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Abstract Breast cancer is one of the leading causes of death among women worldwide. Early and accurate 

detection plays a vital role in improving survival rates and guiding effective treatment. In this study, we 

propose a deep learning-based model for automatic breast cancer detection using mammogram images. 

The model is divided into three phases: preprocessing, segmentation, and classification. The first two 

phases, image enhancement and segmentation, were developed and validated in our previous works. Both 

phases  were designed in a robust manner using learning networks; the usage of  VGG-16 in preprocessing 

and U-net in segmentation helps in enhancing the overall classification performance.  In this paper, we 

focus on the classification phase and introduce a novel hybrid deep learning based model that combines 

the strengths of Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). This model 

captures  both fine-grained image details  and the broader global context,  making it highly effective for 

distinguishing between benign and malignant breast tumors. We also include attention-based feature 

fusion and Grad CAM visualizations to make predictions more explainable for clinical use and reference. 

The model was tested on multiple benchmark datasets, DDSM, INbreast, and MIAS, and a combination of 

all three datasets, and achieved excellent results, including 100% accuracy on MIAS and over 99% accuracy 

on other datasets. Compared to recent deep learning models, our method outperforms existing approaches 

in both accuracy and reliability. This research offers a promising step toward supporting radiologists with 

intelligent tools that can improve the speed and accuracy of breast cancer diagnosis.  
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I. Introduction  

Breast cancer is the most common cancer among 
females worldwide, contributing to a high percentage of 
cancer-related deaths. As reported by the World Health 
Organization, accurate and early detection of breast 
cancer drastically improves survival rates and 
increases treatments success. Among all imaging 
techniques, mammography is considered the gold 
standard for early detection  because it is inexpensive, 
accessible, and sensitive to calcifications and soft 
tissue tumors [2]. Interpretation of  mammographic 
images by radiologists, however, is prone to intra- and 
inter-observer  differences, contributing to false 
negatives. Thus, there is a need of the development of 
computer aided diagnosis (CADs), which use digital 
image processing and machine learning algorithms to  
automate detection and enhance diagnostic accuracy. 

The  development of an effective CAD system typically 
includes three phases: preprocessing, segmentation, 
and classification. Each  phase is important to overall 
system performance in terms of diagnosis and should 
be carefully configured to address the complexities and 
variabilities. Preprocessing,   the first phase, involves 
refining raw mammogram images by reducing noise,  
improving contrast, and  cleansing them further 
analysis. Median filtering, Contrast Limited Adaptive 
Histogram Equalization (CLAHE), and rolling ball 
background subtraction are some of the techniques 
that have proved to be highly effective in improving the 
quality of a mammogram image by removing 
background noise and enhancing the detection of 
lesions [2], [3]. 
After preprocessing, image segmentation is essential 
to separate regions of interest (ROIs) that could be 
malignant or benign tumors. Segmentation algorithms 
have to deal with issues like  low contrast between 
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tumor  and normal tissue, intensity overlap  in dense 
tissues, and the detection of microcalcifications. 
Different segmentation models have been  explored, 
from thresholding methods like Otsu’s approach [4] to 
advanced morphological algorithms and deep learning 
approaches like U Net and Mask R CNN. These 
models try to identify breast boundaries, pectoral 
muscular tissues, and suspect masses with greater 
accuracy, thereby providing a strong basis for feature 
extraction and classification [5]. 
The last and most critical phase is classification, which 
decides whether a segmented lesion is normal, 
malignant, or benign.  Traditionally, classifiers such as 
support vector machines (SVMs), decision trees, and k 
nearest neighbors (KNN)  based on hand-engineered 
features like texture, shape, and intensity .  however, 
with the introduction of deep learning in recent times, 
especially convolutional neural networks (CNNs), this 
field was changed due to their ability to learn high-level 
representations with large training sets [6]. These 
models not only surpass traditional classifiers in 
accuracy but are also able to get high-dimensional 
complex mammographic data. 
A number of research papers have illustrated the 
performance of complete pipelines encompassing all 
three phases. Mohamed et al., for example, built  a 
complete CAD system based on morphological 
operators and Otsu's thresholding for segmentation, 
followed by shape-based feature extraction and 
artificial neural networks (ANNs) for classification. They 
achieved over 93% accuracy on standard benchmark 
datasets like DDSM [1]. Similarly, Karunya and 
Rahimunnisa also proposed an adaptive clustering-
based segmentation approach with coupled SVM 
classification with a 98.13% classification accuracy, 
thereby underscoring the role of domain-specific 
preprocessing and segmentation methods in 
enhancing classifier performance [2].  

A major improvement has been made using 
features based on texture through Gray level 
occurrence Matrix (GLCM) and Local Binary Pattern 
(LBP), improving classifiers' discriminative ability. 
Chanda et al. stated that through the application of 
statistical descriptors such as entropy, skewness, and 
standard deviation, their segmentation classification 
pipeline could achieve 89% sensitivity and 74% 
specificity with robust performance despite images with 
poor contrast [3]. Beyond this, the combination of deep 
learning with handcrafted features  offers a hybrid 
approach  that integrates domain knowledge with data-
driven knowledge [6].   

