

𝑋5 = [𝑋2, 𝑋3, 𝑋4] (5) 

𝑋6 = 𝑆𝐸(𝑋5)  (6) 

𝑋7 = 𝐶𝑜𝑛𝑣3𝑥3(𝑋6) (7) 

�̂�𝑀𝑅𝐴 = 𝐶𝑜𝑛𝑣1𝑥1(𝑋) + 𝑋7 (8) 

 We experiment with three types of SE blocks to 
determine the optimal configuration: Spatial and 
Channel Squeeze & Excitation (scSE), Channel 
Squeeze and Spatial Excitation (sSE), and Spatial 
Squeeze and Channel Excitation (cSE). The scSE 
block integrates the functions of both cSE and sSE by 
recalibrating feature maps across both spatial and 
channel dimensions simultaneously, which can be 
seen in Fig.  4 (a) [25]. The outputs of cSE and sSE are 

 
Fig.  4. Various types of SE Blocks (a) scSE, (b) cSE, and (c) sSE. 

 
 

 

 
Fig.  3. Architecture of (a) Ghost Module and (b) Multi-Scale Residual Attention (MRA). 
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combined through element-wise addition. This schema 
is formulated by Eq. (9). 

�̂�𝑠𝑐𝑆𝐸 = �̂�𝑐𝑆𝐸 + �̂�𝑠𝑆𝐸  (9) 

In the cSE block, spatial information is reduced using 
Global Average Pooling (GAP), generating a global 
descriptor for each channel. The excitation process 
then uses two fully connected layers, followed by ReLU  
(𝛿) and sigmoid activations (𝜎), respectively. The 

resulting attention weights are multiplied element-wise 
by the input feature map to recalibrate the importance 
of each channel. The structure of the cSE block is 
illustrated in Fig.  4 (b). cSE can be formulated in Eqs. 
(10), (11), and (12). 

𝑧𝑘 =
1

𝐻 × 𝑊
∑ ∑ 𝑢𝑘(𝑖, 𝑗)

𝑊

𝑗

𝐻

𝑖

, (10) 

�̂� = 𝜎(𝑊1 ⋅ 𝛿(𝑊2 ⋅ 𝑧)), (11) 

�̂�𝑐𝑆𝐸 = [𝜎(�̂�1) ⋅ 𝑢1 , 𝜎(�̂�2) ⋅ 𝑢2, … , 𝜎(�̂�𝐶 ) ⋅ 𝑢𝐶] . 
(12) 

where 𝑧 represents the global average pooled values 

and 𝑘 denotes the channel index, so 𝑧𝑘  represents the 

average value of the 𝑘-th channel and 𝐻 × 𝑊 denotes 

the spatial dimensions of the feature map. 𝑊1 and 𝑊2 

are the weights of the fully-connected layers and 𝐶 

represents the number of channels. The variable (𝑖, 𝑗) 

indicates the spatial coordinates for each pixel in the 
height (𝑖) and width (𝑗) dimensions of the feature map. 

In the sSE block, channel-based features are 
generated by applying a 1×1 convolution at each 
spatial location,  followed by a sigmoid activation 
function (𝜎).  This operation is defined in Eqs. (13) and 

(14), where 𝑊 represents the convolution weights and 

𝑈 is the input feature map. These features are then 

spatially scaled and recalibrated to highlight relevant 
regions, formulated by Eq. (15). The structure of the 

sSE block is illustrated in Fig.  4(c). 

𝑞 = 𝑊𝑠𝑞 ∗ 𝑈 , (13) 

�̂�𝑖𝑗 = 𝜎(𝑞𝑖𝑗), (14) 

�̂�𝑠𝑆𝐸 = [�̂�1,1 ⋅ �̂�1,1, … , �̂�1,𝑗 ⋅ �̂�1,𝑗, , … , �̂�𝐻,𝑊 ⋅ �̂�𝐻,𝑊, ] . (15) 

This architecture integrates an Enhanced Parallel 
Attention (EPA) module into the skip connections. 
Placing the EPA here allows the model to filter and 
selectively emphasize salient spatial features from the 
encoder. EPA combines multiple attention 
mechanisms in parallel to enhance model 
performance. It comprises three main components: 
Simple Pixel Attention (SPA), Channel Attention (CA), 
and Pixel Attention (PA). EPA is depicted in Fig.  5(a). 
The outputs of these attention modules are 
concatenated along the channel dimension and 
processed through a multi-layer perceptron (MLP). This 
MLP reduces the channel dimension to match that of 
the input. The final output is added to a shortcut identity 
to retain the original information. The EPA is 
mathematically formulated in Eq. (16). 

