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Abstract Brain stroke is a leading cause of mortality and disability globally, necessitating rapid and 

accurate diagnosis for timely intervention. While Computed Tomography (CT) imaging is the gold standard 

for stroke detection, manual interpretation is time-consuming, prone to error, and subject to inter-observer 

variability. Although deep learning models have shown promise in automating stroke detection, many rely 

on 2D analysis, ignore 3D spatial relationships, or require labour-intensive slice-level annotations, which 

limits their scalability and clinical applicability. To address these challenges, we propose MedHybridNet, a 

novel hybrid deep learning architecture that integrates convolutional neural networks (CNNs) for local 

feature extraction with Transformer-based modules to model global contextual dependencies across 

volumetric brain scans. Our main contribution is twofold: (1) the SliceAttention mechanism, which 

dynamically identifies diagnostically relevant slices using only patient-level labels, eliminating the need for 

costly slice-level annotations while enhancing interpretability through attention maps and Grad-CAM 

visualizations; and (2) a cGAN-based augmentation strategy that generates high-quality, pathology-

informed synthetic CT slices to overcome data scarcity and class imbalance. The framework processes 

complete 3D brain volumes, leveraging both CNNs and Transformers in a dual-path design, and 

incorporates hierarchical attention for refined feature selection and classification. Evaluated via patient-

wise 5-fold cross-validation on a real-world dataset of 2501 CT scans from 82 patients, MedHybridNet 

achieves an accuracy of 98.31%, outperforming existing methods under weak supervision. These results 

demonstrate its robustness, generalization capability, and superior interpretability. By combining 

architectural innovation with clinically relevant design choices, MedHybridNet advances the integration of 

Artificial Intelligence (AI) into real-world stroke care, offering a scalable, accurate, and explainable solution 

that can significantly improve diagnostic efficiency and patient outcomes in routine clinical practice.  

Keywords: Stroke Detection, Medical Imaging, Deep Learning, Attention Mechanism, cGAN.  

I. Introduction 

The accurate and timely diagnosis of brain stroke 

remains one of the most pressing challenges in modern 

healthcare, with profound implications for patient 

survival, long-term recovery, and the efficient use of 

medical resources. As a leading cause of mortality and 

disability worldwide [1], stroke demands rapid and 

precise intervention to minimize neurological damage 

and improve clinical outcomes [2], [3]. Computed 

Tomography (CT) imaging has emerged as the gold 

standard for stroke assessment due to its rapid 

acquisition, widespread availability, and high sensitivity 

in detecting acute stroke [4], [5], [6]. However, manual 

interpretation of CT scans is a complex and time-

intensive task that relies heavily on radiologists' 

expertise [5], [7], [8]. This dependence often leads to 

variability and error, particularly in under-resourced or 

high-workload settings [9], [10].  

Recent advancements in artificial intelligence (AI),  
intense learning, have shown immense potential in 
automating medical image analysis and augmenting 
diagnostic decision-making [11], [12], [13], [14], [15]. 
Despite these strides, many existing AI-driven systems 
for stroke detection face significant limitations [16], [17]. 
For instance, several models fail to account for the 3D 
spatial relationships within CT volumes or lack 
mechanisms to provide interpretable insights, which is 
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a critical requirement for clinical adoption, where 
transparency and trust are paramount. Additionally, 
many frameworks rely on labour-intensive slice-level 
annotations, which hinder scalability and 
generalizability.  

In this study, we propose a novel hybrid deep 
learning architecture, MedHybridNet,  designed 
explicitly for stroke detection in 3D brain CT imaging. 
Our approach addresses key limitations of current 
methods [4], [6], [10], [13], [17] by integrating 
convolutional neural networks (CNNs) for high-
resolution feature extraction with Transformer-based 
modules for global contextual reasoning. This dual-
path design enables the model to capture both fine-
grained pathological patterns and broader anatomical 
dependencies across slices. A key innovation is the 
SliceAttention mechanism, which dynamically identifies 
and prioritizes diagnostically relevant slices during 
training using only patient-level labels (e.g., stroke vs. 
regular). By eliminating the need for manual slice-level 
annotation (especially of stroke regions), SliceAttention 
reduces labelling effort while enhancing interpretability 
through attention-weight maps and Grad-CAM 
visualizations that align with clinical observations.  

To address the challenges of data scarcity and class 
imbalance, we introduce a comprehensive data 
augmentation approach based on a conditional 
Generative Adversarial Network (cGAN). The 
proposed cGAN generates realistic synthetic CT slices 
conditioned on diagnostic labels, ensuring anatomical 
plausibility while increasing the diversity of the training 
data. This strategy significantly enhances model 
robustness and generalization performance. Our main 
contributions are summarized as follows:  

1. A hybrid CNN-Transformer architecture for 

volumetric medical imaging that models both local 

features and global context. Skip connections 

enhance gradient flow and feature fusion, while 

hierarchical attention at the region- and slice-level 

boosts diagnostic accuracy. 

2. An attention mechanism that identifies 

diagnostically relevant slices without requiring slice-

level annotations, reducing labelling effort and 

improving model interpretability. 

3. A novel application of conditional GANs to generate 

pathology-informed synthetic CT slices, improving 

data diversity and model robustness. 

By bridging the gap between technical innovation 
and clinical utility, our work presents a scalable, 
interpretable, and highly effective solution for 
automated stroke detection. MedHybridNet not only 
achieves competitive diagnostic accuracy but also 
provides clinicians with actionable and explainable 
outputs, thereby advancing the integration of AI into 

routine stroke care and contributing meaningfully to 
improved patient outcomes.  

The remainder of this paper is organized as follows: 
Section 2 presents a comprehensive review of related 
work in fall detection, highlighting existing 
methodologies and their limitations. Section 3 details 
the proposed approach, including dataset description, 
preprocessing steps, and the architecture of the 
developed model. Section 4 reports the experimental 
results, while Section 5 provides an ablation study to 
evaluate the contribution of each component of the 
model. Section 6 includes a thorough discussion of the 
findings and comparison with state-of-the-art methods. 
Finally, Section 7 concludes the paper and outlines 
potential directions for future research. 

 

II. Related work 

Recent studies have explored various machine 

learning and deep learning techniques to  enhance 

brain stroke detection, classification, and segmentation 

using medical imaging modalities,  including computed 

tomography (CT), magnetic resonance imaging (MRI), 

and microwave imaging. These efforts aim to enhance 

diagnostic accuracy, reduce processing time, and 

support early intervention.  

Authors in [18] proposed a few-shot learning 
framework integrated with a self-attention-based CNN 
to segment ischemic stroke lesions in MRI scans. Their 
method addresses the challenge of limited labeled data 
in the medical domain by focusing on lesion-containing 
slices and employing early fusion of FLAIR and DWI 
modalities. The system achieves enhanced 
segmentation accuracy, with a Dice score of 0.68 on 
the ISLES 2015 SSIS dataset, outperforming several 
state-of-the-art approaches. Study [19] proposed a soft 
voting ensemble model that combines Random Forest, 
Extremely Randomized Trees, and Histogram-Based 
Gradient Boosting for predicting brain strokes. This 
approach aggregates class probabilities from individual 
classifiers, either uniformly or weighted by validation 
performance, enhancing prediction robustness through 
ensemble learning.  