In addition, the difficulty in identifying between 
dense and non-dense breast tissues remains a limiting 
factor in mammography. Tzikopoulos et al. proposed 
an innovative approach integrating breast density 
estimation with asymmetry detection through a fully 

automated segmentation pipeline, achieving 85.7% 
accuracy for classification on the mini MIAS dataset [7]. 
Their study highlights the relevance of integrating 
anatomical and physiological breast features into CAD 
systems. Advances in deep learning models have 
paved the way for new avenues  for automated 
diagnosis. Swapna’s Deep CNN with dropout and zero-
padding strategies showed better performance in 
discriminating between benign, malignant, and normal 
tissues, especially in densely packed mammographic 
images, in which standard classifiers perform well [8]. 
Like this, Umamaheswari et al.  employed a Vision 
Transformer-based architecture (ViT MAENB7) for 3D 
mammography with an impressive 96.6% accuracy in 
classification, thereby pushing the boundary of what 
can be achieved with deep neural networks  for 
volumetric data [9]. Mustafa et al. also conducted 
another study that utilized median and Weiner filters for 
image enhancement, followed by thresholding and 
morphological analysis, achieving classification rates 
of over 93.71%. It supports the validity of classical 
image processing  techniques when accurately fine-
tuned [10]. Chanda's previous study on K-means 
segmentation using a decision tree classifier  for DDSM 
images also justifies  the value of balancing accuracy 
and explainability in medical CAD tasks [11]. Lastly, 
some recent advancements show that optimization 
methods play a significant role in enhancing 
segmentation accuracy. Pawar et al. proposed the 
Firefly Chicken Swarm Optimization (FF CSO) 
algorithm for optimizing feature selection and 
classification in mammography images, showing   a 
synergistic potential exists between bio-inspired 
algorithms and deep learning [12]. To conclude, 
automated breast cancer detection systems based on 
mammography depend on integration of 
preprocessing, segmentation, and classification 
models. While standard techniques have paved the 
way, integration of traditional image processing 
techniques with contemporary machine learning and 
deep learning models holds the promise of improved 
accuracy, resilience, and clinical applicability. 
Multimodal imaging, explainable AI models, and real-
world deployment in medical environments are areas 
expected to be investigated in future studies to 
decrease breast cancer-related mortality owing to early 
and accurate detection.  
 

II. Literature Review 

Breast cancer is still a major public health concern, with 
early detection playing an important role in lowering 
mortality and enhancing patient treatment. 
Mammography is still considered to be the optimal 
imaging application for early screening. Over the past 
few years, improvements in machine learning, 
especially deep learning (DL), have revolutionized 
breast cancer diagnosis. A combination of advanced 
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preprocessing methods, precise segmentation 
algorithms, and good performance classification 
models has resulted in increasingly accurate Computer 
Aided Diagnosis (CAD) systems. 

A.  Preprocessing and Segmentation Techniques 

Preprocessing plays an important role in enhancing 
image quality for better visualization of delicate 
anomalies. Swapna [13] employed the Rolling Ball 
approach to remove artifacts from backgrounds and 
enhance image contrast by utilizing CLAHE and 
unsharp masking. Similarly, Sreevani and Latha [14] 
implemented Wiener filtering and logarithmic 
transformation to remove noise and improve contrast, 
thereby optimizing the subsequent segmentation and 
classification processes.  Some studies have focused 
on specialized preprocessing filters. For instance 
Ghrabat et al. [15] built a preprocessor that removes 
pectoral muscles through area-expanding 
segmentation to largely improve the ROI identification. 
Khdhir et al. [16] applied Residual Pixel Removal 
together with Gaussian filtering to enhance relevant 
breast tissue areas at the expense of irrelevant 
background textures. 

Effective segmentation is key to effective lesion 
localisation and classification. Deep learning performs 
well in describing tumor areas from complex 
mammographic images. Gerbasi et al. [17] presented 
DeepMiCa, a UNet-based semantic segmentation 
network efficient in detecting microcalcifications with a 
specialized loss function for small  lesions. Tiryaki [18] 
proposed a cascaded deep transfer learning method 
using Unet++ with Xception backbone for mass 
segmentation. It achieved high Dice and Intersection 
over Union (IoU) values, reflecting strong segmentation 
performance over high-density mammogram datasets. 
Similarly, Sinha et al. [19] proposed a region-based 
segmentation coupled with a ResNet architecture, with 
segmentation accuracy over 98% with transfer 
learning. Segmentation with hybrid optimization is also 
in focus nowadays. Pawar et al. [20] incorporated 
active contour-based segmentation with Firefly and 
Chicken Swarm Optimization to improve boundary 
detection in complex mammograms. Rathinam et al. 
[21] developed an Adaptive Fuzzy C Means 
segmentation approach integrated with a VGG Net 
classifier,  achieving improvements in segmentation 
speed and efficacy through optimized centroid 
selection. 

B.  Robust and Deep Learning Frameworks 

The ultimate goal of deep learning frameworks is 

classification. Islam et al. [22] proposed a deep learning 

network that learns classification, localization, and 

segmentation simultaneously through a multitask loss 

function with 98.34% test accuracy. Sinha et al. [23] 

implemented a hybrid segmentation-classification 

approach based on UNet with VGG 19 for the 

classification task. Their approach was 2.25% better 

than VGG 19 in accuracy, underlining the need to 

integrate the segmentation and classification process. 

R. Remya and Hema Rajini [24] used DenseNet 169 for 

feature extraction and Multilayer Perceptron (MLP) for 

classification to produce impressive accuracy levels on 

benchmark databases.  

Transfer learning plays a critical role in enhancing 

classification accuracy,  particularly when working with 

limited data. Meegada et al. [25] proposed a deep 

location network (DLN) for classifying images without 

explicitly labeling ROIs. Their network adopted a region 

scoring and deep pooling modules, achieving 

competitive performance on the CBIS-DDSM and 

INBreast databases. Various DL architectures have 

been tested for mammogram classification. Almutairi et 

al. [26] employed a hybrid pipeline  combining a 

Universal Sentence Encoder Network (USE Net) and 

CaffeNet, with an optimized random forests classifier 

with XGBoost, and achieved 98% classification 

accuracy on mammogram images. Singh and Mishra 

[27] proposed a CNN-based end-to-end approach that 

uses a mass and microcalcification detection systems 

for segmentation maps to enhance the accuracy of 

whole exam classification. 