�̂�𝐸𝑃𝐴 = 𝑥 ⨁ 𝐶𝑜𝑛𝑣1𝑥1 (𝛿 (𝐶𝑜𝑛𝑣1𝑥1 (𝐶𝑎𝑡(�̂�𝑆𝑃𝐴, �̂�𝑃𝐴 , �̂�𝐶𝐴)))) (16) 

The SPA module is designed to extract location-
dependent features such as texture or intensity 
variations in medical images. As depicted in Fig. 5 (b), 
it consists of two branches: PFₛ, which extracts 

features using point-wise (𝐶𝑜𝑛𝑣1𝑥1) and 3×3 
convolution layers as shown in Eq. (17), and PAₛ, which 

generates a pixel-level gating signal using a sigmoid 
function formulated in Eq. (18). The output of SPA is 

obtained through element-wise multiplication of these 
two branches. It can be calculated using Eq. (19). 

𝑃𝐹𝑠 = 𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑣1𝑥1(𝑥)), (17) 

𝑃𝐴𝑠 =  𝜎(𝐶𝑜𝑛𝑣1𝑥1(𝑥)), (18) 

�̂�𝑃𝐴 = 𝑃𝐹𝑠⨂𝑃𝐴𝑠 (19) 

The PA module,  illustrated in Fig.  5 (c), captures fine-
grained information at each pixel location in the feature 
maps. It employs two sequential 1×1 convolution 
layers, followed by ReLU (𝛿) and sigmoid activation 

functions (𝜎), respectively. These layers generate 

pixel-level attention maps, enabling the model to focus 
on spatially relevant features. Pixel Attention  is 
calculated using Eq. (20). 

 
Fig.  5. Architecture of (a) Enhanced Paralel Attention (EPA), (b) Simple Pixel Attention (SPA), and Pixel 
Attention (PA). 
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�̂�𝑃𝐴 = 𝑥 ⨂ 𝜎 (𝐶𝑜𝑛𝑣1𝑥1 (𝛿(𝐶𝑜𝑛𝑣1𝑥1(𝑥)))) (20) 

The CA module extracts global contextual information 
and adjusts the importance of feature channels. It uses 
both GAP and GMP to encode distinctive patterns from 

the input (𝑥). These pooled representations are passed 

through shared fully connected layers, followed by a 

sigmoid activation (𝜎) to generate channel-wise 

attention weights. CA is mathematically defined in Eq. 
(21). 

�̂�𝐶𝐴 = 𝑥⨂𝜎 (𝐶𝑜𝑛𝑣1𝑥1 (𝐴𝑐𝑡 (𝐶𝑜𝑛𝑣1𝑥1(𝐺𝐴𝑃(𝑥))))) (21) 

At the  bridge layer of the network, a Convolutional 
Block Attention Module (CBAM) is added.  Placing 
CBAM at the network's deepest point allows the model 
to enhance the global context before the decoder 
begins the spatial reconstruction process. CBAM 
combines channel and spatial attention mechanisms. 
While  channel attention emphasizes the relevance of 
each feature channel,  spatial attention focuses on 
highlighting significant spatial regions within the feature 
map [26]. The structure of CBAM is depicted in Fig.  6.  

 
Fig.  6. Structure of the CBAM. 

 

 
Fig.  7. Architecture of MSDC. 

