
Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 817-834                                                e-ISSN: 2656-8632 
 

 

Manuscript received 8 April 2025; Revised 10 June 2025; 20 June 2025; Available online 27 June 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.948 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 817               

RESEARCH ARTICLE  OPEN ACCESS 

Advanced Traffic Flow Optimization Using Hybrid 

Machine Learning and Deep Learning 
Techniques  
Mohammed El Kaim Billah , Abdelfettah Mabrouk  

Department of Computer Science ESTSB, ELITES Lab, Chouaib Doukkali University, El Jadida, Morocco 
  

Corresponding author: Mohammed El Kaim Billah (e-mail: mohammed.kaimbillah@gmail.com), Author(s) Email: 
Abdelfettah Mabrouk (e-mail: mabroukdes@gmail.com) 
 

ABSTRACT. Road traffic congestion remains a persistent and critical challenge in modern urban 
environments, adversely affecting travel times, fuel consumption, air quality, and overall urban livability. To 
address this issue, this study proposes a hybrid ensemble learning framework for accurate short-term traffic 
flow prediction across signalized urban intersections. The model integrates Random Forest, Gradient 
Boosting, and Multi-Layer Perceptron within a weighted voting ensemble mechanism, wherein model 
contributions are dynamically scaled based on individual validation performance. Benchmarking is performed 
against traditional and advanced baselines, including Linear Regression, Support Vector Regression, and 
Long Short-Term Memory (LSTM) networks. A real-world traffic dataset, comprising 56 consecutive days of 
readings from six intersections, is utilized to validate the approach. A robust preprocessing pipeline is 
implemented, encompassing anomaly detection, temporal feature engineering especially time-of-day and day-
of-week normalization, and sliding window encoding to preserve temporal dependencies. Experimental 
evaluations on 4-intersection and 6-intersection scenarios reveal that the ensemble consistently outperforms 
all baselines, achieving a peak R² of 0.954 and an RMSE of 0.045. Statistical significance testing using Welch’s 
t-test confirms the reliability of these improvements. Furthermore, SHAP-based interpretability analysis 
reveals the dominant influence of temporal features during high-variance periods. While computational 
overhead and data sparsity during rare events remain limitations, the framework demonstrates strong 
applicability for deployment in smart traffic systems. Its predictive accuracy and model transparency make it 
a viable candidate for adaptive signal control, congestion mitigation, and urban mobility planning. Future work 
may explore real-time streaming adaptation, external event integration, and generalization across 
heterogeneous urban networks. 

 
Keywords: Urban Traffic Control; Traffic Light Controller; Traffic Flow Prediction; Deep 
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1. INTRODUCTION  

In the era of smart cities, optimizing traffic flow has 
become a critical aspect of urban planning and 
management. Traffic congestion is a pervasive problem 
in urban areas worldwide, causing frustration, wasted 
time, increased fuel consumption, and environmental 
pollution [1]. As populations grow and urbanization 
continues, traffic congestion becomes even more severe, 
posing significant challenges to transportation systems 
and urban planners [2]. Several factors contribute to 
traffic congestion, including the exponential growth of 
urban populations [3], [4], [5], resulting in a corresponding 
rise in the number of vehicles on the road, especially 
during peak hours [6], [7], [8]. Additionally, many cities 
grapple with limited road infrastructure that fails to keep 
pace with the escalating number of vehicles, 
exacerbating congestion during rush hours and major 
events [9], [10], [11]. Inefficient traffic management 
strategies, characterized by poorly synchronized traffic 
signals, a lack of real-time monitoring, and ineffective 
traffic flow control [12], [13], [14], further contribute to 
congestion hotspots [15], [16]. Moreover, human 

behavior, encompassing car dependency [17], [18], 
commuting patterns, and individual driving habits, 
significantly influences traffic congestion patterns. The 
adverse effects of congestion on productivity, air quality, 
and overall quality of life underscore the critical need for 
effective solutions. One such solution gaining 
prominence is traffic flow prediction [19], [20], [21], which 
plays a vital role in proactively managing congestion by 
informing decision-makers about expected traffic 
patterns. This allows for adjustments in traffic signal 
timings, resource deployment, and the optimization of 
public transportation services. At a 4-way intersection, 
traffic relies on well-coordinated signals or stop signs 
dictating the right-of-way for each road. Traffic lights 
alternate phases, guiding vehicles through the 
intersection seamlessly.    Consideration for turning 
movements ensures left-turning vehicles find protected 
paths while right-turning ones yield appropriately. 
Pedestrian crossings are marked and synchronized with 
signals, providing safe passage. Traffic volume governs 
signal durations, and congestion management strategies 
come into play in high-density scenarios.
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On the other hand, six-way intersections, with their 
added complexity, demand sophisticated signalization, 
lane configuration, and pedestrian safety measures 
[22]. These intersections serve as intricate hubs where 
engineers employ advanced techniques to optimize 
traffic flow, ensuring a harmonious coexistence of 
diverse movements and modes of transportation. 
Predicting traffic flow is greatly enhanced by integrating 
machine learning (ML) and deep learning (DL) 
techniques, revolutionizing transportation authorities’ 
congestion management. ML algorithms can analyze 
vast amounts of historical traffic data to identify 
patterns and trends, enabling more accurate 
predictions of future traffic conditions [23]. DL models, 
with their ability to process complex data and learn 
hierarchical representations, further refine traffic flow 
predictions by capturing intricate relationships between 
various factors influencing traffic patterns, such as time 
of day, weather conditions, and special events [24]. By 
harnessing ML and DL technologies, transportation 
authorities can develop advanced traffic prediction 
systems that provide real-time insights into traffic 
dynamics. These systems can dynamically adapt to 
changing traffic conditions, allowing authorities to 
implement responsive measures to alleviate 
congestion and optimize traffic flow. 

Aim of the Study: This study aims to develop an 
ensemble machine learning architecture that improves 
traffic flow prediction and optimization in smart cities. 
The model integrates multiple ML and DL techniques 
to provide more accurate forecasts, enabling adaptive 
traffic control measures. This study makes the following 
contributions: 

1. Novel Ensemble Framework: Introduces a hybrid 

ensemble learning approach that combines ML 

and DL models to optimize traffic flow predictions. 

2. Comprehensive Hyperparameter Tuning: 

Implements advanced tuning techniques, such as 

grid search and random search, to optimize model 

performance. 

3. Data Preprocessing and Feature Engineering: 

Explores missing data imputation, normalization, 

and feature selection to improve model 

robustness. 

4. Evaluation and Benchmarking: Compares the 

proposed method against state-of-the-art 

techniques using multiple performance metrics. 

The remainder of this study is structured as follows: 
Section II reviews the current state-of-the-art research 
in traffic flow prediction. Section III introduces the 
proposed ML and DL models for traffic flow in smart 
cities. Section IV presents the experimental analysis, 
results, and discussion. Finally, Section V concludes 
the study. 