In a significant study, Leung and Nguyen [28] 

introduced an innovative deterministic deep learning 

model that can generalize across different datasets. 

Their model was particularly focused on data mining with 

automatic ROI localization, eschewing the overfitting 

issues that often characterize traditional DL methods. 

Interpretability and robustness are still significant issues 

in medical DL applications. Bouzar Benlabiod et al. [29] 

integrated segmentation using a U Net with a Case 

Based Reasoning (CBR) system to produce explainable 

output for classifying a mammogram.  This integration 

allowed clinicians to visualize the reasoning process of 

the model, thereby establishing trust in the system’s 

decision.  

Gerbasi et al. [17] also addressed interpretability by 

adding explainable AI components to DeepMiCa, 

allowing for visually examining activation maps for 

classified microcalcifications. These visual indicators are 

critical in borderline cases with high diagnostic 

uncertainty. Additionally, ensemble and multiscale 

learning methods have been investigated for enhancing 

classification robustness further. Kaur et al. [30] 

proposed a Patch-based Multiscale All Convolution 

Neural Network (MACNN), which improved 

classification accuracy from 81% to 88% by using 

localized image patches. Jassim Ghrabat et al. [15] 

highlighted a fully automated pipelines that optimize 

every step, starting from preprocessing, segmentation, 

and classification using specified hyperparameter 
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adjustments. Optimization is important in fine-tuning 

deep networks for medical image classification. 

Sreevani and Latha [14] improved their graph 

convolutional recurrent neural network (GCRNN) model 

using Aquila Optimizer for optimizing hyperparameters. 

Optimization using a metaheuristic approach resulted in 

classification accuracy rates over 99.6%. Similarly, 

Khdhir et al. [16] utilized Antlion Optimization to perform 

segmentation of mammogram images to obtain strong 

textural features from GLCM matrices with high 

precision and recall scores. These papers indicate that 

combining evolutionary optimization with DL structures 

hugely improves diagnostic accuracy with reduced 

training overhead. 

C. Dataset and Generalization Challenges   

One enduring difficulty in deep learning is  the inability of 

models to generalize effectively  across datasets with 

different distributions. Several authors have reported 

that models trained on one dataset tend to perform 

poorly upon testing with different ones. Leung and 

Nguyen [28] tried to address this by employing a 

deterministic design and automatic ROI mining to 

mitigate domain shift. 

One of these is multimodal or ensemble learning, in 

which classifiers are trained on various subsets of 

features or variations of inputs. Almutairi et al. [26] 

applied CNN with an ensemble of classifiers to address 

this problem, with DeepMiCa [17] employing patch-wise 

classification to improve generalizability. 

III. Method  

The proposed breast cancer detection framework is 
structured in a three-stage pipeline: segmentation, 
preprocessing, and classification. Each stage offers 
essential operations to convert raw imaging information 
into sound diagnostic products. Whereas our previous 
work dealt with the first two phases, the image quality 
improvement and anatomical segmentation, the 
present study particularly focuses on the classification 
phase,  which is the most critical for accurate diagnosis.  

A. Dataset 

In this work, mammogram images from multiple 
datasets (DDSM, MIAS, INbreast, and a combination 
of three)  were obtained from kaggle (https: 
https://www.kaggle.com/datasets/emiliovenegas1/ma
mmography dataset from inbreast mias and ddsm). 
These images provide real-world variability which is 
important for training robust models and testing. In 
order to make rigorous testing possible, the dataset 
was split between training (70%), validation (15%), and 
testing (15%) subsets. All of these images had a 
resolution of 227 × 227 pixels.  

B. Preprocessing   

The first phase removes common shortcomings in raw 
mammogram images, like poor contrast, noise, and 

artifacts.  As presented in our earlier work, we 
developed a VGG-inspired Convolutional Neural 
Network (CNN) based denoiser, especially designed  to 
handle the noise patterns found in mammographic 
images [31]. The preprocessing pipeline of image 
enhancement, denoising, and ROI centric 
segmentation was performed as elaborated in our 
previous published papers [31, 32]. Augmented 
mammogram images were generated utilizing standard 
geometric transformations like random horizontal 
flipping, small rotations (±15 degrees), zoom-in scaling, 
and translation shifts in  order to enhance model 
generalizability. All augmented images were resized 
uniformly to a 224×224 resolution and assigned 3 
channel grayscale to represent the input image format 
of pretrained backbones. Normalization utilized 
standard ImageNet statistics to align with pretrained 
model expectation. To address class imbalance, 
stratified splitting was employed to ensure equal 
proportions of classes in the training, validation, and 
test sets. A weighted loss formulation was also 
employed implicitly by the internal handling in the 
AdamW optimizer of sparse class representations to 
prevent bias in the updates. Overall, these steps 
ensured class robustness, specifically for malignant 
samples, which are commonly underrepresented in 
clinical datasets. This model incorporated existing 
architecture components like multi-depth convolutional 
blocks, skip residual connections, and up-sampling 
layers to efficiently recover the image without losing 
diagnostically significant structures. Our preprocessing 
model performed better with a PSNR of 79, surpassing 
many standard and learning based enhancement 
techniques. Images improved from this step were 
utilized as inputs for both segmentation and 
classification to provide consistently high-quality 
images across the pipeline. 