The second decoder substitutes basic convolutions 
with a Multi-scale Depthwise Convolution (MSDC). 
MSDC extracts features using three parallel depthwise 
convolutions with different kernel sizes, as illustrated in 
Fig.  7. Each convolution is followed by batch 
normalization and an activation function to ensure 
stable and nonlinear representations. The outputs of 

the three branches are then combined through 
element-wise addition to integrate multi-scale spatial 
information. This approach enables the model to 
capture diverse spatial features in the input image 
effectively. The final layer of the neural network applies 
a 1×1 convolution with a single filter and a sigmoid 
activation function to generate the binary prediction 
map. The 1×1 kernel is used to minimize the number of 
parameters. A single filter produces a grayscale output, 
and the sigmoid function maps pixel values to the [0, 1] 
range. Pixels above 0.5 are classified as foreground, 
while those below are treated as background. 

C. Hyperparameter Tuning 

In this study, hyperparameter tuning was conducted 
using the training set from the CVC-ClinicDB dataset. 
Hyperparameter tuning is identifying the optimal values 
of hyperparameters to achieve the best model 
performance [27]. The hyperparameters tuned in this 
study include the number of filters, activation functions, 
bias values, loss functions, and types of SE blocks. 

Experiments on the number of filters were 
performed  with three configurations: 16, 32, and 64 
filters. Next, different activation functions were 
evaluated, including ReLU, LeakyReLU, ELU, SELU, 
and GELU. Subsequently, various loss functions were 
tested, including Binary Cross-Entropy (BCE), Dice 
Loss (DL), a combination of BCE and DL, Tversky 
Loss, and Focal Tversky Loss. Lastly, experiments 
were conducted on the type of Squeeze-and-Excitation 
(SE) block used in the architecture. The SE block 
variants evaluated in this study were channel SE (cSE), 
spatial SE (sSE), and spatial and channel SE (scSE). 

D. Model Training 

After completing the hyperparameter tuning process, 
the neural network was trained using the designated 
training set, where the input images served as inputs 
and the target images as ground truth labels. A learning 
rate scheduling strategy was applied, in which the 
learning rate was reduced by a factor of 10 if the loss 
value did not improve for 10 consecutive epochs. This 
strategy aimed to enhance model performance and 
prevent overfitting. 

E. Model Evaluation 

The trained model was subsequently evaluated using 
the testing set from each dataset to assess its 
performance in segmentation. This evaluation involved 
comparing the predicted image generated by the model 
with the ground-truth. Five standard performance 
metrics were employed to achieve a comprehensive 
assessment: sensitivity, specificity, accuracy, Dice 
similarity coefficient (DSC), and Intersection over Union 
(IoU). Sensitivity, also known as recall, measures the 
model's ability to identify positive pixels accurately and 
is calculated using Eq. (22). 
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𝑆𝐸 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (22) 

where TP represents true positives and FN denotes 
false negatives. Specificity, defined in Eq. (23), 
measures the model's ability to identify negative pixels 
correctly. 

𝑆𝑃 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (23) 

where TN is the count of true negatives and FP is the 
number of false positives. 

Overall classification accuracy is computed using 
Eq. (24). 

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
  (24) 

which measures the proportion of correctly predicted 
pixels across both classes. The DSC, provided in Eq. 
(25), is the harmonic mean of precision and recall, 
emphasizing the balance between FP and FN. 

𝐷𝑆𝐶 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
  (25) 

In segmentation tasks, the IoU, as defined in Eq. (26), 
quantifies the overlap between the predicted and 
ground-truth masks. 

𝐼𝑜𝑈 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
  (26) 

The model was also analyzed based on the number of 
parameters. The total parameter count reflects the 
model's memory efficiency and structural complexity. A 
model with fewer parameters indicates a lightweight 
design. 

III. RESULTS  

A. Experimental Setup 

In this stage, a series of comprehensive experiments 

were conducted to evaluate the performance of the 

proposed One-Point-Half U-Net model in medical image 

segmentation tasks. All experiments were implemented 

using the Python programming language and the 

TensorFlow framework, executed on the Kaggle platform 

with TPU v3-8 acceleration. The CVC-ClinicDB dataset 

was used for both hyperparameter tuning and model 

ablation experiments to identify the optimal configuration 

for model construction. Once the optimal configuration 

was obtained, the model was trained and evaluated 

using the training and testing sets from each dataset. 