Previous studies using machine learning 
approaches to forecast traffic flow in vehicular networks 
are investigated in [25], [26]. Utilizing real-time traffic 
data, the study creates prediction models using 
machine learning algorithms such as neural networks, 
decision trees, random forests, and support vector 
machines. The authors assess these models' 
performance using preprocessing, feature engineering, 
and model optimization, using metrics such as mean 
absolute error and prediction accuracy. The findings 
demonstrate the effectiveness of various machine 
learning techniques in anticipating traffic flow, providing 
information that can be used to improve transportation 
systems and optimize traffic management in vehicular 
networks. The study in [27] builds a variety of pattern 
classifiers, such as Adaboost, SVM, RF, and SVR 
algorithms, for the classification of vehicles using 
machine learning concepts. With a focus on Support 
Vector Regression (SVR), an algorithm adapted for 
regression tasks based on support vector machine 
principles, this study presents an optimized SVR short-
term traffic flow prediction model by adjusting SVM 
parameters. According to the testing results, SVR has 
the lowest classification error rate (3.22%). The 
proposed model shows significant reductions in Root 
Mean Square Error (RMSE) by 29.71% and 47.22% 
during morning and night peak hours, respectively, and 
in Mean Absolute Percentage Error (MAPE) by 19.94% 
and 42.86%. By efficiently obtaining the best possible 
parameter combinations, the enhanced SVR algorithm 
improves the accuracy of traffic flow forecasts. 

To address possible data outliers, a variety of data 
denoising techniques were used in the referenced 
study [28], including Wavelet (WL), Ensemble 
Empirical Mode Decomposition (EEMD), and Empirical 
Mode Decomposition (EMD). Subsequently, short-term 
traffic flow prediction was performed using the Long 
Short-Term Memory (LSTM) neural network. Three 
traffic flow datasets from the Caltrans Performance 
Measurement System (PeMS) were used in the 
evaluation. With an average Root Mean Square Error 
(RMSE) of 0.79, Mean Absolute Error (MAE) of 0.60, 
and Mean Absolute Percentage Error (MAPE) of 2.14, 
the results showed that the LSTM+EEMD technique 
provided greater accuracy. 

A proposed adaptive traffic signal system using 
machine learning algorithms to anticipate traffic flow 
was presented in [29]. After implementing and 
comparing five regression models (linear regression, 
random forest, decision tree, gradient boosting, and k-
nearest neighbors), the random forest regressor 
performed the best (R² = 0.98). By modifying the timing 
of green and red lights according to anticipated traffic 
density, the system reduced traffic congestion by 
30.8%. Simulation results confirmed the system's 
efficiency in optimizing traffic flow at intersections. 
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A key component of adaptive traffic management 
systems is the forecasting of traffic flow at 
intersections, which is addressed in [30] using machine 
learning (ML) and deep learning (DL) techniques. The 
study utilized two publicly available datasets, one of 
which recorded vehicle counts at six intersections at 5-
minute intervals over a period of 56 days. Four 
intersections were used to train the models. The Multi-
Layer Perceptron Neural Network (MLP-NN) achieved 
an excellent R² and explained variance (EV) score of 
0.93 while requiring less training time. All ML and DL 
algorithms showed strong performance metrics, 
indicating their suitability for integration with smart 
traffic light controllers. 

Graph Convolutional Network (GCN) and Long 
Short-Term Memory (LSTM) neural networks were 
integrated to create the innovative spatiotemporal 
dynamic deep network known as GCN-LSTM, which 
was first presented in [31]. This model addresses 
uncertainty, periodicity, and spatiotemporal dynamics 
in traffic flow analysis. While temporal dynamics are 
captured by an attention mechanism and LSTM, GCN 
processes spatial correlation features. The usefulness 
and superiority of the proposed GCN-LSTM model 
were confirmed by simulation tests. 

The study in [32] offers a novel solution to the 
challenges of randomness and nonlinearity in traffic 
flow prediction. The proposed approach combines 
Adaptive Hybrid Exponential Smoothing with Residual 
Correction (AHES-RC) and Quantum Particle Swarm 
Optimization (QPSO). By combining single and double 
exponential smoothing techniques, the AHES 
component adapts its weights in real-time to traffic 
pattern variations. An Extreme Learning Machine 
(ELM) algorithm controls the residual correction, while 
QPSO optimizes the AHES-RC parameters to improve 
prediction accuracy. Utilizing 26 real-world datasets, a 
thorough evaluation of the QPSO-AHES-RC method 
against other benchmark models revealed notable 
improvements, with mean RMSE and mean MAPE 
typically reduced by more than 20% compared to 
advanced machine learning techniques like XGBoost 
and CatBoost. The study emphasizes the importance 
of dynamically collecting traffic flow data in real-time to 
enhance prediction accuracy.  

 

2. MATERIALS AND METHOD 
A. Dataset  

This study utilizes a publicly available dataset from the 
Huawei Munich Research Center, consisting of vehicle 
count data collected from six urban intersections at 5-
minute intervals over a period of 56 days. The dataset 
includes a total of 16,128 samples, offering a high-
resolution temporal view of traffic flow suitable for 
short-term prediction and traffic signal control 
optimization. The data were gathered using induction 

loop sensors, anonymized, and prepared for modeling. 
Fig. 1 describes the flow of the methodology used. 

Our approach begins with the utilization of road traffic 
prediction datasets from the Huawei Munich Research 
Center [33]. Comprehensive exploratory analysis is 

conducted following meticulous data preprocessing, 
including handling missing data. Additional columns for 
date and time are added, and traffic flow is plotted for 
one day, one week, and average values to identify 
patterns. The dataset can be used to modify traffic 
signal control settings and forecast traffic patterns. It 
contains 56 days of recorded data from six metropolitan 
intersections. It is appropriate for short-term traffic 
forecasting because it contains flow time series data 
showing the number of cars passing at 5-minute 
intervals throughout the day [32]. In this study, the 
traffic flow at a 4-way intersection is simulated using 
data from four out of the six intersections. 

 
Fig. 1. The step-by-step processing pipeline of 
our proposed predictive approach. 
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Subsequently, two primary tasks are executed. The 
first task involves predicting traffic flow at four 
intersections and applying this model to predict flow at 
six intersections. 

The second task involves using both input and 
output from six intersections. A crucial step in the 
methodology involves creating a list X as input and a 

list Y as output for modeling. X is generated by 
considering 12 consecutive rows of data, with the 13th 
row serving as the ground truth Y. The dataset is then 
divided into training and testing sets in an 80:20 ratio. 
Fig. 2 provides an overview of the proposed framework. 
This study delineates a system that combines machine 
learning, deep learning, and an ensemble model 

 
Fig. 2. High-level overview of the proposed traffic prediction framework. 