C. Segmentation 

 In the second phase, a hybrid segmentation approach 

that merged Otsu thresholding, morphological filtering, 

and U-Net was used to separate regions of masses from 

improved mammogram images [32]. The segmentation 

model was built to retrieve uneven breast boundaries 

along with fine-grained tumor areas. Our approach  

demonstrated high sensitivity in outlining irregularly 

shaped tumors  with diffused boundaries, solving a 

significant impasse present in classical thresholding and 

contour-based approaches. Average scores of 0.99 and 

0.98 were achieved by the ROIs validated through 

Intersection over Union (IoU).  

D. Classification of Mammogram Images 

To carry out classification, the suggested model applies 
a parallel dual-branch architecture combining ResNet-
34 and ViT-Tiny for collaborative feature learning. The 
spatial features of the input mammogram captured by 
the ResNet-34 component involve a series of four 
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residual steps consisting of convolutional layers and 
identity maps, terminating in a global average pooling 
layer that produces a vector representation with 512 
dimensions. Concurrently, the ViT Tiny model 
segments the input into 16 x 16 patches and embeds 
each into a vector of 192 dimensions before processing 
the resulting sequence with twelve transformer 
encoder layers containing three self-attention heads 
and a multilayer perceptron layer with a hidden 
dimension of 768. The representation from the 
classification token in the final transformer layer is 
taken as a global descriptor with 192 dimensions. 
These two representations are concatenated to form a 
feature vector comprising 704 dimensions, which is 
then passed into a gated attention fusion module to 
conduct joint modeling. This architecture enables the 
model to capture fine-grained local structures and long-
range dependencies in the mammographic image 
simultaneously, thereby enhancing its discriminative 
capacity. The combination of ResNet-34 and ViT Tiny 
balances architectural depth and computational 
efficiency, aiming for precise classification while 
remaining suitable for real-time application in a clinical 
environment. The overall network flow architecture is 
as shown in Fig. 1.  

1.   Hybrid CNN-ViT Architecture 

The proposed CNN-ViT hybrid model uses the 
strengths of both convolutional and transformer-based 
neural networks by employing ResNet-34 to extract 
hierarchical spatial features and ViT Tiny to capture 
long-range dependencies from mammogram images. 
After passing the input mammogram through both 
ResNet-34 and ViT Tiny branches, feature 
representations are extracted from specific 
intermediate outputs for fusion. In the CNN path, the 
spatial features are obtained from the production of the 
global average pooling layer of ResNet-34, producing 
a 512-dimensional vector that summarizes local 
patterns and structural intensity variations across the 
image. In parallel, the ViT Tiny model processes the 
input image as a sequence of 16×16 patches, each 
linearly embedded into a 192-dimensional vector and 
enriched with positional encodings. A learnable 
summary vector is prepended to the patch sequence 
and, after passing through all 12 transformer encoder 
blocks, this vector is extracted to yield a 192-
dimensional global descriptor representing the image’s 
contextual information. These two output vectors one 
from the CNN path and the other from the transformer 
are concatenated into a unified 704-dimensional 
feature vector. 

Prior to fusion, no additional dimensionality 
reduction is applied, as both vectors are already 
flattened and compatible. The merged representation 
is fed into a trainable, attention-based fusion module 
that adaptively reweighs feature contributions from 

both modalities. This dual-branch feature integration 
forms the backbone of the final decision layer. The 
feature extraction process in CNN and ViT is done as 
shown in Eq. (1) where I is the input image, F_CNN and 
F_ViT are features from ResNet34 and ViT-Tiny [8], 
[13] and their outputs are concatenated to form a joint 
feature representation described in Eq. (2) where 
F_concat is the combined feature vector. To address 
redundancy and enhance salient feature weighting, a 
trainable attention gating mechanism is applied, which 
assigns optimal weights as expressed in Eq. (3) where 
𝛼 is the attention weight, W_a and b_a are trainable 

weight and bias, F_fused is the attention-weighted 
feature. The fused features are then passed through a 
GELU (Gaussian Error Linear Unit) activation layer, 
which helps map the learned representation into a 
latent space for better classification, as shown in Eq. 

(4). In this equation, W_f and b_f are the weight and 

bias, Z is the GELU-activated latent feature, a 
technique also adopted in [9,34]. Finally, the 
classification scores are calculated using the Softmax 
function in Eq. (5) where W_c and b_c are classification 
layer parameters, y_hat is the predicted output, which 
is widely applied in medical image classification tasks 
[22]. This overall mechanism ensures that both 
localized patterns and global structures are 
emphasized, providing strong interpretability and 
robustness. 

𝐹{𝐶𝑁𝑁} =  𝑅𝑒𝑠𝑁𝑒𝑡34(𝐼),  𝐹{𝑉𝑖𝑇} =  𝑉𝑖𝑇{𝑇𝑖𝑛𝑦}(𝐼)               (1) 

These are concatenated to form a combined 
representation (equation 2): 

𝐹_{𝑐𝑜𝑛𝑐𝑎𝑡}  =  [𝐹_{𝐶𝑁𝑁}  ∥  𝐹_{𝑉𝑖𝑇}]                         (2) 

To reduce redundancy and emphasize relevant 
features, a gated fusion is applied (equation 3): 

𝐹_{𝑓𝑢𝑠𝑒𝑑}  =  𝛼 ⊙  𝐹_{𝑐𝑜𝑛𝑐𝑎𝑡},  𝑤ℎ𝑒𝑟𝑒 𝛼 =
 𝜎(𝑊_𝑎 𝐹_{𝑐𝑜𝑛𝑐𝑎𝑡}  +  𝑏_𝑎)                                        (3) 