B. Hyperparameter Tuning 

The initial set of experiments involved hyperparameter 

tuning on the number of filters, the type of activation 

function, the loss function, and the type of Squeeze-and-

Excitation (SE) block utilized. Additionally, the tuning 

process was conducted sequentially. Table 2 compares 

the initial hyperparameters and optimal 

hyperparameters obtained as the tuning process 

progresses through various stages. 

Table 2. Comparison between initial and optimal 
hyperparameters. 

Hyperparameter Initial Optimal 

Batch Size 16 16 

Number of  filters 64 64 

Number of 
Epochs 

60 60 

Optimizer 
Adam (Adaptive 
Moment Estimation) 

Adam (Adaptive 
Moment Estimation) 

Learning Rate 

0.001 (divided by 10 
every 10 epochs if 
validation loss 
doesn't improve) 

0.001 (divided by 10 
every 10 epochs if 
validation loss 
doesn't improve) 

Activation 
Function 

ReLU GELU 

Loss Function DL DL + BCE 

Type of SE block cSE cSE 

The initial experiment aimed to determine the optimal 

number of convolutional filters that balances model 

performance and complexity. We evaluated three 

configurations with initial filter counts of 16, 32, and 64 

on the CVC-ClinicDB dataset. The results, presented in 

Table 1, indicate that increasing the number of filters 

Table 1. Hyperparameter tuning results. 

Hyperparameter SE SP ACC DSC IoU Parameter 

Filters 

16 83,87% 97,92% 94,70% 87.89% 78.40% 68,183 

32 93,04% 99,42% 98,73% 93.40% 87.81% 195,295 

64 94,66% 99,59% 99,08% 94.78% 90.22% 626,755 

Activation Function 

ReLU 93.71% 99.60% 99.00% 94.54% 89.79% 626,755 

Leaky ReLU 93.61% 99.49% 99.09% 94.64% 89.98% 626,755 

ELU 94.74% 99.49% 99.07% 94.62% 89.96% 626,755 

SELU 95.33% 99.47% 99.09% 94.64% 90.03% 626,755 

GELU 94.66% 99.59% 99.08% 94.78% 90.22% 626,755 

Loss Function 

BCE 94.33% 99.56% 99.14% 94.86% 90.31% 626,755 

DL 94.66% 99.59% 99.08% 94.78% 90.22% 626,755 

BCE+DL 94.89% 99.63% 99.23% 95.41% 91.27% 626,755 

TL 94.52% 99.61% 99.13% 94.82% 90.30% 626,755 

FTL 94.33% 99.65% 99.26% 95.26% 91.02% 626,755 

SEBlock 

cSE 94.89% 99.63% 99.23% 95.41% 91.27% 626,755 

sSE 95.39% 99.40% 99.08% 94.97% 90.49% 625,780 

scSE 95.04% 99.61% 99.30% 95.36% 91.19% 626,880 
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improves segmentation accuracy but also increases the 

model's total number of trainable parameters. The 

configuration with 64 filters yielded the highest accuracy 

among the tested options. Therefore, this value was 

selected and fixed for all subsequent experiments to 

ensure a robust performance baseline. 

The second experiment aimed to identify the most 

effective activation function for the network's non-linear 

transformations. Keeping the filter count at 64, we tested 

five different activation functions: ReLU, LeakyReLU, 

ELU, SELU, and GELU. As summarized in Table 1, the 

choice of activation function had a significant impact on 

the model's accuracy, while it did not alter the number of 

parameters. Among the tested functions, GELU 

demonstrated superior performance by yielding the 

highest segmentation accuracy. Consequently, GELU 

was selected as the default activation function for the 

remainder of the tuning process. 