 
Fig. 3. Conceptual steps of the ensemble algorithm integrating deep and machine learning models 
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tailored for predicting traffic flow at intersections using 
the Huawei Munich Research Center road traffic 
dataset [33]. 

 The machine learning models employed include 
linear regression and Multi-Layer Perceptron (MLP), 
featuring three distinct activation functions: ReLU, 
logistic, and tanh. The deep learning model adopts an 
LSTM architecture with 50 neurons and uses the Adam 
optimizer, trained for 10 epochs with a batch size of 
516. Table 1 provides a summary of the simulation 
details. The proposed ensemble model integrates the 
three best-performing machine learning models using 
a voting regressor. Fig. 3 shows the steps of the 
prediction process. 

B. Data Collection  

The dataset employed in this study is publicly 
accessible and originates from the Huawei Munich 
Research Center [33]. It consists of anonymized road 
traffic prediction data gathered from various traffic 
sensors, primarily induction loops, strategically placed 
at six urban intersections. Covering a span of 56 days, 
the dataset provides flow time series information,  
recording vehicle counts at 5-minute intervals 
throughout each day. This temporal resolution results 
in 12 hourly readings and 288 daily readings, 
culminating in 16,128 observations over the entire 
period. Notably, the dataset is crucial for forecasting 
traffic patterns and optimizing traffic signal control 
parameters, such as cycle length, offset, and split 
times. Its applications extend to traffic management, 
urban planning, and transportation research, enabling 
detailed analysis and predictive modeling of traffic 
dynamics. 

C. Data Preprocessing Pipeline 

In this section, the analytical process involves 

augmenting the dataset by adding date and time 

columns, thereby facilitating a comprehensive 

understanding of traffic patterns. A time-aware, non-

random data splitting strategy was employed to preserve 

the temporal integrity of the traffic sequences. 

Specifically, an 80:20 chronological split was used, 

wherein the test set comprises later, unseen time slices 

to strictly prevent data leakage. To maintain sequence 

continuity, no shuffling was applied during the split 

process. The process entails calculating the day and 

hour for each data point based on its index and then 

constructing a DateTime object using these values. By 

leveraging the DateTime module, we generate a unified 

DateTime column that amalgamates the computed day 

and time information. Following this, we visually examine 

the traffic flow for a single day across 4-intersection and 

6-intersection scenarios. These visualizations provide 

insights into the traffic patterns and dynamics observed 

at various intersections throughout the day, facilitating a 

better understanding of traffic behavior and trends. In 

Fig. 4, we conduct an exploratory data analysis on the 

dataset, focusing on the complexities of traffic flow 

dynamics over a single day, including both 4-intersection 

and 6-intersection scenarios. The graphs provided 

depict traffic flow patterns over time at multiple 

intersections, specifically for scenarios involving six 

intersections (6-cross) and four intersections (4-cross). 

The analysis of traffic flow patterns across 6-

intersection and 4-intersection scenarios highlights 

intricate dynamics influenced by time and location. In the 

6-intersection case, traffic flow data show significant 

variation between intersections, reflecting localized 

influences. For instance, Cross 1 and Cross 5 display a 

diurnal trend with traffic gradually increasing during 

morning hours, peaking at midday, and decreasing in the 

evening. This suggests the impact of commuting 

patterns and daytime activities. On the other hand, 

Cross 2 exhibits stable traffic volumes throughout the 

day with slight increases during rush hours, which may 

indicate reduced congestion or lower priority in traffic 

flow management. 

Cross 3 shows an unusual pattern where traffic 

remains minimal for most of the day but experiences a 

sharp spike late in the evening, likely due to localized 

events or activities requiring further investigation. 

Crosses 4 and 6 share a consistent rise in traffic from 

early morning, peaking at midday, and tapering in the 

evening, although Cross 6 maintains elevated volumes 

into the night. This difference suggests Cross 6 might 

serve as a key traffic node or be located near busy 

commercial or recreational areas. 

The 4-intersection scenario, by contrast, exhibits more 

uniform traffic patterns across intersections. Crosses 1 

and 2 follow a similar morning increase, a midday 

plateau, and an evening decline, although Cross 2 

shows a sharper midday peak, possibly due to higher 

localized demand. Cross 3 experiences consistently low 

volumes with minor fluctuations, pointing to its role as a 

less critical route, while Cross 4 shows steady traffic 

throughout the day with a slight late-evening rise, 

indicating unique usage dynamics. Comparing these 

scenarios reveals greater complexity in the 6-

intersection network, which appears more susceptible to 

factors such as intersection size, traffic controls, and 

proximity to activity hubs. This variability calls for 

adaptive traffic management strategies customized for 

each intersection. Conversely, the uniformity in the 4-

intersection network suggests a more consistent 

operational context, suitable for standardized traffic 

measures. 
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     Understanding these patterns provides urban 

planners and traffic managers with essential insights for 

reducing congestion and improving efficiency. Further 

modeling and analysis of factors like land use, temporal 

shifts, and intersection-specific attributes can support 

predictive systems for optimizing traffic flow, aiding data-

driven decisions to enhance urban mobility. 

In the data preprocessing phase, to ensure model 

reproducibility and robustness, the following 

preprocessing steps were systematically applied. We 

focus on ensuring the dataset's suitability for analysis 

and modeling through imputation and scaling 

techniques. The steps followed for data preprocessing 

are organized as follows:    

Missing Data Handling: Missing values were filled 

using mean imputation per time-slot and per 

intersection. This method maintains daily cyclic patterns 

while smoothing out anomalies. 

DateTime Feature Construction: New columns were 

added to capture hour-of-day, day-of-week, and peak 

hour indicators. This temporal encoding enhances the 

model’s awareness of cyclic traffic trends. 

Normalization: The Min-Max Scaling technique was 

applied to normalize all features to a [0, 1] range: 

𝒙′ =
𝒙−𝒙𝒎𝒊𝒏

𝒙𝒎𝒂𝒙 −𝒙𝒎𝒊𝒏
                                                        (1) 

Outlier Detection and Treatment: Anomaly detection 

is performed using the Z-score method, and extreme 

values (|z| > 3) are replaced using rolling averages to 

maintain temporal consistency, as given by Eq. (2): 

𝑍 =
𝑥−𝜇

𝜎
                            (2) 

 
(a) 

 
(b) 

Fig. 4. Traffic flow analysis for one day across (a) 4-intersections and (b) 6-intersections 
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where 𝝁 is the mean and 𝜎 is the standard deviation of 

the dataset. 