Another study [20] focused on improving early 
stroke detection using CT images through a hybrid 
artificial intelligence framework. It combined a newly 
designed convolutional neural network architecture, 
termed OzNet, with traditional machine learning 
models,  including Decision Trees (DT), k-Nearest 
Neighbours (KNN), Linear Discriminant Analysis 
(LDA), Naïve Bayes (NB), and Support Vector 
Machines (SVM). A different approach was taken in 
[21], where researchers aimed to automate the 
classification of collateral circulation patterns in 
ischemic stroke using cone-beam CT (CBCT) images. 
They employed the VGG11 architecture with an 
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augmented dataset and preprocessing steps to 
standardize pixel values. Despite achieving a modest 
accuracy of 58.32% and an F1 score of 62.10%, this 
work represents a promising step toward reducing 
diagnostic delays in stroke management. In [22], deep 
learning models were applied to classify unenhanced 
brain CT images  such as normal, haemorrhage, 
infarction, and others. Convolutional neural networks, 
including CNN-2, VGG-16, and ResNet-50, were 
evaluated using transfer learning with varying data 
sizes, batch sizes, and optimizers. While both ResNet-
50 and CNN-2 achieved a high accuracy of 98.72%, 
ResNet-50 came at the cost of increased 
computational complexity. Study [23] proposed a fast 
method for generating large datasets for brain stroke 
classification using microwave imaging. Based on the 
distorted Born approximation and linearization of the 
scattering operator, the technique significantly reduced 
computation time. A classification pipeline involving 
Support Vector Machines, Multilayer Perceptrons, and 
k-Nearest Neighbours was tested on simulated 
datasets with variations in antenna structure and 
amplitude-only data, showing strong potential for real-
time stroke detection. In [24], structured clinical data 
was used for early and accurate brain stroke prediction 
via a Multi-Layer Perceptron (MLP) classifier combined 
with three optimization algorithms: AdaMax, RMSProp, 
and Adadelta. Among these, RMSProp yielded the best 
results, achieving 95.8% training accuracy and 94.9% 
testing accuracy. The integration of multiple optimizers 
was highlighted as a novel strategy to enhance 
prediction reliability. Study [25] investigated the 
prediction of infarct extent and location after 

reperfusion in acute ischemic stroke using only CT 
Angiography images.  

A modified U-Net model incorporating squeeze-and-
excitation blocks was trained on 238 patient cases, with 
ground truth lesions segmented from 24-hour follow-up 
CT scans. The model achieved a Dice score of 0.37 
and a volume error of 3.9 mL, indicating room for 
improvement but also potential in image-based infarct 
prediction. An early stroke detection system based on 
CT brain images, genetic algorithms, and a 
bidirectional long short-term memory (BiLSTM) model 
was developed in [26]. The genetic algorithm was 
employed for feature selection, followed by 
classification using BiLSTM, demonstrating a novel 
combination of evolutionary and sequential modelling 
techniques. Study [27] explored a hybrid Vision 
Transformer (ViT) and Long Short-Term Memory 
(LSTM) model for stroke detection on CT images. ViT 
was used to extract visual features, while LSTM 
captured temporal dependencies. With optimizers such 
as SGD, RMSProp, Adam, and AdamW, the system  
achieved up to 96.61% accuracy on Kaggle data,  
demonstrating the effectiveness of combining vision 
and sequence modelling. In [28], a modified 
divergence-based deep neural network (DNN), 
integrating CNN-Walsh matrix feature extraction and a 
minimum distance network (MDN) classifier, was 
applied to 6650 authentic CT images for stroke 
classification into ischemic, haemorrhagic, or non-
stroke types. Notably, the model demonstrated robust 
results with only minor adjustments to the parameters. 
Study [29] presented an LSTM Generative Adversarial 
Network (LSTM-GAN) for generating cerebral blood 

 
Fig. 1. Proposed architecture for stroke classification using CT images, incorporating data 

augmentation, a backbone network, attention component, and binary classification. 
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flow (CBF) maps  in ischemic stroke diagnosis. By 
eliminating the need for manual arterial input function 
(AIF) selection, the model reduced scanning time from 
40 to 9 time points, minimizing radiation exposure. 
Evaluated on the ISLES 2018 dataset, the method 
achieved an accuracy of 91.4%, offering a more 
efficient and precise diagnostic approach.  

Finally, authors in [30] proposed automated 
classification and segmentation methods for detecting 
haemorrhagic and ischemic lesions in non-contrast CT 
images. Using a U-Net model for segmentation, the 
study reported a classification precision of 95.06%, 
along with IoU scores of 92.01% for haemorrhagic and 
82.22% for ischemic lesions, confirming the high 
performance of deep learning in lesion detection.  

 

III. Method 

Our approach (Fig. 1) to brain stroke classification 

leverages a deep learning pipeline that processes 3D 

CT scan images. Unlike methods that analyse only 

selected slices [4], [5], [6], [31], [32], [33], our model 

processes all slices of the brain, providing a 

comprehensive view and incorporating richer 

information for classification. The dataset is split into 

training, validation, and test sets, ensuring that the 

validation and test sets remain unaltered without data 

augmentation. To enhance model generalization, we 

apply a robust data augmentation strategy using a 

conditional Generative Adversarial Network (cGAN). 

The augmented data is then used to train a hybrid deep 

learning model consisting of an input layer, a backbone 

network, and an attention mechanism (SliceAttention) 

that improves feature extraction and stroke detection. 

Finally, the trained model predicts whether a given 

brain scan corresponds to a normal or stroke case.

   

A. Dataset 

The dataset [34] was collected from Lady Reading 
Hospital in Peshawar, Khyber Pakhtunkhwa, Pakistan 
[35]. The authors conducted a descriptive study using 
this dataset to identify risk factors for brain stroke, 
including age, gender, smoking, diabetes mellitus, and 
hypertension. The dataset consists of brain imaging 
scans Fig. 2 from two classes: Normal and Stroke, with 
a total of 2501 images across 82 unique individuals. 
The Normal class contains 1551 images from 51 
subjects, with each subject contributing between 23 
and 40 slices, averaging 30.41 slices per person. The 
Stroke class includes 950 images from 31 subjects, 
with slice counts per individual ranging from 19 to 36, 
averaging 30.65 slices per person. This distribution 
reflects a relatively balanced number of slices per 
person across both classes, supporting consistent 

training and evaluation for stroke detection in brain 
imaging. 

 

 
Fig. 2. Visual samples from the original brain CT 

dataset used for model training. 

 

To ensure consistent and effective input 
representation for deep learning-based stroke 
classification, a standardized preprocessing pipeline 
was applied to all brain CT scans before model training 
and inference. Each patient’s CT scan was acquired as 
a full 3D volume and resampled to ensure uniformity 
across subjects. To standardize input dimensions, 
brain volumes containing more than 30 axial slices 
were symmetrically truncated from the top and bottom 
to retain the central brain region, where stroke-related 
patterns are most commonly observed. For volumes 
with fewer than 30 slices, we applied linear 
interpolation along the z-axis (i.e., between adjacent 
slices) to generate additional slices. This process 
estimates the content of intermediate slices based on 
their neighbouring sections, effectively increasing slice 
count while maintaining spatial coherence and 
preserving anatomical continuity across the volume.  

Each axial slice was independently resized from its 
original resolution of 650×650 pixels to 224×224 pixels 
using bicubic interpolation, which better preserves fine 
anatomical structures compared to bilinear or nearest-
neighbour methods. Hounsfield Unit (HU) values were 
clipped to the range [−100, 100] to focus on soft tissue 
contrast relevant to stroke detection, followed by min-
max normalization to scale pixel intensities to the range 
[−1, 1], using mean (μ) and standard deviation (σ) 
computed over the training set. Since the backbone 
models (e.g., VGG19, ResNet50) were pretrained on 
RGB images from ImageNet, grayscale CT slices were 
converted to a three-channel format by replicating 
intensity values across all channels, thereby enabling 
effective transfer learning. The final input shape for 
each brain volume was standardized to input ∈ R(nSlices

=30, 224×224×3). These preprocessing steps enhance 
consistency across patients, reduce scanner-related 
variability, and preserve diagnostic relevance, 
particularly for identifying hypodensity patterns 
associated with stroke cases. 
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B. Data augmentation 

Data augmentation is critical for addressing the 

challenges posed by limited and imbalanced medical 

imaging datasets in stroke detection. It enhances data 

diversity, mitigates overfitting, and improves model 

generalization.  

 

Table 1. Detailed architecture of the 3D generator 

showing input shape, layers, and activation 

functions used. 