The third experiment was designed to determine the 

most effective loss function for optimizing the model 

during training, which is crucial for addressing the class 

imbalance commonly encountered in medical 

segmentation. We evaluated five different loss functions: 

Binary Cross-Entropy (BCE), Dice Loss (DL), a 

combined BCE + DL, Tversky Loss (TL), and Focal 

Tversky Loss (FTL). The results in Table 1 indicate that 

the choice of loss function has a significant impact on the 

final segmentation accuracy. The combined BCE + DL 

loss function achieved the highest accuracy scores, 

proving most effective for this task. 

The final hyperparameter experiment was conducted 

to determine the optimal Squeeze-and-Excitation (SE) 

block variant for our architecture. Three different types 

were evaluated: scSE, sSE, and cSE. Based on the 

results presented in Table 1,the type of SE block 

influenced both the model's accuracy and the number of 

parameters. The cSE block variant achieved the highest 

segmentation accuracy. As a result, the cSE block was 

adopted as the definitive attention mechanism in the final 

proposed model. 

C. Model Ablation 

Ablation studies were conducted to evaluate the 

individual contributions of specific components within a 

model by systematically removing or modifying them. 

The proposed One-Point-Five U-Net integrates four core 

modules: MRA, CBAM, EPA, and MSDC. A series of 

ablation experiments were designed to isolate the 

influence of each module and explore their interactions. 

The conducted experiments included the following 

configurations: (1) Ablation 1: One-Point-Five U-Net w/o 

MRA, (2) Ablation 2: One-Point-Five U-Net w/o CBAM, 

(3) Ablation 3: One-Point-Five U-Net w/o EPA, (4) 

Ablation 4: One-Point-Five U-Net with MSDC replaced 

by a Ghost module in the decoder, (5) Ablation 5: One-

Point-Five w/o MRA, EPA, CBAM, and replacing MSDC 

with a ghost module in the decoder. 

Each ablation was evaluated to determine the 

performance drop or improvement compared to the 

whole model. The results of these ablation experiments 

are summarized in Table 3. These findings validate that 

the incorporation of MRA, CBAM, EPA, and MSDC 

modules significantly enhances the model's 

segmentation capability. Based on the experimental 

results, the full version of the One-Point-Five U-Net 

model demonstrated the best performance, achieving a 

    
(a) (b) (c) (d) 

Fig.  8. Training and Validation Loss Graph on (a) CVC-ClinicDB, (b) KvasirSeg, (c) BUSI, and (d) ISIC2018. 

Table 3. Result of the ablation model. 

Method SE SP ACC DSC IoU Parameter 

Ablation 1 94.33% 99.41% 98.92% 93.92% 88.61% 520,175 

Ablation 2 94.00% 99.32% 98.76% 93.17% 87.50% 320,499 

Ablation 3 95.05% 99.53% 99.09% 94.61% 90.15% 625,421 

Ablation 4 94.12% 99.40% 98.78% 93.50% 88.35% 549,495 

Ablation 5 82.63% 96.76% 94.99% 80.87% 68.24% 123,329 

One-Point-Five U-Net  94.89% 99.63% 99.23% 95.41% 91.27% 626,755 
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DSC of 95.41%, an IoU of 91.27%, and a total parameter 

count of 626,755. When the MRA module was removed, 

the model's performance declined significantly, with the 

DSC dropping to 93.92% and the IoU to 88.61%. This 

finding underscores the crucial role of the MRA module 

in enhancing segmentation accuracy. Furthermore, the 

simultaneous removal of multiple modules, specifically 

MRA, EPA, CBAM, and MSDC, led to a drastic 

performance decline, yielding only a DSC of 80.87% and 

an IoU of 68.24%, despite reducing the number of 

parameters to just 123,329. These results confirm that 

integrating attention mechanisms and multi-scale 

convolutional modules is crucial to the model's success. 

The absence of one or more of these modules 

consistently results in reduced accuracy, even reducing 

the model's complexity.  

D. Experiment Result 

After performing hyperparameter tuning and model 
ablation, the optimal hyperparameter configuration and 
the most effective model architecture were identified. 
The most optimal hyperparameters, as shown in Table 
1, were then applied during the training phase  on the 
CVC-ClinicDB, KvasirSeg, BUSI, and ISIC2018 
datasets.. Throughout training, both training and 
validation losses were continuously monitored to 
assess the convergence behavior of the model and to 
detect signs of overfitting or underfitting. The loss 
curves depicting this process are presented in Fig.  8. 