The fused features are projected into a latent space 
using GELU activation (equation 4): 

𝑍 =  𝐺𝐸𝐿𝑈(𝑊_𝑓 𝐹_{𝑓𝑢𝑠𝑒𝑑}  +  𝑏_𝑓)                           (4) 

Finally, classification is performed via a Softmax layer 
(equation 5): 

ŷ =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊_𝑐 𝑍 +  𝑏_𝑐)                                    (5) 

2.   Model Training   

All input images were rescaled to a uniform size of 
224×224 pixels to adhere to the input size 
specifications of the ResNet-34 and the ViT Tiny 
architectures.  Since mammogram images are 
originally in grayscale, every image was converted into 
a  three-channel image by repeating the single channel  
across the RGB dimensions,  ensuring compatibility 
with pretrained models expecting 3-channel input. No 
random or center cropping was performed, as 
maintaining intact anatomical architecture is important 
in clinical interpretation. The image is normalized 
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concerning the standard ImageNet standard deviation 
before being input into the model. The model output is 
a two-element vector of class probabilities for 
malignant and benign labels generated by a softmax 
activation operation. The class with the greatest 
predicted probability determines the final classification 
result, i.e., argmax(ŷ) of the softmax output. A 0.5 
default threshold is applied, however, the system 
preserves the unnormalized probability scores of each 
class and returns them in the GUI output with Grad 
CAM heatmaps for interpretability.  This dual  output 
form class label and class probability facilitates both 
clinical decision and model confidence estimation.  

The CNN and ViT branches and the attention-based 

fusion module  were jointly optimized in a one-stage, 
end-to-end training process. All modules remained 
unfrozen during training to facilitate full 
backpropagation of gradients and learning co-
adaptation. The parameters of the model are jointly 
updated with the backpropagation of the binary cross-
entropy losses, which suits binary classification tasks 
such as the classification of malignant and benign 
lesions. Dropout has its integration inherently in the 
transformer path, while weight decay regularization via 
AdamW and batch normalization in the CNN branches 
are used to provide stable convergence. This training 
design promotes the fine-tuning of both local and global 
representations simultaneously and facilitates high 

classification performance and the model's generality. 
Hyperparameters such as the learning rate (1×10⁻⁴), 
batch size (32), and early stopping patience (5 epochs) 
were finalized through a manual grid search on the 

validation set using macro F1 score and loss as 
evaluation criteria. Training was conducted for a 
maximum of 50 epochs, with early stopping typically 
halting training between epochs 25–35, depending on 
dataset complexity. To mitigate overfitting, we used 
early stopping, data augmentation, dropout within the 
ViT layers, and batch normalization in the CNN 
pathway. Validation was performed on a stratified 15% 
holdout set, ensuring consistent class balance and 
robustness of evaluation. All training and inference 
tasks were executed on a workstation equipped with an 
NVIDIA GeForce RTX 3060 GPU (12 GB VRAM) and 
32 GB system RAM, using PyTorch 1.13 with CUDA 
11.6 on Ubuntu 22.04. No distributed training or model 
parallelism was employed, as the architecture fits 
within a single GPU memory envelope. Total training 
time ranged from 2.5 to 4.5 hours, depending on 
dataset size and augmentation settings. These 
parameters and setup confirm that the model is not only 
reproducible but also feasible for deployment in clinical 
environments with affordable GPU infrastructure. To 
confirm model interpretability, Grad CAM overlays are 
used with testing images, which identify pathology-
relevant regions, ultimately to improve transparency 
and trustworthiness of automated outputs. The detailed 
framework is furtherdiscussed in Algorithm 1.    

In the proposed hybrid classification framework, the 
input grayscale mammogram image is initially resized 
and normalized to the input specifications of the model, 
as shown in Fig 2. The image is then transformed into 
three-channel form through replication and normalized 
with ImageNet statistics. The preprocessed image is 
fed to two pathways in parallel: a ResNet-34-based 
CNN for extracting spatial features and a Vision 
Transformer (ViT) pathway for extracting global 
attention-based features. The process of extracting 
features through two pathways is mathematically 
represented in Eq. (6) and Eq. (7), motivated by earlier 
works on multi-branch fusion architectures [8], [13]. 
The resultant features are then concatenated and input 
into a trainable attention-based fusion block to 
generate a combined representation as defined in Eq. 
(8). The mechanism of attention dynamically balances 
the contribution of each pathway's features, which 
maintains consequential patterns and prevents 
redundant information, as seen in the feature selection 
methods presented in [20], [21]. The integrated 
features are then fed through a GELU activation and 
projected to a latent embedding space, as represented 
in Eq. (9), which makes them more classification-ready. 
The ultimate logits for binary classification are derived 
through a fully connected layer and a softmax function, 
as represented in Eq. (10), following standard 
classification pipelines discussed in [22], [26]. 
Modeloptimization  is undertaken using the binary 
cross entropy loss as represented in Eq. (11), an 
objective function widely used in medical image 

 
Fig. 1. Proposed workflow of Hybrid CNN-ViT 
architecture for mammogram images 
classification  
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classification problems [3], [5]. For obtaining 
interpretability of model decisions, Grad CAM is added 
to identify the active regions resulting in classification. 
The approach for interpretability is introduced as 
represented in Eq. (12), and it justifies model prediction 
through pathologically related area localization in the 
mammogram image, following the methodology 
adopted in [6], [7], and [9]. 