Layer type Input shape + Activation 

Input (Noise + 

Label) 
(z_dim + n_classes=2) (-) 

Dense (z_dim + n_classes=2) (RELU) 

Reshape (4×4×4×512) (-) 

3D Transposed 

Conv_1 
(4, 4, 4, 512) (RELU) 

BatchNorm (8, 8, 8, 256) (-) 

3D Transposed 

Conv_2 
(8, 8, 8, 256) (RELU) 

BatchNorm (16, 16, 16, 128) (-) 

3D Transposed 

Conv_3 
(16, 16, 16, 128) (RELU) 

BatchNorm (32, 32, 32, 64) (-) 

3D Transposed 

Conv_4 
(32, 32, 32, 64) (RELU) 

BatchNorm (64, 64, 64, 32) (-) 

3D Transposed 

Conv_5 
(64, 64, 64, 32) (Tanh) 

Resize / 

Interpolation 

(128, 128, 128, 1) 

→ (650, 650, 30, 1) 

Output (650, 650, N=30, 1) 

 

To address dataset imbalance and enhance model 
generalization, we employ a 3D conditional Generative 
Adversarial Network (cGAN)  specifically designed for 
volumetric brain CT scans. The generator (Table 1) 
begins with a latent noise vector z∈R256, concatenated 

with a one-hot encoded class label ("normal" = 1, 
"stroke" = 0]) at the input layer to guide class-specific 
image generation. This combined input is passed 
through dense and reshape layers before being 
progressively upsampled via 3D transposed 
convolutional blocks, each followed by batch 
normalization and ReLU activation. The final output 
uses the tanh activation to generate high-resolution 3D 
CT volumes of shape (650×650×30×1), matching the 
standardized size of real scans.  

The discriminator (Table 2) evaluates realism during 
the training process using 3D convolutional layers with 
LeakyReLU and batch normalization, gradually 
reducing the spatial resolution until  it reaches a 
flattened representation. A dropout layer (rate=0.3) 

prevents overfitting, and a final dense layer with 
sigmoid activation performs binary classification (real 
vs. fake), conditioned on class labels.  

 

Table 2. Detailed architecture of the 3D 

discriminator showing input shape, layers, and 

activation functions used. 

 

For stable and realistic image synthesis, we adopt the 
Wasserstein GAN with gradient penalty (WGAN-GP) 
(Eq. (1) [36]): 

L
WGAN-GP

  = E
x∼Preal

[D(x)]-E
z∼Pnoise

[D(G(z))]+λ
gp

.  
E

x̂∼Px̂
[(∥∇x̂D(x̂)∥

2
-1)

2

]        (1) 

In Eq. (1), the first term, E
x∼Preal

[D(x)], encourages the 

discriminator D to assign high scores to real samples x 
drawn from the data distribution Preal. The second term, 

E
z∼Pnoise

[D(G(z))], penalizes the discriminator for 

assigning high scores to generated samples G(z), 
where z is sampled from a noise prior Pnoise . The third 
term, λ

gp
.  E

x̂∼Px̂
[(∥∇x̂D(x̂)∥

2
-1)

2

], imposes a gradient 

penalty to enforce the 1-Lipschitz continuity condition 
by penalizing deviations of the gradient norm from 1 for 
inputs x̂ interpolated between real and generated 
samples. 

An optional coherence loss (Eq. (2) [37]) ensures 
smooth anatomical transitions between adjacent slices:  

Lcoherence 
1

N-1
∑ ‖G(zi)-G(zi+1)‖p

N-1

i=0

                  (2) 

where N is the total number of slices in a volumetric 

sequence, G(zi) and G(zi+1) denote the generator 

outputs corresponding to consecutive latent codes zi 

and zi+1. ∥⋅∥p represents the Lp norm, set p=2. This loss 

encourages the generated images to change smoothly 

across adjacent slices by penalizing significant 

differences between successive outputs. 

Layer type Input shape+Activation 

Input (Volume + 

Label) 

(650, 650, N=30, 1 + 

n_classes=2)(-) 

3D Conv_1 
(650, 650, N=30, 1 + 

n_classes=2) (LeakyReLU) 

BatchNorm (325, 325, N/2, 32)(-) 

3D Conv_2 
(325, 325, N/2, 32) 

(LeakyReLU) 

BatchNorm (163, 163, N/4, 64)(-) 

3D Conv_3 
(163, 163, 

N/4,64)(LeakyReLU) 

BatchNorm (82, 82, N/8, 128)(-) 

Flatten (82, 82, N/8, 128)(-) 

Dropout = 0.3 (Flattened vector)(-) 

Dense (Flattened vector)(Sigmoid) 

Output 1 
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The total loss (Eq. (3) [38]) combines these 
components:  

Ltotal = LWGAN-GP + λcoh ⋅ Lcoherence      (3) 

In this third equation, LWGAN-GP drives the generator to 
produce visually plausible outputs. At the same time, 
the additional term λcoh ⋅ Lcoherence  acts as a regularizer 

[38] that promotes continuity between sequentially 
generated slices. The hyperparameter λcoh, set to 10 in 
our experiments, provides control over the strength of 
the coherence constraint, enabling a balance between 
individual image quality and inter-slice smoothness.  

The training process follows an alternating update 
scheme, where the discriminator is updated five times 
for each generator update. During training, real and 
synthetic samples are carefully balanced to ensure 
stable learning. Additionally, a gradient penalty is 
applied every ten steps on interpolated samples to 
enforce the Lipschitz constraint. 

The proposed 3D conditional GAN (cGAN) was 
implemented and trained using Google Colab Pro, 
which provided access to a Tesla T4 or A100 GPU, 
enabling efficient processing of high-resolution 
volumetric brain scans. The model was trained for 230 
epochs using the Adam optimizer, with learning rates 
set to lrG=0.0001 for the generator and lrD=0.0004 for 
the discriminator, along with momentum terms β1=0 
and β2=0.99 to ensure stable convergence. A batch 
size of 4 volumetric samples per iteration was used 
during training to maintain memory efficiency while 
preserving gradient stability.  

These design choices  enable the cGAN to generate 
high-quality, class-conditioned synthetic CT slices, 
significantly enhancing dataset diversity and improving 
model robustness under weak supervision. Fig. 3 
presents a subset of brain slices generated by the 
proposed cGAN. These synthetic slices closely 
resemble real brain scans, as confirmed by both 
qualitative and quantitative assessments. The 
generated images preserve essential anatomical 
structures and patterns present in the original data. The 
high visual and statistical similarity between synthetic 
and real slices demonstrates the effectiveness of the 

cGAN in generating realistic augmentations for brain 
stroke classification.  

 

 
Fig. 3. Representative axial slices from a synthetic 

brain volume generated by the conditional GAN, 

illustrating spatial consistency and anatomical 

plausibility. 

 

C. Backbone 

Each patient’s CT scan is processed as a sequence of 
30 axial brain slices (Fig. 4), with slice-wise feature 
extraction performed using established convolutional 
backbones such as VGG19, ResNet50, or 
EfficientNetV2-B3. The earlier layers of these models 
are initially frozen during training to leverage their 
strong low-level feature detection capabilities. In 
contrast, the final layers are unfrozen to allow fine-
tuning on medical imaging data and adapt the model to 
domain-specific characteristics. This strategy balances 
transfer learning with specialization, improving 
classification performance while maintaining 
generalization across volumetric brain scans.  

GlobalAveragePooling2D is applied per slice to 
condense spatial dimensions into compact feature 
vectors (e.g., 512-D for VGG19 or 2048-D for 
ResNet50), enabling efficient downstream processing. 
To enhance interpretability and classification accuracy, 
a custom SliceAttention mechanism dynamically 
computes softmax-normalized weights for each slice 
through a two-step process. First, a non-linear 
projection with tanh activation is applied to promote 
gradient stability. This is followed by a linear scoring 
step and softmax-based attention normalization, 
allowing the model to prioritize diagnostically relevant 
slices. 