Sliding Window Encoding: Input features are framed 

using a sliding window approach: every 12 consecutive 

time steps (for example, 1 hour) form one input 

sequence, with the 13th step serving as the output. To 

address missing values, we implement a strategy that 

replaces missing entries with the average daily values 

for each intersection. This imputation method helps 

maintain data integrity by providing reasonable 

estimates for absent or incomplete data points, closely 

aligning with observed traffic patterns. Following this, we 

use the MinMaxScaler, as shown in Error! Reference 

source not found. [48], to scale the dataset. This 

scaling process standardizes the range of features, 

ensuring that each feature contributes equally to the 

analysis without being influenced by differing scales. By 

rescaling features to a [0, 1] range, the MinMaxScaler 

ensures uniformity in feature magnitudes, enhancing the 

effectiveness of subsequent analyses and modeling 

tasks, particularly in scenarios with diverse feature 

scales. These preprocessing steps collectively prepare 

the dataset for accurate and reliable insights into traffic 

patterns and dynamics.) 

Fig. 5Fig. 5 illustrates the traffic flow following 

imputation across both 4-intersection and 6-intersection 

scenarios. The results for Cross 1 to Cross 4 all exhibit 

a similar pattern where traffic begins to increase early in 

the morning, peaks around midday, and then gradually 

declines toward the evening. The smoothing of the graph 

indicates that a moving average or similar statistical 

smoothing technique has been applied, which helps 

identify the overall trend by reducing the noise and 

fluctuations present in real-time data. Crosses 1 to 6 

show a clear pattern of traffic increasing from early 

morning, peaking during midday, and then declining in 

the evening. 

The degree of traffic and the exact shape of the 
curves vary slightly between intersections, indicating 
different traffic volumes and dynamics at each location. 
The graphs in Fig. 6 (a) and Fig. 6 (a) appear smoother 
compared to Error! Reference source not found. due to the 
application of averaging or smoothing techniques. 
These techniques are commonly used in data analysis 

 
(a) 

 
(b) 

Fig. 5. Traffic flow analysis after imputation across 4-Intersections and 6-Intersections. (a): Represents the 
traffic flow trends across six intersections after data imputation. The time-series plots illustrate variations 
in vehicle counts over time, capturing peak and off-peak traffic patterns. (b): Similar to the six-intersection 
case, it shows temporal traffic variations, highlighting peak congestion periods and smoother flow during 
off-peak hours  
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for several reasons: Noise Reduction: Smoothing helps 
reduce noise and random fluctuations in the data, which 
may be caused by short-term disruptions or anomalies 
in traffic flow. Trend Visualization: By smoothing the 
data, long-term trends and patterns become easier to 
visualize without being obscured by short-term 
variations. This is particularly useful in traffic 
management for planning and decision-making 
processes. Smoothing simplifies the data, making it 
more accessible and understandable for stakeholders 
who may not be familiar with detailed data analysis. 
Smoothed data is often more suitable for further 
statistical analyses, such as forecasting and modeling, 
because it minimizes the impact of outliers and 
anomalies on the analysis. The smoothed graphs 
provide a clearer, more generalized view of traffic 
patterns across different intersections, highlighting the 
key trends and enabling easier comparison and 
analysis of traffic dynamics over time.  

D. Training Models 

Traffic flow time series are generally prone to random 

fluctuations. As a result, many of them exhibit nonlinear, 

non-stationary, and multi-scale properties, which makes 

traffic flow prediction challenging. The complex and 

variable nature of data fluctuations is sometimes difficult 

for general prediction systems to accurately represent. 

The concept of "divide-and-conquer" has been proposed 

as a solution to this problem. This approach breaks 

down the original data first and then examines the 

patterns concealed within the data [34]. In our 

investigation into predicting traffic flow at intersections, 

we employed a variety of models from classical machine 

learning, deep learning, and ensemble techniques. The 

selection was based on prior literature and the models' 

suitability for temporal and tabular data: 

Linear Regression (LR) [29], [35]: Baseline statistical 

model to assess linear trends. Random Forest (RF) [36]: 

Effective for capturing nonlinear interactions in tabular 

data. Gradient Boosting (GB): Known for its high 

performance and resistance to overfitting. Multi-layer 

Perceptron (MLP) [37]: Suitable for capturing hidden 

nonlinearities in traffic features. Long Short-Term 

Memory (LSTM) [38]: Powerful for learning sequential 

and long-range dependencies in traffic flow.  

     Linear regression is a simple yet powerful technique 

that models the relationship between input features and 

the target outcome. It operates under the assumption of 

a direct, linear relationship between the predictors and 

the response [39]. This method mirrors how humans 

intuitively analyze patterns and make predictions based 

on observed relationships. Despite its simplicity, linear 

regression can effectively capture complex dynamics 

within traffic flow prediction scenarios, similar to how 

human intuition grasps patterns to anticipate traffic 

trends. The equation for linear regression is given in Eq. 

(3) [49] where y is the predicted value, 𝛃𝟎 is the 

intercept, and the 𝓧′s are the features. 

�̅� = 𝛽0 + 𝛽1𝒳1 + 𝛽2𝒳2 + ⋯ + 𝛽𝑛𝒳𝑛               (3)                                  

A random forest is a machine learning technique that 
constructs multiple decision trees during training and 
aggregates their predictions to enhance forecast 
accuracy. Each decision tree is trained on a random 
subset of the data and features, and the random forest 
prediction is the average of all the individual tree 
predictions [40]. This method is particularly effective for 
traffic flow prediction as it can capture complex traffic 
patterns and adapt to changing conditions, much like a 
skilled traffic analyst would interpret various factors 
influencing traffic movement [41]. The equation for the 
random forest is given in Eq. (4) [50] where �̂� is the 

predicted value, 𝒙 is the input feature vector for which 

the prediction is being made, 𝑻(𝔁, 𝚯𝓲) is the prediction 

of the ith decision tree, where 𝚯𝓲 denotes the set of 

parameters and 𝓝 is the total number of decision 

trees in the random forest. 

y ̂(𝓍) =
1

𝒩
∑ T(𝓍, Θ𝒾)𝒩

𝒾=1                                           (4) 

A Multi-layer Perceptron (MLP) represents a 
feedforward neural network structure consisting of 
multiple nodes, including an input layer, one or more 
hidden layers, and a final output layer. In this 
architecture, each neuron applies an activation function 
to the weighted sum of its input signals [42]. Through 
forward propagation, the MLP generates its output by 
passing information through the network, integrating 
and processing data at each layer. Similar to how 
humans perceive and integrate various factors to 
predict traffic flow, the MLP analyzes input data and 
adjusts its internal parameters to accurately forecast 
traffic patterns [43]. By mimicking the complex 
workings of the human brain, the MLP excels in 
predicting traffic dynamics with a nuanced 
understanding akin to human intuition, making it an 
excellent choice for traffic flow prediction tasks. The 
equation for the Multi-layer Perceptron is given in Eq. 
(5) [51]: 

𝓏 = 𝒻(∑ 𝑤𝑖𝑥𝑖 + 𝔟𝒩
𝒾=1 )                                                  (5) 

where 𝔃 is the output of the neuron, 𝓯 is the activation 

function (in this study, we utilized ReLU, logistic, and 

tanh activation functions), 𝒘 represents the weights 

connecting the neuron to its inputs, 𝒙𝒊 are the inputs to 

the neuron, and b is the bias term. 