Algorithm 1. Hybrid CNN-ViT Classification with 
Grad CAM and Early Stopping 

Symbols 

F_CNN and F_Vit – Features extracted from 
ResNet34 and ViT Tiny 

α (alpha) – Attention weight vector 

Z: Latent representation after GELU 

ŷ (y-hat) : Final predicted class probabilities 

L_CE: Cross-entropy loss 

W_a, b_a, W_f, b_f, W_c, b_c: Weights and bias 
of attention layer, GELU and classification layer 

M_grad: Grad-CAM activation heatmap 

Aᵏ: Feature map from k-th convolution channel 

 αₖ:  Weight for k-th feature map in Grad-CAM 

1 Preprocessing: For each image I in dataset D: 

I_gray ← Grayscale(I) 

I_resized ← Resize (I_gray, 224×224) 

I_rgb ← RepeatChannels(I_resized, 3) 

Normalize using ImageNet stats: 
I_norm(i,j,k) = (I_rgb(i,j,k)   μ_k) / σ_k   (6) 

2 Dataset Split: 
D_train, D_val, D_test ← StratifiedSplit(D) 

3 Model Setup: 
F_CNN ← ResNet34(I_norm) 
F_ViT ← ViT_Tiny(I_norm) 
F_concat ← [F_CNN ‖ F_ViT] 
α ← σ(W_a · F_concat + b_a) 
F_fused ← α ⊙ F_concat 

Z ← GELU(W_f · F_fused + b_f)         (7) 

4 Loss Function: 
L_CE = − ∑ y_i log(ŷ_i)          (8) 

5 Optimization: 
θ ← θ − η ∇_θ L_CE + λθ         (9) 

6 Early Stopping: 
Train using AdamW (lr = 1e−4) 
If validation loss does not improve for 5 epochs 
→ stop 

7 Inference: 
ŷ = Softmax(W_c · Z + b_c)         (10) 

8 Grad CAM Visualization: 
For last conv layer A^k: 
α_k = (1 / Z) ∑_i ∑_j ∂L_CE / ∂A^k_ij 
M_grad = ReLU( ∑_k α_k · A^k )      (11) 

9 Evaluation: 
F1 = 2 * (Precision * Recall) / (Precision + 
Recall)                                         (12) 
Return: ŷ, M_grad, Accuracy, F1, Confusion 
Matrix 

3.  Novelty 

The novelty of the introduced framework is in its 
concurrent dual stream structure, utilizing ResNet-34 
for localized spatial encoding and ViT Tiny for global 
contextual relationships capture in mammogram 
images provides richer feature representation 
compared to sequential single branch architectures. A 
gated attention-based fusion mechanism is proposed 
to learn to weigh and merge the CNN and ViT features 
adaptively to sidestep the noise and redundancy of 
simple concatenation. Grad CAM is also integrated in 
the structure for direct visual interpretation of the 
prediction. The system is optimized for real-time 
inference in multi-GPU settings for deployment in the 
clinic.  

IV. Results 

This section evaluates the performance of the 
proposed hybrid model, which integrates ResNet34 
and Vision Transformer (ViT) with attention-based 
fusion, on four benchmark mammography datasets. 
The classification performance is assessed using 
standard metrics: Accuracy, Precision, Recall, and F1 

 
Fig. 2. Architecture of the proposed hybrid 
CNN-ViT model with attention mechanism 
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Score for each class, along with macro-averaged 
scores. Table 1 presents the classification accuracy of 
our proposed hybrid CNN-ViT model on four 
benchmarking mammogram datasets. Metrics such as 
class wise Precision, Recall, F1 Score, along with 
macro averaged scores, are presented. High accuracy 
is exhibited by the model for all datasets, with 
performance up to 100% on MIAS and over 99% on the 
rest of them. These findings validate the robustness of 
the model as well as its ability to generalize to varied 
imaging conditions. 

Table 1.  Classification performance in terms of 
accuracy across all the datasets 

Dataset Class Precision Recall Accuracy 
(%) 

DDSM Benign 
Masses 

0.9943 0.998 99.62 

 
Malignant 
Masses 

0.9994 0.998 

 
Macro 
Average 

0.9968 0.998 

Nbreast Benign 
Masses 

0.9991 0.994 99.49 

 
Malignant 
Masses 

0.9943 0.999 

 
Macro 
Average 

0.9967 0.9966 

MIAS Benign 
Masses 

1 1 100 

 
Malignant 
Masses 

1 1 

 
Macro 
Average 

1 1 

INbreast+
MIAS+DD
SM 

Benign 
Masses 

0.9989 0.9957 99.54 

 
Malignant 
Masses 

0.9998 0.9951 

 
Macro 
Average 

0.9952 0.9954 

To compare the performance of the hybrid CNN-ViT 
model, comprehensive experiments were performed 
against four benchmark datasets for mammographs: 
DDSM, INbreast, MIAS, as well as a merged dataset 
consisting of INbreast+MIAS+DDSM. The performance 
was measured by Accuracy, Precision, Recall, F1 
Score, as well as Confusion Matrix for all four datasets. 
The model performed exceptionally, achieving over 
99% accuracy for all datasets while scoring a perfect 
mark in MIAS. The performances show not only high 
accuracy in classification but also great generalizability 
to multiple real-time datasets. Table 2. illustrates the 

consolidated confusion matrix for each of these 
models.  