 
Fig. 4. Deep learning pipeline for stroke classification using CT volumes and attention-based slice 

weighting. 
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A multi-head variant is employed to allow the model 
to focus on both localized lesions and broader 
contextual patterns. This learned attention mechanism 
enables the system to prioritize diagnostically 
meaningful slices without requiring manual slice-level 
annotations. The resulting attention-weighted feature 
representation is passed through a fully connected 
classifier comprising a 64-unit dense layer with L2 
regularization to prevent overfitting, followed by 
dropout at a rate of 0.5 and a final sigmoid activation, 
which outputs the probability of stroke presence.  

We propose a novel advanced backbone 
architecture, MedHybridNet (Table 3 and Fig. 5), 
specifically designed to process 3D brain CT scans as 
sequences of 2D axial slices, enabling both localized 
feature extraction and global contextual reasoning: 

1. MedHybridNet CNN path 

Each slice is first passed through two initial 
convolutional layers:  

• Conv2D + BatchNorm + ReLU: 32 filters, 3×3 
kernel, stride=1 

• Conv2D + BatchNorm + ReLU: 64 filters, 3×3 
kernel, stride=2 

 

Table 3.  Architecture of the MedHybridNet 

backbone combining per-slice CNN and 

Transformer paths with hierarchical attention 

mechanisms. 

Layer type Configuration Output 

Input 
[n_slices=30, 650, 

650, 3] 

(n_slices, 

650, 650, 3) 

Per-Slice CNN Path 

Conv2D + BN + 

ReLU 

32 filters, 3×3 

kernel, stride=1 

(n_slices, 

650, 650, 32) 

Conv2D + BN + 

ReLU 

64 filters, 3×3 

kernel, stride=2 

(n_slices, 

325, 325, 64) 

Residual Block 

(×3) 

64 → 128 filters, 

3×3 kernels 

(n_slices, 

325, 325, 

128) 

Residual Block 

(×3) 

128 → 256 filters, 

3×3 kernels 

(n_slices, 

325, 325, 

256) 

Per-Slice Transformer Path 

Patch 

Embedding 

16×16 patches → 

768D embedding 

(stride=16 Conv2D) 

(n_slices, 

21×21, 768) 

Transformer 

Encoder (×6) 

8-head multi-head 

self-attention, MLP 

(2048→768 units), 

GELU activation 

(n_slices, 

441, 768) 

Global Average 

Pooling 

Reduce spatial 

dimensions 

(n_slices, 

768) 

Skip 

Connections 

CNN-to-

Transformer skip 

connections 

(n_slices, 

768) 

Hierarchical 

Attention 

Multi-head attention 

at the slice-level 

and the region-level 

(n_slices, 

768) 

This preprocessing step reduces the spatial 
dimensions to 325 × 325 pixels, ensuring 
computational efficiency while preserving diagnostic 
detail. Subsequently, six residual blocks are organized 
into two stages. In the first stage, the number of filters 
increases from 64 to 128, and in the second stage, it is 
further expanded to 256, enabling progressive feature 
refinement and deeper representation learning.  

Each stage consists of three residual blocks, chosen 
to provide sufficient depth for hierarchical feature 
learning while minimizing the risk of overfitting. The 
number of filters is expanded progressively across 
stages, following conventional CNN scaling practices 
such as doubling the filters at each level. Within each 
block, batch normalization and ReLU activation are 
employed to enhance gradient flow and ensure stable 
training. These blocks preserve spatial resolution 
(325×325) while extracting fine-grained anatomical 
features, which is particularly important for identifying 
subtle stroke-related hypodensity patterns in low-
contrast regions.  

2. MedHybridNet Transformer path 

Fig. 5. Proposed MedHybridNet model structure for analysing brain CT volumes in stroke detection. 

.tasks. 
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To transition from local to global modelling, CNN 
feature maps are projected into 768-dimensional patch 
embeddings using a stride-16 convolutional layer with 
a 16×16 patch size, resulting in a sequence of 21×21 = 
441 patches per slice. Six Transformer encoder layers 
then process these embeddings, each containing: 8-
head multi-head self-attention for modelling complex 
inter-slice dependencies and an MLP block (2048 → 
768 units) with GELU activation for non-linear 
transformation. 

To improve gradient flow and feature fusion across 
modalities, skip connections are introduced between 
corresponding CNN and Transformer layers in 
MedHybridNet (Fig. 5). These connections transfer 
feature maps from each CNN residual stage into 
corresponding Transformer blocks through 1×1 
convolutions. This ensures that high-resolution 
anatomical features are preserved and refined during 
global contextual modeling. Three strategically placed 
links were empirically validated based on spatial 
alignment and performance impact, providing an 
optimal balance between model accuracy, training 
stability, and computational efficiency. 

Additional connections were tested but found to 
increase complexity without significant performance 
gains. This design enhances convergence and ensures 
that the Transformer path leverages high-resolution 
CNN features without compromising discriminative 
patterns due to downsampling or abstraction loss. After 
the Transformer path, each slice’s representation is 
globally averaged to produce a 768-dimensional 
feature vector, resulting in a sequence of shape 
(n_slices = 30, 768). This format preserves slice 
independence and supports downstream processing 
via attention mechanisms or classification heads. 

3. MedHybridNet hierarchical attention mechanism 

In addition to skip connections, a hierarchical attention 
mechanism operates at two levels: region-level 
attention identifies diagnostically meaningful areas 
within individual slices using multi-head self-attention 
on patch embeddings, and slice-level attention that 
dynamically prioritizes the most relevant slices across 
the volume. This dual-level structure enhances 
diagnostic insight by focusing on both local stroke 
indicators and global lesion context, supporting robust 
classification under weak supervision without requiring 
manual slice-level annotations. For MedHybridNet, the 
SliceAttention mechanism is part of the hierarchical 
attention framework, operating at the slice level to 
dynamically prioritize diagnostically relevant slices.  In 
contrast, other models use it directly after global 
pooling. In MedHybridNet, skip connections and 
hierarchical attention work synergistically during 
feature fusion. Skip connections transfer high-
resolution CNN features directly into matching 
Transformer blocks, preserving spatial detail and 

improving gradient flow. These features are then 
refined by hierarchical attention, which operates at two 
levels: region-level and slice-level (SliceAttention), 
which dynamically prioritizes the most relevant slices 
across the volume.  

4. MedHybridNet hyperparameter selection 

Several key hyperparameters, including dropout rate 
(for final classification), convolutional kernel size, and 
attention mechanism dimensions, were determined 
through empirical validation and established 
architectural practices (VGG, ResNet, …) during model 
development. Initial experiments were conducted with 
varying configurations (e.g., dropout values of 0.3–0.7, 
kernel sizes of 3×3 vs. 5×5), and performance was 
evaluated using validation accuracy, training stability, 
and consistency of interpretability. Based on these 
trials, final selections were made to ensure optimal 
convergence and diagnostic relevance. For instance, a 
dropout rate of 0.5 (for the final classifier) provided the 
best trade-off between regularization and expressive 
power, while a hidden dimension of u = d/4 in the 
attention module improved gradient flow compared to 
deeper or shallower alternatives. This data-driven 
approach ensures robustness and supports 
reproducibility in future implementations. Additionally, a 
batch size of four brain volumes was selected to 
balance GPU memory constraints with stable 
optimization dynamics.    

5. MedHybridNet optimization settings 

MedHybridNet was trained using the AdamW optimizer 
(lr = 0.0003, β1 = 0.9, β2 = 0.999), ensuring stable 
convergence and improved generalization under weak 
supervision. All backbone models used stratified 
sampling to maintain balanced batch composition and 
reduce the risk of overfitting, which is particularly 
important when working with limited patient-level 
labels. Stratified sampling significantly enhanced 
training stability and convergence speed. To optimize 
classification performance, we incorporate several 
design choices in the final decision layer: 

1. Loss function and class balancing 

Training the final classifier is conducted using weighted 
binary cross-entropy loss to account for class 
imbalance between stroke and normal cases. Even 
though we employ a cGAN-based data augmentation 
strategy that enriches the dataset with realistic 
synthetic stroke slices, we found it essential to 
complement this with class weighting during 
optimization. This ensures that the model remains 
sensitive to subtle stroke indicators and avoids bias 
toward the majority class, especially under weak 
supervision where only patient-level labels are 
available. To ensure balanced gradient updates during 
optimization, class weights are computed based on the 
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inverse frequency of each class in the training set (Eq. 
(4) [39]):      

Wc=
N

nc x C
            (4) 

where N represents the total number of samples in the 
training set, nc the number of samples in class c (stroke 
or normal), and C the total number of classes. Class 
weights are computed based on the inverse frequency 
of each class in the training set and are applied during 
loss computation to balance gradient updates. In this 
configuration, the normal class is assigned a weight of 
1.00, while the stroke class receives a higher weight of 
1.61 to compensate for class imbalance and enhance 
sensitivity to stroke cases. These fixed weights are 
integrated into the binary cross-entropy loss function, 
ensuring fair contribution from both underrepresented 
stroke patterns and more frequent normal scans. 