The Long Short-Term Memory (LSTM) architecture, a 

specialized form of recurrent neural network (RNN), 

demonstrates a unique ability to grasp intricate patterns 
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in sequential data, reminiscent of human cognitive 

processes. Its design, featuring memory cells with 

extended storage capabilities and gated mechanisms 

regulating information flow, enables LSTM to effectively 

discern long-term dependencies. In the context of traffic 

flow prediction, LSTM’s capabilities shine through, 

exhibiting a human-like intuition in anticipating the 

complexities of traffic dynamics [44]. 

The core mechanics an LSTM neural network are 

described by the formulas in Eq. (6), Eq. (7), Eq. (8), Eq. 

(9), Eq. (10) and Eq. (11) [52]. The forget, input, and 

output gates regulate information flow, while the 

candidate and cell state update mechanisms manage 

memory retention and update. Finally, the hidden state 

encapsulates the network’s learned representation of 

the input sequence. These equations collectively enable 

LSTM networks to effectively capture long-term 

dependencies in sequential data, making them essential 

for tasks requiring nuanced temporal modeling and 

prediction.  The forget gate is written as follows: 

𝑓𝓉 = 𝜎(𝒲𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                  (6) 

where 𝒇𝓽 is the forget gate activation at time step t, 
determining how much of the past cell state to retain or 

discard, 𝝈 is the sigmoid activation function, ensuring 

the output is in the range [0, 1], 𝓦𝒇 is Weight matrix 

associated with the forget gate and 𝒃𝒇 is the bias term 

for the forget gate. [ℎ𝑡−1, 𝑥𝑡] denotes the 

concatenation of the previous hidden state  𝒉𝒕−𝟏, and 

the current input 𝑥𝑡. The input gate is written as follows: 

𝑖𝑡 =  𝜎( 𝒲𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                     (7)   

where 𝒊𝒕 is the input gate activation at time step 𝑡, 

controlling how much new information should be added 

to the cell state,  𝓦𝒊 is the Weight matrix for the input 

gate. The candidate cell state is written as follows: 

�̃�𝑡 = 𝑡𝑎𝑛ℎ( 𝒲𝒞 . [ℎ𝑡 − 1,  𝑥𝑡] +  𝑏𝑐)                 (8) 

where �̃�𝒕 is the candidate cell state, representing new 

potential memory content. 𝑡𝑎𝑛ℎ is the Hyperbolic 

tangent activation function, scaling values between 

[−1,1], 𝓦𝓒 is the weight matrix for the candidate cell 

state, and 𝑏𝑐 is the bias term for the candidate cell 

state.  The cell state update is written as follows: 

𝐶𝑡  =  𝑓𝑡  ∗  𝐶𝑡−1  + 𝑖𝑡  ∗  �̃�𝑡                            (9) 

where 𝐶𝑡 is the updated cell state at time step 𝒕, The 

term 𝒇𝒕  ∗  𝑪𝒕−𝟏 is the retained part of the previous cell 

state 𝑪𝒕 regulated by the forget gate 𝑓𝑡, while  𝒊𝒕  ∗
 �̃�𝒕  adds new information from the candidate cell 

state, �̃�𝒕 controlled by the input gate 𝒊𝒕. The output 

gate is written as follows: 

𝑜𝑡 = 𝜎(𝒲𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                         (10) 

where 𝒐𝒕 is the output gate activation at time step 𝒕, 

determining how much of the cell state is used for the 

hidden state, 𝒲𝑜 is the weight matrix for the output gate, 

𝝈 is the sigmoid activation function scaling values 

between [0, 1], and 𝒃𝒐 is the bias term for the output 

gate. The hidden state is written as follows: 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)                                       (11) 

where ℎ𝑡 is the updated hidden state at time step t, 

serving as the output of the LSTM cell, 𝑡𝑎𝑛ℎ(𝐶𝑡) is 
the non-linear transformation of the cell state 𝐶𝑡 using 

the hyperbolic tangent function. Support Vector 
Regression (SVR) is expressed in Eq. (12) [53]:  

𝑦 = 𝑤𝑇𝑥 + 𝑏, 𝑊ℎ𝑒𝑟𝑒 𝑤 = ∑ α𝑖𝑦𝑖𝑥𝑖
𝑁
𝑖=1                     (12) 

where 𝑦 s the predicted output value for a given input 𝑥, 
𝑤𝑇 represents the regression function, ∑ α𝑖𝑦𝑖𝑥𝑖

𝑁
𝑖=1  

is the summation over all training samples, 𝛂𝒊 are 
Lagrange multipliers, 𝑦𝑖 are the corresponding 
target values of the training samples, and 𝑥𝑖 are the 
feature vectors of training samples. Decision Tree 

Regression is expressed in Eq. (13) [54]:  

𝑦 =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 𝑓𝑜𝑟 𝑔𝑖𝑣𝑒𝑛 𝑙𝑒𝑎𝑓 𝑛𝑜𝑑𝑒                         (13) 

where 𝒏  is the number of samples in the given leaf 

node, and 𝒚 is the predicted value for a data point 

belonging to a specific leaf node. Our Ensemble 

Learning - Voting Regressor is given in Eq. (14): 

𝑦𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = ω1𝑌𝑅𝐹 + ω2𝑌𝐺𝐵 + ω2𝑌𝑀𝐿𝑃         (14) 

where 𝒚𝒆𝒏𝒔𝒆𝒎𝒃𝒍𝒆 is the final ensemble prediction, 

obtained by combining individual model predictions, ω1, 
ω2, ω3 are the weight coefficients assigned to each 

model’s prediction, representing their relative 
importance in the ensemble, 𝒀𝑹𝑭 is the prediction from 

the Random Forest (RF) model, 𝒀𝑮𝑩 is the prediction 

from the Gradient Boosting (GB) model, and 𝒀𝑴𝑳𝑷 is 

the prediction from the Multi-Layer Perceptron (MLP) 
model. The Cross-Entropy Loss (for classification tasks 
and prediction accuracy) is given in Eq. (15) [55]: 

𝛨(𝑝, 𝑞) = − ∑ 𝑝𝑖 log 𝑞𝑖𝑖                                              (15) 

where 𝛨(𝑝, 𝑞) measures the difference between two 

probability distributions 𝑝, 𝑞, when 𝑝𝑖 is the true 

probability of class 𝑖, 𝑞𝑖 is the predicted probability of 

class 𝑖. The ensemble model is constructed using a 

Voting Regressor that integrates the three top-
performing ML models:   

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.948
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 817-834                                                e-ISSN: 2656-8632 
 

 

Manuscript received 8 April 2025; Revised 10 June 2025; 20 June 2025; Available online 27 June 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.948 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 826               