Table 2. Consolidated Confusion Matrix 

Dataset TP FP FN TN Accuracy 

(%) 

DDSM 256 1 0 259 99.62 

259 0 1 256 

 

INbreast 253 0 5 258 99.49 

258 5 0 253 

 

MIAS 258 0 0 258 100.00 

258 0 0 258 

 

Combined 
Dataset 

252 2 3 259 99.54 

259 3 2 252 

 

 

The findings obtained for the proposed hybrid CNN-
ViT based architecture on all four datasets DDSM, 
INbreast, MIAS, and the combined dataset, prove its 
strength, effectiveness, and generalizability in 
classifying mammograms. The model recorded 
exemplary performance, with a spotless 100% on the 
MIAS dataset and near identical performance on the 
other datasets, assuring its reliability and diagnostic 
value. Success lies in a number of architecture and 
training innovations. The hybrid architecture effectively 
combines ResNet34 for local spatial feature extraction 
with ViT Tiny for long-range dependency capturing, 
allowing the model to understand fine-grained details 
as well as global tissue patterns in mammographic 
images. Addition of an attention based fusion 
mechanism reinforces the system with optimal 
weighting of the CNN and ViT feature streams, further 
allowing the model to prioritize diagnostically significant 
patterns even on occasions of subtle or overlapping 
visual indicators. Furthermore, the model's high and 
uniform generalization on different datasets, each with 
varying sets of patient, resolutions, and modalities, 
implies that it is considerably flexible and resistant to 
overfitting. The consistency is further enabled by a well-
organized, structured training methodology with the 
use of the AdamW optimizer, learning rate scheduling, 
cross entropy loss, and early stopping, all of which are 
designed for stable convergence. In addition, 
ImageNet-based normalization assists in harmonizing 
mammographic image distributions with pretrained 
model weights, allowing for efficient transfer learning. 
Lastly, the model exhibits an outstanding 
precision/recall balance, as embodied in class-wise F1 
scores, critically in medical imaging, in order to 
suppress both false positives, preventing unnecessary 
intervention, and false negatives, preventing missing 
any malignancies.  The use of Grad CAM visualization 
exposed a profound understanding of the decision-
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making process of the model. Attention heatmaps 
always concentrated on areas with lesions or structural 
abnormalities in the mammograms, ensuring that 
predictions were based on clinically relevant 
information. 

A. Real-Time Classification Results using GUI 
Interface  

In order to test the proposed model's usability and 
ability to perform real-time inferences, we  developed 
an executable desktop application using Python and 
Tkinter.  This application allows users to upload any 
given mammogram image (can be an image from 
outside of the dataset), view instant classification 
output along with Grad CAM visualization for 
explainability. The prediction outcome is presented in 
textual format, along with the class confidence score 
assigned (probability). Grad CAM heatmaps are 
produced for every image to indicate regions of interest 
that contributed to the model’s prediction. Radiologists 
and users get visual assurance of model focus areas 
for classification.   

After uploading a mammogram image, the system 

processes the input, performs prediction using the 
trained hybrid model, and displays the predicted class 
along with Grad CAM visualization. As shown in Fig. 3. 
the model correctly identifies the input image as 
Malignant Mass with a prediction confidence of 0.75. 
The Grad CAM overlay emphasizes the suspicious 
region, demonstrating the model’s attention. Similarly, 
Fig. 4. displays another test case classified as Benign 
Mass, with a confidence score of 1.00. The highlighted 
regions in the Grad CAM image suggest areas of 

interest that align with benign characteristics. In the test 
display, Grad CAM is implemented with a goal of 
improving model prediction interpretability. Grad CAM 
produces a heatmap overlay over the original 
mammogram image, visually indicating which regions 
contributed most to the model's choice. It not only aids 
in ensuring that the model is looking at relevant 
pathologic features like masses or lesions but also 
establishes trust and transparency for medical users. 
By giving class-specific discriminative regions, Grad-
CAM operates like a visual explanation aid, enabling 
radiologists and scientists to comprehend the rationale 
behind the model's classification, particularly in 
differentiating between malignant and benign masses. 

This GUI-based test validates the robustness of the 

proposed hybrid model on unseen real-world samples, 
and its performance. It also demonstrates practical 
deployment feasibility for clinical or diagnostic setups 
with minimal computational resources. 
 

V. Discussion 

The proposed hybrid CNN–ViT model  shows excellent 
and stable performance in classifying mammograms 
on four benchmark datasets with up to 100% accuracy 
on MIAS and over 99% accuracy on DDSM, INbreast, 
and combined INbreast+MIAS+DDSM data. The 
performance confirms the generalizability of the model 
to various patient populations, image conditions, and 
distributions of datasets. The model’s success can be 
attributed to its dual-branch structure, in which 
ResNet34 extracts spatially local diagnostic features 
while ViT Tiny encodes long-range dependencies to 

 
Fig. 4. GUI Grad-CAM output showing prediction 
as Benign Mass (Confidence = 1.00) 

 
Fig. 3. GUI Grad-CAM output showing 
prediction as Malignant Mass (Confidence = 
0.75) 
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enhance context awareness. The attention-based 
fusion mechanism further enhances fusion by adaptive 
weighing significant cross-modal features and 
achieving high discriminability.  