2. Training stability enhancements  

To improve training stability and prevent overfitting, we 
implemented both early stopping and a stepwise 
learning rate reduction policy. The early stopping 
criteria were based on validation accuracy, with a 
patience parameter of 10 epochs. In other words, 
training was halted if no improvement in validation 
performance was observed over 10 consecutive 
epochs. 

For learning rate scheduling, we used the 
ReduceLROnPlateau method, which reduces the 
learning rate by a factor of 0.5 if no improvement is 
observed in the validation loss over five epochs. This 
ensures smoother convergence after the initial learning 
phase and helps avoid oscillation around optimal 
values. These strategies were applied consistently 
across all backbone models. Training stability 
enhancements (early stopping, learning rate reduction, 
stratified sampling, class weighting) are used to both 
the backbones and the final classifier. Interpretability is 
further enhanced through Grad-CAM visualizations 
and attention weight overlays, providing clinicians with 
transparent insights into the model’s decision-making 
process and highlighting regions of interest within the 
input scans.  

D. SliceAttention algorithm  

Each patient’s CT scan is processed as a sequence of 
30 axial slices, with each slice represented as a feature 
vector xi∈Rd, where d denotes the embedding 

dimension (e.g., 512-D for VGG19, 768-D for 
MedHybridNet). To enable interpretable decision-
making under weak supervision, we apply the 
SliceAttention mechanism, which dynamically 
computes softmax-normalized weights across slices to 
highlight diagnostically meaningful regions.  

In the SliceAttention mechanism (Algorithm 1), let 
X=[x1, x2,..., x30] represent the input sequence of slice-
level feature vectors extracted from a 3D CT scan, 

where each xi∈Rd corresponds to the embedding of the 

i -th axial slice. Each feature vector is first transformed 
through a non-linear projection layer parameterized by 
a weight matrix W1∈Rd×dh and bias vector b1∈Rdh, 

producing hidden representations hi=tanh(W1xi+b1), 
where dh=192 denotes the hidden dimension. The 
value dh=192 corresponds to the dimensionality of the 
internal feature vector computed for each slice, which 
the model uses to evaluate its diagnostic relevance. A 
second linear projection, defined by weight vector 
W2∈Rdh×1 and scalar bias b2∈R, computes 

unnormalized attention scores ei=W2hi+b2. These 
scores are then normalized using the softmax function 
to yield attention weights α=softmax([e1,...,e30]) , with 
each αi∈[0,1] indicating the relative importance of the i-

th slice in stroke classification. The final output 
representation z∈Rd is computed as a weighted sum of 

all input features: z= ∑ αi . xi
30
i=1 .  

Algorithmic 1. Steps of SliceAttention  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

1. Input: A sequence of slice-level feature 
vectors from all 30 axial slices, denoted as 
X=[x1, x2, ...,x30], where each xi∈Rd 

(feature dimension).  
Output  
z: Final weighted representation.  
α: Attention weights indicating diagnostic  

2. Non-linear Projection: 
Each slice feature vector xi is projected 
through a hidden layer with tanh 
activation: 
hi=tanh(W1⋅xi+b1)  

where W1∈Rd×dh, b1∈Rdh, and dh=192 

(hidden dimension).  
3. Attention Scoring: 

A linear projection computes unnormalized 
attention scores: 
ei=W2⋅hi+b2  

where W2∈Rdh×1, b2∈R.  

4. Softmax Normalization: 
The attention weights αi∈[0,1] are 

computed via softmax: 
α=softmax([e1,e2,...,e30])  

ensuring ∑ αi
30
i=1  = 1  

5. Weighted Feature Aggregation: 
The final representation z∈Rd is obtained 

by applying attention weights: 

z= ensuring ∑ αi . xi
30
i=1   

Weight matrices W1 and W2 are initialized using 
Xavier (Glorot) uniform initialization, with u=d/4 (e.g., 
u=128-D when d=512), balancing representational 
capacity and computational efficiency. Bias terms b1 
and b2 are initialized to zero and updated during 
training based on the input statistics.  

The process begins with a non-linear projection 
defined as hi=tanh(W1xi+b1), followed by a linear 
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scoring step computed as ei=W2hi+b2. Finally, softmax 
normalization is applied  to all scores to obtain the 
attention weights, α=softmax([e1,...,e30]) . The resulting 
attention weights α reflect the relative importance of 
each slice in stroke classification, allowing the model to 
emphasize diagnostically meaningful sections while 
suppressing noise or irrelevant anatomy.  

In MedHybridNet, the attention mechanism is 
extended into a hierarchical framework spanning both 
region and slice levels. A multi-head self-attention 
module refines patch embeddings extracted through 
the Transformer path, allowing the model to identify 
lesion-related patterns within each axial slice. To 
assess global slice relevance, the model applies a 
softmax-weighted scoring system that mirrors the 
diagnostic reasoning processes typically used by 
radiologists. This dual-level design enhances both local 
pattern recognition and volumetric context modelling, 
improving accuracy and interpretability without 
requiring manual slice-level annotations.  The attention 
weights refine the final feature representation used by 
the classifier head, which  comprises a dense layer (64 
units), dropout (rate = 0.5), and sigmoid activation. 
During training, we use a weighted binary cross-
entropy loss (stroke class weight: 1.61, normal class 
1.00) and stratified sampling to maintain balanced 
learning dynamics. This is especially important in 
situations where weak supervision is present, as only 
patient-level labels are available. Finally, the resulting 
attention maps offer clinicians with quantitative 
importance measures and visual overlays, aligning 
closely with radiologists’ diagnostic processes and 
enhancing trust in AI-assisted stroke detection.   

IV. Results 

To ensure robust and reliable results, all models 
(DenseNet201, EfficientNetV2-B3, VGG19, ResNet50-
RS, MobileNetV3, MedHybridNet) were trained across 
five independent runs on our brain imaging dataset. 
This allowed us to capture training variability and 
ensure stable performance. We evaluated average 
metrics across runs to avoid bias from random 
initialization. To prevent overfitting, we saved weights 
at the highest validation accuracy during each run. We 
applied various scenarios (Fig. 6) to assess their 
impact on performance. In some experiments, we used 
curriculum learning to introduce augmented data 
progressively, enhancing model robustness. The 
dataset was split into 70% training, 15% validation, and 
15% testing sets (with no augmentation applied to the 
validation and test sets). Early stopping was used 
based on validation loss and accuracy to ensure 
optimal generalization. Across runs, models 
consistently converged to similar performance levels, 
confirming the reliability of our setup. We conducted 
three experiments to evaluate the impact of training 
strategies and augmentation methods. The first served 

as a baseline, with no data augmentation applied. In 
the second, classical training was combined with data 
augmentation by introducing synthetic images for both 
normal and stroke classes. The third experiment 
incorporated curriculum learning, gradually increasing 
the model's exposure to augmented data throughout 
the training process. 

A. Quantitative test 

In Table 4, MedHybridNet achieves the highest 
accuracy (93.41%) and AUC (95.00%), indicating 
strong overall discriminative ability. However, its stroke 
recall (83.89%) and F1-score (87.41%) reveal 
limitations in recall under class imbalance. Other 
models showed lower stroke recall, especially VGG19 
and MobileNetV3 (~77–82%), highlighting the 
challenges  of class imbalance and underscoring the 
need for augmentation to improve balanced 
performance.  