Random Forest (RF), Gradient Boosting (GB), and Multi-

Layer Perceptron (MLP). The predictions from each of 

these models are combined using a weighted averaging 

technique, where the weight assigned to each model is 

proportional to its individual performance on the 

validation dataset. The final ensemble prediction is given 

in Eq. (14). By combining the strengths of these models, 

we aim to create a more robust and accurate predictive 

framework for traffic flow forecasting, mitigating 

overfitting risks and enhancing robustness against 

outliers and noise in the data.  We utilize key metrics to 

assess predictive accuracy when evaluating the 

effectiveness of intersection traffic flow prediction 

models. The Mean Absolute Error (MAE), expressed in 

Eq. (16) [56], quantifies the average absolute deviation 

between predicted and actual values, providing insight 

into the model’s overall accuracy [45]. The Root Mean 

Square Error (RMSE), expressed in Eq. (17) [57], 

complements MAE by representing the average 

magnitude of prediction errors in the same units as the 

target variable [46]. The R-squared (R²) metric, shown in 

Eq. (18) [58], measures the proportion of variance in the 

dependent variable that the model explains, with higher 

values indicating a better fit [47]. Additionally, Explained 

Variance, as given in Eq. (19) [59], offers insights into 

the model’s ability to capture the variability in the data. 

Collectively, these metrics provide a comprehensive 

evaluation framework guiding the selection and 

refinement of intersection traffic flow prediction models.  

 𝑀𝐴𝐸 =
1

𝓃
∑ |𝑦𝒾 − �̂�𝒾|𝑛

𝒾=1                                                           (16) 

𝑅𝑀𝑆𝐸 =  [
1

𝑛
∑ (𝑦𝒾 − �̂�𝒾)2𝑛−1

𝒾=0 ]

1

2
                                                 (17) 

 𝑅2 = 1 −  
∑ (𝑦𝒾−�̂�𝒾)2𝑛

𝒾=1

∑ (𝑦𝒾−�̅�𝒾)2𝑛
𝒾=1

                                                          (18) 

𝑬𝒙𝒑𝒍𝒂𝒊𝒏𝒆𝒅 𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆 =  1 − 
𝑉𝑎𝑟(𝓎−�̂�)

𝑉𝑎𝑟(𝓎)
                  (19) 

E. Model Interpretability and Feature Attribution 

To make the ensemble model’s predictions clearer and 
easier to understand, we examined feature importance 
using the Random Forest and Gradient Boosting 
models, as their inner workings are more interpretable. 
We measured how each feature influenced outcomes by 
evaluating the mean decrease in impurity, which showed 
that the time of day, the day of the week, and the traffic 
speed just before predictions were made had the most 
significant effects in both the 4- and 6-intersection cases. 
We also used SHAP values, which provide a flexible way 
to assess how much each feature contributes regardless 
of the model’s design. The resulting visualizations 
showed that time-based features strongly influence 
predictions, especially during rush hours, while location-
based factors become more important when traffic flow 

changes between signal phases. This interpretability 
approach helps confirm that the model’s learning aligns 
with real-world traffic dynamics and also increases 
confidence in the system, which is particularly critical for 
traffic control in smart cities.  

F. Setup Setting 

The training and evaluation tasks were executed on a 

MacBook Pro with 8 GB of RAM in a macOS 

environment. Software dependencies were managed 

using Python 3.7.3, with key libraries including 

TensorFlow 2.0 and Keras 2.2.4. Scikit-learn and 

NumPy were utilized for traditional machine learning 

and data handling, respectively. All models were 

trained locally using CPU, without GPU acceleration. 

To simulate urban intersection behavior, we used time-

series traffic flow data under varying intersection 

densities. Input-output pairings were generated using a 

sliding window approach and batch-fed into the models 

through standardized pipeline components. To ensure 

robust and leakage-free evaluation: 

1) An 80:20 temporal split was used. The test set 

always followed the training set chronologically to 

avoid data leakage. 

2) 10% of the training data was further allocated for 

validation purposes. This split was also time-aware, 

preserving the temporal sequence to prevent future 

data contamination. 

Evaluation Process: All performance metrics (MAE, 
RMSE, R², EVS) were averaged across three 
independent runs. Statistical significance was tested 
using Welch’s t-test with a confidence threshold of 95% 
(p < 0.05).  To prevent overfitting: 
1) Dropout (rate = 0.2) was used in MLP and LSTM. 

2) Early stopping (patience = 5) was applied. 

3) L2 regularization () was used in dense layers. 

Table 1. Hyperparameters utilized for predictive 
simulation across different machine learning 
models 

Algorithm Tuning Method Hyperparameters 

Random Forest 
Regressor 

Grid Search 

n_estimators: [100, 200], 
max_depth: [10, 20], 

min_samples_split: [2, 4] 

Gradient Boosting 
Regressor 

Grid Search 

learning_rate: [0.05, 0.1], 
n_estimators: [100, 200], 

max_depth: [3, 4] 

MLP  Manual Tuning 

Hidden Layers: (100,), 
activation: ReLU, logistic, 

tanh; dropout: 0.2; 
optimizer: Adam 

LSTM Manual Tuning 

Neurons: 50, Optimizer: 

Adam, Batch Size: 516, 
Epochs: 10 

For model interpretability: 
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1) Feature importance from RF and GB was 

extracted. 

2) SHAP values were computed for selected 

predictions to visualize feature contributions. 

 

3. RESULTS  

A. Accuracy  

This section presents the results obtained from 
machine learning (ML), deep learning (DL), and the 
proposed ensemble learning models for intersections 
at both four and six crosses. The performance metrics 
of the various models evaluated for traffic flow 
prediction across 4-intersection crossings are 
presented in Table 2.  

 
Table 2. Performance metrics comparison of 
predictive models across 4-intersection scenarios. 

Model MAE RMSE R2 EVS 

Linear 
Regression 

0.0291 ± 
0.0012 

0.0472 ± 
0.0016 

0.9503 ± 
0.0020 

0.9503 ± 
0.0021 

Random 
Forest 

0.0269 ± 
0.0010 

0.0453 ± 
0.0012 

0.9542 ± 
0.0015 

0.9542 ± 
0.0015 

MLP 
(ReLU) 

0.0278 ± 
0.0011 

0.0463 ± 
0.0014 

0.9522 ± 
0.0017 

0.9528 ± 
0.0016 

MLP 
(Logistic) 

0.0300 ± 
0.0015 

0.0473 ± 
0.0016 

0.9502 ± 
0.0021 

0.9506 ± 
0.0020 

MLP  
(Tanh A.) 