In comparison with existing solutions, or approach 
surpasses previous method proposals, as shown in 
Table 3. For instance, Swapna [13] concentrated solely 
on segmentation boosting and did not apply global 
attention mechanisms. Umamaheswari et al. [9] utilized 
ViT for 3D mammography, but its architecture did not 
support a dual stream CNN–ViT pipeline that hinders 
its capacity to extract spatial detail information. Kollem 
et al. [34] utilized CNN ensembles but did not support 
mechanisms for interpretability via Grad CAM, which is 
essential in medical AI solutions. Zhao et al. [33] 
suggested an AResNet ViT framework for ultrasound-
based classification, which is domain-specific and not 
transferable to mammography directly [35]. However, 
our model combines global context and spatial detail 
with interpretability as well as real-time utility in an 
integrated classification pipeline and shows higher 
accuracy on multiple datasets than prior method 
proposals.  In comparison with recent state-of-the-art 
models, the proposed CNN-ViT  Hybrid architecture 
(ResNet34 + ViT Tiny with attention fusion) 
demonstrates superior classification performance 
across multiple benchmark mammogram datasets. 
While the model in [36] utilizing Multi CNN and feature 
concatenation achieved 98.74% accuracy on 
augmented MIAS data, our model surpasses this with 
a perfect 100.00% on the original MIAS dataset. 
Similarly, [37] employed ResNet50 with SMOTE to 
achieve 99.00% on a balanced custom dataset; 
however, their performance drops to 90.00% on 

imbalanced data, indicating sensitivity to class 
distribution. Our model handles this issue robustly with 
consistently high results even on heterogeneous 
datasets like DDSM (99.62%) and INbreast (99.49%). 
The improved SWIN Transformer reported in [38] 
shows an impressive 99.9% accuracy, yet lacks 
dataset specification, making reproducibility and direct 
comparison challenging. The dual CNN model 
proposed in [39], [40] reported strong performance, 
98.78% on MIAS and 97.84% on INbreast, but is still 
outperformed by our hybrid CNN-ViT framework, which 
further proves its effectiveness through a combined 
dataset score of 99.54%. These results show that our 
proposed model not only aligns with the latest 
transformer-based method but also uses synergistic 
features learning through CNN and ViT, offering a clear 
advancement in mammogram image-based breast 
cancer detection. 

Although the uniformly high performance of our 
proposed CNN-ViT model may give the impression of 
a one-size-fits-all success, a closer inspection of the 
results beneath the surface discloses interesting 
variations by dataset, worth elaborating. The MIAS 
dataset with perfect classification accuracy consists of 
relatively clean high-resolution mammograms with little 
imaging noise and an even class split, conditions 
favorable for deep learning models to perform 
optimally. DDSM and INbreast, on the other hand, 
show greater heterogeneity in image quality, breast 
density, and lesion visibility between case conditions 
where model generalizability suffers. Despite this, 
however, the model achieved over 99% accuracy on 
these datasets as a testament to its resilience. When 
contrasted with reported models in Table 2, the hybrid 

Table 3. Performance comparison of proposed classification model with existing models on basis of 
accuracy 

Ref. Learning Model Dataset Accuracy 

(%) 

[36]  
Multi CNN + Feature 
Concatenation (BWM MCDM, 
MI) 

MIAS (augmented) 98.74 

[37]  ResNet50 + SMOTE + FC 
Layers 

Custom Mammograms 99.00 (balanced), 90.00 
(imbalanced) 

[38]  Fine-tuned SWIN 
Transformer 

Not specified 99.9 

[39]  Customized Dual CNN MIAS, INbreast, CBIS 
DDSM 

98.78 (MIAS), 97.84 
(INbreast) 

Proposed 
method 

CNN-ViT Hybrid (ResNet34 + 
ViT Tiny + Attention Fusion) 

MIAS, INbreast, DDSM 
(individually & 
combined) 

100.00 (MIAS), 99.62 
(DDSM), 99.49 (INbreast), 
99.54 (Combined) 
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model outperforms previous work not only in 
performance but also in interpretability and clinical 
feasibility. Unlike black box CNN-only or transformer-
only models with their aggregate features or sequence 
attention maps, our attention based fusion scheme 
combines localized spatial evidence with global 
semantic context, as a result of which predictions 
remain focused and reliable.  This is demonstrated 
through our Grad CAM visualized attention maps, 
which uniformly highlight radiologically informative 
regions as attesting to clinical confidence. Moreover, 
the model achieved consistent performance across 
different training instances with minimal variance 
(<0.3%) even on subtle abnormalities or overlapping 
tissues in cases. The models ' near-perfect results do 
not result from overfitting since early stopping, batch 
normalization, dropout, and model selection by 
validation were applied with ostentation. Further, 
embedding class probability results with visualized 
heatmaps in the GUI also allows the attending 
radiologist to evaluate prediction confidence as well as 
the underpinning diagnostic rationale and hence 
mitigate false positives andnegatives in clinical 
workflows.  

The entire model was implemented using PyTorch 
v1.13 with CUDA 11.6 support on Python 3.10, running 
on an Ubuntu 22.04 environment. Data loading, 
augmentation, and training routines were built using 
native PyTorch modules along with torchvision and 
albumentations. All source code, including model 
architecture, training scripts, Grad CAM visualizations, 
and GUI deployment tools, is available on demand 
only. 

 

VI. Conclusion 

This work aims to develop an accurate, interpretable, 

and strong hybrid classification model for detecting 

breast cancer through mammogram images using 

Convolutional Neural Networks (CNNs) combined with 

Vision Transformers (ViTs). The introduced model 

obtained a 100% classification accuracy on the MIAS 

dataset and more than 99% accuracy on DDSM, 

INbreast, and the combined dataset with strong 

generalization. In addition to this, adding an attention 

fusion mechanism and Grad CAM visualization 

enhanced model interpretability and transparency. A 

minor contribution is the model's ability to have an 

excellent precision-recall tradeoff for all classes. Future 

research can consider multi-class lesion classification, 

domain adaptation for unseen datasets, and deployment 

in real-time diagnostic systems integrated with 

radiological workflows. 
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