In Table 5, MedHybridNet outperformed other 
models once again with an accuracy of 96.97% and the 
highest AUC of 98.93%, maintaining strong stroke 
recall (94.95%) and precision (95.45%). DenseNet201 
(96.17% accuracy, 97.92% AUC) and EfficientNetV2-
B3 (96.37% accuracy, 97.31% AUC) showed lower 
recall, while older models like VGG19 and MobileNetV3 
lagged further behind (~91–92% recall). The significant 
improvement in stroke-class performance highlights 
the positive impact of cGAN-based data augmentation 
on model sensitivity and generalization, which is 
particularly important for minimizing false negatives in 
clinical stroke detection. The results presented in Table 
6, which incorporate curriculum training combined with 
cGAN-based data augmentation, represent the highest 
performance achieved across all experimental 
configurations. MedHybridNet achieves an outstanding 
accuracy of 98.31% and AUC of 99.60%, solidifying its 

 
Fig. 6. Overview of data augmentation techniques 

used across the three experimental scenarios. 
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role as the most effective architecture for stroke 
classification. DenseNet201 and EfficientNetV2-B3 
also perform exceptionally well, with accuracies of 
98.08% and 98.15%, respectively. This experiment 
employs a two-phase curriculum learning strategy to 
enhance deep learning-based stroke detection in CT 
scans, utilizing data augmentation. In the first phase, 
the model trains on original images, establishing robust 
low-level feature representations of normal and 
pathological brain anatomy. The second phase 
introduces cGAN generated synthetic stroke lesions, 
enabling the model to learn complex pathological 
patterns while maintaining anatomical coherence. 
Precision, recall, and F1 scores are well-balanced 
across both classes, demonstrating the effectiveness 
of this approach in mitigating class imbalance. These 
findings highlight the critical role of curriculum learning 
in maximizing the utility of data augmentation 
strategies, offering a robust framework for improving 
stroke detection in imbalanced medical datasets.  

To assess the statistical significance of 
MedHybridNet’s performance improvement over 
baseline models in the final experimental scenario, 
where all models achieved their best results, we 
conducted pairwise comparisons using McNemar’s test 
on the test set predictions from five independent training 
runs. The results (Table 7) indicate that the differences 
between MedHybridNet and both DenseNet201 (χ² = 
7.81, p = 0.0052) and EfficientNetV2-B3 (χ² = 6.25, p = 
0.0124) are statistically significant at the p < 0.05 level. 
These findings support our assertion that the observed 

improvements are not due to random variation, 
particularly considering that DenseNet201 and 
EfficientNetV2-B3 were the top-performing baseline 
models.  

An additional error analysis was performed to 
understand the limitations of MedHybridNet better and 
to identify areas for potential improvement. Out of 589 
test images, the model misclassified 10 cases (1.69%). 
These included six false negatives, where stroke cases 
were incorrectly classified as normal, and four false 
positives, where normal cases were mistakenly 
identified as strokes. These errors were reviewed with 
the help of domain experts to identify recurring patterns. 
False negatives were primarily associated with early-
stage stroke manifestations showing minimal 
hypodensity, small infarcts in atypical regions such as 
the brainstem or deep white matter, and scans 
compromised by low contrast or motion artefacts. In 
contrast, false positives were often linked to age-related 
atrophy, chronic white matter disease, post-traumatic 
changes mimicking acute stroke features, or the 
presence of image noise and reconstruction artefacts. 

These findings prove that while the model performs 
robustly under weak supervision and limited annotation, 
improvements could be made in detecting subtle 
lesions, distinguishing chronic vs. acute pathology, and 
handling low-quality scans. This analysis informs our 
future work on incorporating region-specific attention, 
semi-supervised refinement, and enhanced data 
diversity through targeted augmentation. 

Table 4. Performance comparison of different backbone networks under normal training without data 

augmentation. 

Backbone AUC (%) 
Accuracy  

(%) 

Normal (%) Stroke (%) 

Precision Recall F1 Precision Recall F1 

DenseNet201 93.77 92.53 97.70 96.07 96.88 90.21 82.33 86.09 

EfficientNetV2-B3 93.07 92.78 98.03 96.45 97.24 90.72 81.69 85.97 

VGG19 89.98 86.28 89.97 89.62 89.79 82.64 78.30 80.41 

ResNet50-RS 90.71 88.00 92.26 92.20 92.23 84.72 77.99 81.22 

MobileNetV3 89.87 86.29 90.29 89.94 90.12 82.54 77.34 79.86 

MedHybridNet 95.00 93.41 98.36 96.39 97.36 91.24 83.89 87.41 

 

 

Table 5. Performance comparison of backbone networks with cGAN-based data augmentation. 

Backbone AUC (%) 
Accuracy  

(%) 

Normal (%) Stroke (%) 

Precision Recall F1 Precision Recall F1 

DenseNet201 97.92 96.17 98.56 97.51 98.03 94.90 92.73 93.80 

EfficientNetV2-B3 97.31 96.37 98.76 97.76 98.26 95.21 92.67 93.92 

VGG19 95.08 92.70 93.66 93.43 93.55 91.06 91.90 91.47 

ResNet50-RS 95.52 93.69 95.10 95.06 95.08 92.11 91.47 91.78 

MobileNetV3 94.52 92.70 93.87 93.64 93.75 91.03 91.33 91.18 

MedHybridNet 98.93 96.97 98.97 97.72 98.34 95.45 94.95 95.20 
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B. Qualitative test 

Fig. 7 presents a brain CT scan alongside an expert-
annotated lesion (middle) and a Grad-CAM-generated 
heatmap. The heatmap highlights regions that overlap 
with the expert-confirmed stroke area, indicating that 
the model successfully focuses on clinically relevant 
features. The second image, segmented and validated 
by a medical expert, supports the relevance of the 
detected area. This demonstrates the potential of Grad-
CAM for providing interpretable insights in stroke 
detection tasks. 

To evaluate the interpretability and clinical 
relevance of MedHybridNet, we conducted a qualitative 
assessment with two board-certified radiologists who 
reviewed both real and synthetic CT scans from the test 
set (Table 8). Each scan was presented with Grad-
CAM visualizations overlaid on axial slices to highlight 
the regions most influential in the model's decision-
making. Radiologists rated the diagnostic alignment of 
attention maps using an "Average Relevance Rating 
(Likert)", and the visual quality of anatomical structures 
using an "Average Realism Rating (Likert)", both 
measured on a 5-point scale: (1) Not relevant / Not 
realistic, (2) Somewhat irrelevant / Somewhat 
unrealistic, (3) Neutral, (4) Relevant / Realistic, (5) 
Highly relevant / Highly realistic. The radiologists were 
blinded to whether the images were real or cGAN-
generated. They were asked to assess whether the 
highlighted regions aligned with known stroke patterns, 
as well as the overall plausibility of the Grad-CAM 
overlays and input scans. This evaluation provided 
valuable insights into both the model’s diagnostic 
interpretability and the clinical fidelity of synthetic data, 
supporting its reliability under weak supervision and the 
effectiveness of the proposed cGAN-based 
augmentation strategy.  

 

(a) (b) (c) 

Fig. 7. Brain CT slice (a) original image, (b) expert-

annotated stroke region (red), and (c) Grad-CAM 

heatmap highlighting model attention. 

 

Across the test set evaluated by two radiologists, 
86% of the Grad-CAM overlays on synthetic images 
were rated as either "relevant" or "highly relevant," 
reflecting a strong correspondence between the 
model’s attention focus and stroke-related anatomical 
regions. Regarding image realism, the synthetic scans 
consistently received high ratings, indicating that the 
cGAN-generated images preserved essential 

anatomical structures and accurately reproduced 
stroke-like imaging patterns. In several instances, 
radiologists even reported difficulty distinguishing 
between real and synthetic images, highlighting the 
high visual fidelity and diagnostic plausibility of the 
generated data. 