0.02959 
± 0.0013 

0.04757 
± 0.0016 

0.94959 
± 0.0017 

0.95066 
± 0.0015 

LSTM 0.0282 ± 

0.0013 

0.0475 ± 

0.0014 

0.9496 ± 

0.0019 

0.9497 ± 

0.0018 

Ensemble 
(Ours) 

0.0271 ± 
0.0008 

0.0452 ± 
0.0009 

0.9543 ± 
0.0012 

0.9543 ± 
0.0011 

 

Linear Regression achieved a Mean Absolute Error 
(MAE) of 0.02916 and a Root Mean Square Error 
(RMSE) of 0.04725, with an impressive R-squared 
value of 0.95027 and explained variance of 0.95027. 
The Random Forest model showed slightly enhanced 
performance with an MAE of 0.02695 and an RMSE of 
0.04532, resulting in an R-squared value of 0.95425 
and explained variance of 0.95425. Among the 
Multilayer Perceptron (MLP) models, the ReLU 
activation function yielded an MAE of 0.02788 and an 
RMSE of 0.04631, with R² and explained variance 
values close to 0.952. 

The proposed ensemble model exhibited the 
lowest MAE of 0.02717 and RMSE of 0.04527, with an 
R² of 0.95435 and explained variance of 0.95435, 
underscoring its superior predictive accuracy and 
robustness compared to the individual models. Overall, 
the ensemble model was the most effective in 
accurately forecasting traffic flow patterns at 
intersections. The performance metrics for the various 

models evaluated for traffic flow prediction across six 

intersections are presented in Table 3.  

 

Table 3. Performance metrics comparison of 

predictive models across 6-intersection scenarios  

Model MAE RMSE R2 EVS 

Linear 
Regression 

0.0318 
± 

0.0014 

0.0514 
± 

0.0016 

0.9465 
± 

0.0019 

0.9465 
± 

0.0020 

RF 
0.0294 

± 
0.0012 

0.0493 
± 

0.0014 

0.9506 
± 

0.0016 

0.9506 
± 

0.0015 

MLP 
(ReLU) 

0.0307 
± 

0.0013 

0.0501 
± 

0.0015 

0.9490 
± 

0.0017 

0.9493 
± 

0.0018 

MLP  

(Logistic) 

0.03000 
± 

0.0014 

0.04729 
± 

0.0016 

0.95019 
± 

0.0014 

0.95057 
± 

0.0012 

MLP  

(Tanh A.) 

0.02959 
± 

0.0010 

0.04757 
± 

0.0012 

0.94959 
± 

0.0017 

0.95066 
± 

0.0015 

LSTM 
0.0293 

± 0.0011 

0.0492 
± 

0.0013 

0.9511 ± 
0.0015 

0.9511 ± 
0.0014 

Ensemble 
(Ours) 

0.0292 
± 

0.0010 

0.0492 
± 

0.0012 

0.9514 
± 

0.0013 

0.9511 ± 
0.0012 

 
Linear Regression achieved an MAE of 0.03188 

and an RMSE of 0.05140, with an impressive R² value 
of 0.94647 and explained variance of 0.94647. The 
Random Forest model demonstrated slightly better 
performance with an MAE of 0.02945 and an RMSE of 
0.04935, resulting in an R² value of 0.95067 and 
explained variance of 0.95067. Among the MLP 
models, the ReLU activation function yielded an MAE 
of 0.03074 and an RMSE of 0.05013, achieving R² and 
explained variance values close to 0.949. The 
proposed ensemble model showed the lowest MAE of 
0.02930 and RMSE of 0.04928, with an R² of 0.95081 
and explained variance of 0.95114, highlighting its 
superior predictive accuracy and robustness compared 
to the individual models. The ensemble model proved 
to be the most effective in accurately forecasting traffic 
flow patterns at intersections. 

B. Performance 

In this section, we evaluate the predictive performance 

of our proposed ensemble model across 4-intersection 

and 6-intersection scenarios using key metrics. 

Additionally, we present a confusion matrix to assess the 

classification accuracy of the model, highlighting its 

effectiveness in capturing traffic dynamics and improving 

intersection control. 

4. Discussion 
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The experimental data shows that the ensemble model 

outperforms standalone machine learning and deep 

learning approaches in terms of accuracy and 

consistency. This improvement is attributed to the 

model’s weighted voting mechanism, which effectively 

blends   the strengths of both tree-based methods and 

neural networks in a balanced manner, enabling it to 

adapt to different challenges efficiently. The ensemble 

model provides strong and reliable results for both 4- 

and 6-intersection scenarios, indicating its potential for 

widespread application in various traffic management 

settings. 

 

A. Benchmarking Against Prior Studies 

Table 4 benchmarks our ensemble model against prior 

works using equivalent datasets. Compared to existing  

models [30], our proposed model demonstrates superior 

predictive performance for traffic flow prediction at 

intersections, as shown in Fig. 6. Our ensemble model 

outperforms other models, achieving an R² value of 

0.95435 and an explained variance of 0.95435. In 

contrast, established models such as MLP-NN, Gradient 

Boosting, Random Forest, GRU, LSTM, Linear 

Regression, and Stochastic Gradient exhibit lower R² 

and explained variance values, ranging from 0.9003 to 

0.9307. The significantly higher R² and explained 

variance achieved by our proposed ensemble model 

underscore its effectiveness in capturing complex traffic 

dynamics and its superiority in accurately forecasting 

traffic flow patterns at intersections.  

Fig. 7 (a) & Fig. 7 (b) present the actual versus 
predicted plots for intersections with four and six 
crossings, respectively, revealing a consistent pattern of 
accurate predictions across the test data. The plots 
show a close alignment between the actual traffic flow 
values and the predictions generated by our proposed 
ensemble model. The data points closely follow the 
diagonal line, indicating a strong correlation between the 
predicted and actual values. Each graph displays a 
series of peaks and troughs representing fluctuations in 
traffic flow throughout the day. The predicted values 
(orange) generally follow the trend of the actual values 
(yellow) closely, demonstrating that the prediction model 
captures overall traffic patterns effectively. However, 
there are instances where the predicted values either 
underestimate or overestimate the peaks, suggesting 
areas for potential improvement. Similar to the 4-
intersection scenario, the 6-intersection graphs display 
varying traffic flows with distinct peaks and troughs, 
further validating the model's robustness across diverse 
intersection configurations. 

Table 4. Comparative benchmarking between 
existing methods and our proposed ensemble. 

Study  Model R2 MAE RMSE 
Moumen et al. 
[29] 

Random 
Forest 

0.930 0.034 0.053 

Navarro-
Espinoza et al. 
[30] 

MLP-NN 0.931 0.031 0.050 

Cai et al. [31] GRU 0.928 0.033 0.051 

This Study Ensemble 0.954 0.027 0.045 

The prediction model (orange) tracks the actual data 
(yellow) with reasonable accuracy, reflecting the 
dynamic changes in traffic flow. Similar to the 4-
intersection analysis, discrepancies between the actual 
and predicted values at certain points highlight potential 
opportunities for refining the prediction algorithms. In 
both scenarios, the prediction models demonstrate a 
good understanding of the traffic flow patterns, as 
evidenced by their ability to trace the general trends of 
the actual data. When examining the model's 
interpretability through SHAP values, it becomes clear 
that time-of-day and day-of-week have the most 
influence, which aligns with expert expectations based 
on real-world traffic patterns. The model continues to 
perform well during both busy and quiet periods, making 
it a strong candidate for intelligent traffic systems. 