In the subsequent phase, the model was evaluated 
using the corresponding testing sets of  all four 
datasets to assess the generalization ability of the 
trained model. The evaluation metrics obtained from 
the testing process are summarized in Table 4. 
Additionally, a qualitative comparison between the 
predicted segmentation masks and the ground truth 
annotations is provided in Table 5.  

E. Comparison with Previous Methods 

Following the series of evaluations, the proposed 
neural network was compared with several existing 
segmentation methods, including U-Net [11], U-Net++ 
[28], ResU-Net [29], Half-UNet [12], Attention U-Net 
[13], and CMAUNeXT [30]. The comparison was 
conducted based on four key aspects: DSC, IoU, 
number of parameters, and floating-point operations 
(FLOPs). 

The results of comparing these metrics are 
presented in Table 6. The results show that the 
proposed method, One-Point-Five U-Net, outperforms 
existing models in terms of DSC and IoU, indicating 
higher accuracy in generating segmentation 
predictions. Additionally, although this model is still less 
efficient than Half-UNet in terms of the number of 
parameters and FLOPs, the values obtained are still 
relatively low compared to other methods. This signifies 
that the proposed model strikes a superior balance 
between high accuracy and computational efficiency. 

Table 4. Evaluation results on all four datasets. 

Dataset SE SP ACC DSC IoU Param FLOPs(G) 

CVC-ClinicDB 94.89% 99.63% 99.23% 95.41% 91.27% 

626,755 28.23 
KvasirSeg 91.11% 98.60% 97.33% 90.93% 83.84% 
BUSI 85.35% 98.65% 96.81% 87.02% 78.18% 

ISIC2018 87.67% 98.11% 93.68% 89.27% 83.06% 
 

Table 5. Predicted image results on all four datasets. 

Dataset Input Image Ground Truth Prediction Overlay F1Score/IoU 

CVC-ClinicDB 

    

98.45%/96.95% 

KvasirSEG 

    

97.55%/95.22% 

BUSI 

    

96.57%/93.37% 

ISIC2018 

    

98.91%/97.84% 
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IV. CONCLUSION 

This study introduces a novel neural network 

architecture for medical image segmentation, 

demonstrating superior performance compared to 

existing state-of-the-art methods. The proposed 

architecture, named One-Point-Five U-Net, is 

constructed by combining the foundational structures of 

U-Net and Half-UNet while integrating several advanced 

modules, including the MRA, EPA, CBAM, and MSDC. 

The  integration of attention mechanisms and multi-scale 

feature extraction enables the One-Point-Five U-Net to 

enhances segmentation performance while maintaining 

high computational efficiency. The One-Point-Five U-

Net achieves consistently high results across four 

benchmark datasets. Specifically, it obtains sensitivity, 

specificity, accuracy, DSC, and IoU of 94.89%, 99.63%, 

99.23%, 95.41%, and 91.27% on the CVC-ClinicDB 

dataset; 91.11%, 98.60%, 97.33%, 90.93%, 83.84% on 

the Kvasir-Seg dataset; 85.35%, 98.65%, 96.81%, 

87.02%, 78.18% on the BUSI dataset; and 87.67%, 

98.11%, 93.68%, 89.27%, 83.06% on the ISIC2018 

dataset. Furthermore, the One-Point-Five U-Net 

outperforms several baseline architectures, including U-

Net, U-Net++, ResU-Net, Half-UNet, Attention U-Net, 

and CMAUNeXT based on DSC and Intersection over 

Union (IoU) metrics. In terms of model complexity, the 

One-Point-Five U-Net contains 626,755 parameters and 

requires 28.23 GFLOPs, which is relatively lightweight 

compared to conventional models. This computational 

efficiency indicates the model's practical applicability in 

clinical scenarios with limited hardware resources, 

without compromising accuracy in computer-aided 

diagnosis (CAD) systems. 
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