Table 8. Radiologist evaluation of interpretability 
and realism for real and synthetic brain scans 
using Likert ratings. 

Scan 
type 

Avg. 
Relevance 

Rating 
(Likert) 

Avg. 
Realism 
Rating 
(Likert) 

% Rated ≥4 
(Relevant/Highly 

Relevant) 

Real 
Scans 

4.8 4.9 94% 

Synthetic 
Scans 

4.3 4.2 86% 

 

These findings reinforce the claim that MedHybridNet 
not only achieves high diagnostic accuracy (98.31%) 
but also generates clinically meaningful and 
interpretable decision-making pathways. This is an 
essential characteristic for reliable deployment in real-
world clinical settings. 

 

C. Runtime efficiency and hardware requirements 

To ensure practical deployment and clinical 
applicability, we evaluated the computational efficiency 
of MedHybridNet during both training and inference. 
During training, the model was optimized using Google 
Colab Pro, which provided access to a Tesla T4 GPU. 
As mentioned previously, training was conducted in 
batches of 4 brain volumes, utilizing early stopping. 
This optimization strategy significantly reduced total 
training time while maintaining high classification 
accuracy. On average, each training epoch took 
approximately 20–30 minutes, allowing full 
convergence within two 24-hour sessions 
(approximately126 epochs).  

For inference, MedHybridNet was tested on a 
computer equipped with an 11th Gen Intel® Core™ i5 
processor and an NVIDIA RTX 3050 GPU, 
representing a cost-effective configuration with 
moderate computational resources. This setup 
demonstrates that the model can operate efficiently 
without requiring high-end or specialized equipment.  

On this system, the model processed a full brain 
volume (30 axial CT slices) in approximately 15 
seconds, including preprocessing, feature extraction, 
attention-based aggregation, and final classification. 
This execution time demonstrates its suitability for use 
in time-sensitive applications such as emergency 
stroke triage, where rapid and reliable decision support 
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is critical. These results highlight that MedHybridNet 
not only achieves high diagnostic accuracy but is also 
well-suited for real-world deployment, particularly in 
settings where access to cloud infrastructure or high-
end computing is limited.  

 

V. Ablation study 

The ablation study provides a deeper understanding of 

how each architectural component contributes to 

MedHybridNet's performance. As shown in Table 9, 

removing the Transformer path led to a significant drop 

in accuracy (from 98.31% to 95.87%) and stroke recall 

(from 96.42% to 91.45%), confirming that global 

contextual modelling enhances the model’s ability to 

detect subtle hypodensity patterns across slices. 

Disabling hierarchical attention also reduced stroke 

recall by ~1.86% (to 94.56%) and F1-score (to 

98.76%), indicating its role in refining both local feature 

selection and inter-slice prioritization.    

Additionally, we evaluated alternative architectures 
that do not include attention-based slice prioritization 
(Table 10). When trained without SliceAttention, 
models such as DenseNet201 and EfficientNetV2-B3 
achieved accuracies of only 96.31% and 95.37% , 
respectively, with corresponding stroke F1-scores of 
95.51% and 94.06%. These results are notably lower 
than MedHybridNet's stroke F1-score of 96.23%. This 
comparison confirms that volumetric reasoning through 
inter-slice attention is essential for maintaining high 

diagnostic reliability, particularly under weak 
supervision where manual annotations are unavailable.  
    Furthermore, removing stratified sampling resulted 
in a more pronounced degradation in stroke-class 
sensitivity (91.00% recall) despite normal-class 
precision remaining high, highlighting the importance of 
balanced batch composition during training. 
Interestingly, replacing tanh with ReLU activation in 
attention had only minor effects on performance 
(97.89% accuracy, 99.01% stroke F1), suggesting that 
while ReLU introduces slight instability, it does not 
severely affect classification. Classifying slices 
individually without inter-slice attention resulted in a 
substantial decline in diagnostic reliability, 
underscoring the importance of volumetric reasoning in 
clinical decision-making. Using classical data 
augmentation techniques instead of cGAN-based 
synthesis also reduced performance (94.49% stroke 
F1-score), demonstrating the importance of realistic 
synthetic samples in improving generalization under 
limited data conditions. 

Finally, removing skip connections led to a marginal 
improvement in normal-class recall (99.02%) but 
reduced stroke-class recall and increased instability 
during training. This suggests that while the model 
retains some diagnostic capability through residual 
feature learning, the lack of direct CNN-to-Transformer 
feature fusion disrupts gradient flow, leading to less 
stable convergence and weaker alignment with 
diagnostically meaningful regions. 

Table 9. Ablation study evaluating the impact of key architectural components and training strategies 

on the performance of MedHybridNet for stroke classification. 

Ablation factor 
AUC 

(%) 

Acc. 

(%) 

Normal (%) Stroke (%) 

Prec. Recall F1 Prec. Recall F1 

MedHybridNet (Full Model) 99.60 98.31 99.52 98.93 99.23 98.18 96.42 97.29 

Without transformer path 98.29 95.87 97.68 97.89 94.76 96.30 91.45 95.67 

Without hierarchical attention 99.15 97.56 99.34 99.23 96.78 97.99 94.56 98.76 

Without stratified sampling 98.20 95.52 97.82 93.57 95.68 94.53 91.00 92.71 

With RELU activation in attention 99.42 97.89 99.45 99.12 97.01 98.05 95.12 99.01 

Classification on individual slices 98.58 95.98 98.93 97.63 98.28 95.23 90.90 93.02 

Data augmentation using classical technique 98.97 96.50 98.70 97.13 97.91 93.80 95.19 94.49 

Without skip connections 98.58 97.12 99.12 99.02 96.12 97.55 93.89 98.23 

 

Table 10.  Performance comparison of backbone models without the SliceAttention mechanism for 

stroke classification. 

Model without attention AUC (%) Acc. (%) 
Normal (%) Stroke (%) 

Prec. Recall F1 Prec. Recall F1 

DenseNet201 96.22 96.31 97.67 96.37 97.02 96.64 94.41 95.51 

EfficientNetV2-B3 95.35 95.37 96.52 96.52 96.52 94.90 93.23 94.06 

VGG19 93.61 93.69 94.57 93.90 94.24 93.17 92.89 93.03 

ResNet50-RS 94.17 94.26 95.29 94.50 94.89 94.10 92.91 93.50 

MobileNetV3 93.68 93.71 94.25 94.21 94.23 93.55 92.57 93.05 

MedHybridNet 96.39 96.42 98.75 98.45 95.32 96.86 92.14 96.23 
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These findings not only validate the hybrid design of 
MedHybridNet but also offer insights into component 
synergy: the Transformer path improves global 
coherence, skip connections stabilize learning, 
SliceAttention dynamically highlights lesion-related 
slices, and hierarchical attention ensures 
interpretability at both regional and volumetric levels. 
Techniques such as cGAN-based augmentation and 
stratified sampling provide necessary data diversity 
and balance, while the Transformer-CNN fusion 
enables robustness and clinical alignment. Overall, this 
ablation study confirms that MedHybridNet's superior 
performance stems from the combined effect of 
multiple architectural innovations, rather than any 
single component alone.  

 

VI. Discussion 

The early and accurate detection of brain stroke 
remains one of the most pressing challenges in modern 
healthcare where timely intervention can significantly 
influence patient survival and long-term recovery. In 
this context. we proposed MedHybridNet. a novel 
hybrid deep learning architecture that combines 
convolutional feature extraction with Transformer-
based global reasoning. guided by a weakly supervised 
attention mechanism known as SliceAttention. Our 
experimental results demonstrate that this approach 
not only achieves high diagnostic accuracy but also 
enhances model interpretability which is a crucial 
requirement for real-world deployment in medical 
imaging.  

At the core of our method lies the SliceAttention 
mechanism, which enables the model to identify 
diagnostically relevant slices using only patient-level 
labels dynamically. This eliminates the need for labour-
intensive slice-level annotations, making the system 
more scalable and practical for clinical adoption. The 
ablation study confirms the importance of this 
mechanism in prioritizing informative slices and 

improving classification performance. By assigning 
higher weights to pathological regions without explicit 
supervision, SliceAttention aligns with radiologists' 
decision-making process and offers explainable 
insights through Grad-CAM visualizations.  