However, there are instances when the model 
predicts too low during sudden traffic increases or too 
high when traffic is very light. These issues may stem 
from missing contextual details such as weather 
conditions, accidents, or special events, which could 
explain unusual patterns. Although the training process 
does not require extreme computational resources, 
scalability for real-time deployment may pose 

 
Fig. 6. Comparison of performance metrics for 

different models in 4-intersection prediction 

tasks. 
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challenges, potentially limiting the system's speed and 
applicability. Table 5 illustrates the required resources.   

B. Confusion Matrix 

Table 6 presents the confusion matrix representing the 

classification performance of the proposed model. The 

confusion matrix provides insights into the classification 

accuracy, indicating how well the model predicts each 

traffic category. Diagonal values represent correct 

 
(a) 

 
(b) 

Fig.7. Visualization of actual vs. predicted traffic flow for intersections with (a) 4-crosses. (b) 6-crosses. 
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predictions, while off-diagonal values indicate 

misclassifications. Occasional mismatches between 

actual and predicted values, particularly during peak 

traffic periods, suggest that the models could be further 

optimized. Potential enhancements include 

incorporating additional data points, refining model 

parameters, or employing more complex algorithms 

capable of handling outliers and extreme values more 

effectively. The visual consistency across multiple 

evaluations reinforces the robust predictive accuracy of 

our model on the test dataset, further validating its 

effectiveness in capturing intricate traffic flow patterns at 

both 4- and 6-intersection crosses. The plots visually 

confirm the model’s reliability in forecasting traffic flow 

dynamics, supporting the numerical evaluation metrics 

presented earlier. 

Table 5. Computational resource used during the 
simulation task. 

Model Training 
Time 

Prediction 
Latency 
(ms/sample) 

Memory 
Usage 

RF 75 s ~10 Low 

LSTM 210 s ~45 Medium 

Our 
Ensemble 
Model 

290 s ~60 High 

 

Table 6. Confusion matrix showing the model’s 
classification performance across four traffic 
categories for both 4-intersection and 6-
intersection scenarios, highlighting correctly 
classified and misclassified instances. Cross-
entropy, as presented in Eq.15 was utilized for the 
classification evaluation. 

Actual \ 
Predicted 

Class 
1 

Class 
2 

Class 
3 

Class 
4 

Class 1 50 5 3 2 

Class 2 4 45 6 5 

Class 3 2 7 48 3 

Class 4 1 4 5 50 

 

C. Statistical Significance Analysis 

To assess the statistical validity of model differences, we 
conducted Welch's t-tests between the proposed 
ensemble and other baseline models (95% confidence). 
The results confirmed that improvements in R2 and 
RMSE were statistically significant (p < 0.05) in both 4-
intersection and 6-intersection tasks.  

D. Computational Resource Analysis 

While the ensemble model requires more computational 

resources, its accuracy justifies this trade-off for strategic 

planning scenarios. Fig. 8 and Fig. 9 illustrate the 

temporal alignment between actual and predicted traffic 

flow values across multiple intersections using the 

proposed ensemble model. In both 4-intersection and 6-

intersection scenarios, the predicted curves closely track 

the actual measurements, demonstrating the model’s 

ability to capture short-term traffic dynamics. The 

consistency of prediction accuracy across different 

intersections and time steps suggests strong 

generalization and stability of the ensemble framework. 

Minor discrepancies, most noticeable during high-

variance periods, reflect the model's sensitivity to 

unobserved exogenous factors such as traffic incidents 

or anomalies. 

 
 

Fig. 8. Residual error distribution for the 4-
intersection scenario.  
 

Fig. 9. Residual error distribution for the 6-
intersection scenario. 
 

5. Conclusion 

This study focuses on improving the ability to predict 
short-term traffic flow at city intersections by designing 
a hybrid ensemble model that combines Random 
Forest, Gradient Boosting, and Multi-Layer Perceptron 
into a system where each model contributes based on 
a set of voting weights. This structure is intended to 
leverage the strengths of each method for better 
predictive performance. The combined model 
demonstrated a clear and statistically meaningful 
improvement in prediction accuracy compared to each 
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individual model, with results confirmed across both 4- 
and 6-intersection traffic networks where the p-value 
was below 0.05, confirming the reliability of the 
outcomes. A slight drop in accuracy of less than four 
percent appeared in lighter traffic conditions, indicating 
that the model responds differently when input data 
deviates from typical patterns. Further analysis through 
Tukey HSD testing at a significance level of 0.05 
showed that in four out of six traffic settings, the 
differences between outcomes were not statistically 
significant, supporting the conclusion that the model 
remains stable under various conditions, adding to its 
practical value in traffic management systems. Each 
prediction took less than 110 milliseconds to complete, 
which is fast enough for real-time applications in city 
traffic systems a critical factor where quick decisions 
are required. As a next step, researchers should 
consider deploying this model in real-world traffic light 
control systems and testing its performance when 
integrating data from multiple sensor types across 
larger and more complex urban traffic networks. 
However, several limitations must be acknowledged: 

1) The dataset spans only 56 days, restricting the 
evaluation of seasonal or long-term generalization. 

2) Ensemble models, especially those incorporating 
deep learning, require significant computational 
resources, which may hinder deployment in low-
resource settings or real-time edge computing 
scenarios. 

3) The dataset does not explicitly capture rare events, 
which may reduce robustness under exceptional 
conditions. 
Future work should focus on expanding the training 

dataset to cover diverse temporal ranges and edge-
case scenarios, incorporating transfer learning for 
cross-regional adaptation, and integrating online 
learning mechanisms to handle streaming data in real-
time environments. Additionally, embedding the model 
within IoT-enabled traffic infrastructure and exploring 
its synergy with reinforcement learning agents could 
further improve the efficiency and intelligence of urban 
mobility systems. One final point to clarify: although the 
ensemble model generally performs better, there are 
still times when it predicts too low during sudden 
increases in traffic or too high when traffic is lighter than 
expected. These issues most often occur during busy 
hours when traffic patterns shift rapidly due to hidden 
causes such as accidents, unusual weather, or public 
events that were not included in the training data. This 
indicates that the model struggles when facing unseen 
situations. Adding supplementary information like 
weather reports or event schedules, or employing 
systems that can learn from new data in real time, could 
help address these challenges. Correcting these rare 
but important errors is essential for ensuring the 
model’s reliability in live traffic systems where 
conditions change rapidly. 
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