Furthermore, the integration of CNN and 
Transformer pathways within MedHybridNet allows the 
model to simultaneously capture fine-grained 
anatomical details and global contextual dependencies 
across slices. This dual-path design significantly 
contributes  to its robustness, particularly  in data-
scarce and class-imbalanced conditions.  

The use of hierarchical attention at both the regional 
and slice levels further  refine diagnostic inference, 
reinforcing the model's ability to generalize across 
variations in anatomy and pathology. Our proposed 
cGAN-based augmentation strategy plays a pivotal role 
in addressing dataset imbalance and enhancing model 
generalization. Unlike traditional augmentation 
techniques that apply simple geometric or intensity 
transformations, the cGAN generates realistic, 
pathology-informed synthetic CT slices conditioned on 
diagnostic labels. This not only enriches the training 
data but also improves the model's sensitivity to subtle 
stroke-related features.  

When combined with curriculum learning, the 
augmentation strategy yields the highest performance, 
demonstrating the value of structured data exposure in 
complex classification tasks. When compared to 
existing methods (Table 11), MedHybridNet achieves 
competitive accuracy while offering unique advantages 
such as whole-brain analysis, weak supervision, and 
interpretability. Several recent approaches have 
achieved high accuracy by utilizing cropped or 
segmented regions of interest. For example, [32] 
reports an accuracy of 99.21%. However, these 
methods typically rely on extensive preprocessing and 
manual annotation, which can introduce errors during 
data manipulation and are often impractical in routine 

Table 11. Comparative analysis of the proposed method against existing stroke classification 

approaches using brain imaging data. 

Reference 
Accuracy 

(%) 
Classifier 

Using the 

whole brain 
Data type 

[26] 96.5 Genetic algorithms, CNN, BiLSTM No Brain CT 

[27] 96.61 ViT, LSTM No Brain CT 

[30] 95.06 U-Net No Brain CT 

[32] 99.21 DenseNet121, MobileNetV3, CNN No Brain CT 

[40] 97 XGBoost No Brain CT 

[41] 96.5 DCNN No Brain CT 

[42] 96 DenseNet-121, ResNet-50 and VGG-16 No MRI 

[43] 95 CNN, ML models No MRI 

[44] 97.15 CNN No Brain CT 

Our proposition 98.31 CNN. SliceAttention mechanism Yes Brain CT 
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clinical settings. In contrast, our framework operates 
directly on full-volume scans without the need for prior 
segmentation, thereby enhancing its practicality and 
applicability in real-world clinical environments. Unlike 
earlier models that rely solely on CNNs or classical 
machine learning classifiers [26], [30], [44], 
MedHybridNet introduces a hybrid design that 
leverages both local and global feature modelling. For 
instance, while [27] used Vision Transformers and 
LSTM layers to achieve 96.61% accuracy, their model 
lacks an interpretable attention mechanism and does 
not effectively address data scarcity. Similarly, [41] 
employed DCNNs to reach 96.5% accuracy but lacked 
mechanisms for weak supervision or interpretability, 
limiting its clinical relevance. In contrast, our approach 
not only outperforms many of these methods by 
achieving 98.31% accuracy but also introduces critical 
innovations: weak supervision via SliceAttention, a 
hybrid CNN-Transformer architecture, and cGAN-
based augmentation tailored for volumetric medical 
imaging. Together, these components enhance model 
reliability, reduce annotation burden, and provide 
clinically meaningful explanations for each prediction.  

Despite its strengths, this study has certain 
limitations. First, the dataset used in this work was 
collected from a single institution (Lady Reading 
Hospital, Peshawar, Pakistan) and includes a relatively 
small number of patients (n=82). This introduces 
potential biases related to scanner type, acquisition 
protocol, and patient demographics, which may affect 
the model’s generalizability when deployed across 
multi-centre or international clinical environments. 

While our use of cGAN-based data synthesis and 
SliceAttention-guided interpretability helps mitigate 
some of these constraints by improving feature 
robustness and reducing overfitting, we acknowledge 
that scanner-specific artefacts, regional stroke 
presentation patterns, and imaging variability can still 
impact performance in unseen or heterogeneous 
settings. Second, although MedHybridNet achieves 
strong classification accuracy and interpretability under 
weak supervision, the model remains sensitive to  the 
quality and consistency of the input. Artefacts such as 
motion blur, poor contrast, or inconsistent slice 
thickness could degrade attention maps and reduce 
diagnostic reliability, especially when applied to scans 
acquired using different imaging pipelines. Lastly, while 
SliceAttention provides meaningful insights into which 
slices are most influential in the model’s decision-
making process, it computes attention weights in a 
learned, data-driven manner rather than based on 
manual annotations. As such, these interpretations 
should be clinically validated before being used in real-
world diagnostic workflows. To address these 
limitations, we plan to evaluate MedHybridNet on multi-
centre CT brain imaging repositories and through 

collaborative partnerships with other hospitals. These 
efforts will assess model robustness under varying 
imaging protocols, scanner types, and patient 
populations, supporting broader deployment in real-
world clinical environments.  

In conclusion, MedHybridNet represents a 
significant step forward in the development of 
automated, interpretable, and clinically aligned 
systems for brain stroke detection. By combining 
architectural innovation, weak supervision, and 
advanced data synthesis techniques, we present a 
framework that not only delivers strong diagnostic 
performance but also addresses practical challenges in 
deploying AI models in healthcare. Future work will 
focus on validating the model on multi-centre datasets 
and integrating it into clinical workflows to assess its 
impact on diagnostic efficiency and treatment planning. 

 

VII. Conclusion 

This study addresses the critical challenge of 

automated and interpretable brain stroke detection in 

volumetric CT imaging. Our primary objective was to 

develop a deep learning framework that not only 

achieves high diagnostic accuracy but also aligns with 

clinical requirements by minimizing reliance on labour-

intensive annotations, effectively modelling 3D 

anatomical context, and providing explainable 

decision-making. To this end, we introduced 

MedHybridNet, a novel hybrid architecture that 

combines convolutional networks for local feature 

extraction with Transformer-based modules for global 

contextual reasoning. This dual-path design enables 

the model to capture both fine-grained pathological 

patterns and inter-slice dependencies, significantly 

enhancing classification performance. A key innovation 

of the model is the SliceAttention mechanism, which 

enables the identification of diagnostically relevant 

slices using only patient-level labels, eliminating the 

need for slice-level annotations and offering 

interpretable visualizations through attention maps and 

Grad-CAM. We further addressed data scarcity and 

class imbalance through a cGAN-based augmentation 

strategy, generating realistic synthetic CT slices 

conditioned on diagnostic labels. The ablation study 

confirmed the contribution of each architectural 

component. At the same time, comparative analysis 

demonstrated that MedHybridNet achieves competitive 

accuracy (98.31%) compared to existing methods, 

while offering unique advantages such as whole-brain 

processing and weak supervision. Our work advances 

the field by bridging the gap between technical 

innovation and clinical utility in medical imaging AI. 

Unlike many prior approaches that rely on segmented 

or cropped regions, our system operates directly on 
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full-volume scans, making it more applicable in real-

world settings where preprocessing is limited. 

Moreover, the interpretability features support trust and 

transparency, which are key prerequisites for clinical 

deployment. 

Future work will focus on validating the model on 
multi-centre and multi-modal datasets, integrating it 
into clinical workflows for real-time testing, and 
extending its application to other neurological 
conditions detectable via CT imaging. We are currently 
exploring lightweight versions of MedHybridNet for 
edge deployment and investigating semi-supervised 
extensions to reduce labelling effort further. By 
delivering a scalable, accurate, and interpretable 
solution for stroke detection, this research makes a 
meaningful contribution to the integration of AI in 
emergency neuroimaging, supporting timely, data-
driven clinical decisions.  
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