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Abstract Colorectal cancer (CRC) is a leading cause of cancer-related deaths, with two million cases 
detected in 2020 and causing one million deaths annually. Approximately 95% of CRC cases originate from 
colorectal adenomatous polyps. Early detection through accurate polyp segmentation is crucial for 
preventing and treating CRC effectively. While colonoscopy screening remains the primary detection 
method, its limitations have prompted the development of Computer-Aided Diagnostic (CAD) systems 
enhanced by deep learning models. This study proposes a novel neural network architecture called Dual 
Attention and Channel Atrous Spatial Pyramid Pooling Half-UNet (DACHalf-UNet) for medical polyp image 
segmentation that balances optimal performance with computational efficiency. The proposed model 
builds upon the U-Net framework by integrating Double Squeeze-and-Excitation (DSE) blocks in the 
encoder after the Ghost Module, Channel Atrous Spatial Pyramid Pooling (CASPP) in the bottleneck and 
decoder, and Attention Gate (AG) mechanisms within the architecture. DACHalf-UNet was trained and 
evaluated on the CVC-ClinicDB and Kvasir-SEG datasets for 70 epochs. Evaluations demonstrated superior 
performance with F1-Score and IoU values of 94.23% and 89.28% on CVC-ClinicDB, and 88.40% and 81.47% 
on Kvasir-SEG, respectively. Comparative analysis showed that DACHalf-UNet outperforms existing 
architectures including U-Net, U-Net++, ResU-Net, AGU-Net, CSAP-UNet, PRCNet, UNeXt, and UNeSt. 
Notably, the model achieves this performance with only 0.56 million trainable parameters and 30.29 
GFLOPs, significantly reducing computational complexity compared to previous methods. These results 
demonstrate that DACHalf-UNet effectively addresses the need for accurate and efficient polyp 
segmentation, potentially enhancing CAD systems and contributing to improved CRC detection and 
treatment outcomes. 

Keywords Colorectal Cancer; Polyp Segmentation; Deep Learning; Computational Efficiency; DACHalf-
UNet.

I. Introduction 

Colorectal cancer (CRC) represents a significant threat 
to human health, with two million cases detected in 
2020 and causing one million deaths annually [1], [2]. 
Studies have shown that around 95% of CRC cases 
are caused by colorectal adenomatous polyps that 
grow on the surface of the colon, rectum, stomach, and 
pharynx [3], [4]. Therefore, there is an urgent clinical 
need for the early detection of polyps to enable 
effective CRC prevention and treatment [5], [6]. 

Currently, colonoscopy screening is the most 
effective medical procedure to detect polyps and 
reduce the risk of CRC [7]. However, this method can 
only detect about 60% of CRC cases and is relatively 
time-consuming [8]. To address these limitations, 
Computer-Aided Diagnostic (CAD) technology is being 

utilized to assist healthcare professionals in detecting 
and analyzing CRC more effectively and efficiently [8]. 
Accurate, automatic, and efficient polyp segmentation 
can enhance the performance of CAD systems, thus 
encouraging the advancement of deep learning-driven 
models for automated polyp segmentation [8], [9]. 

The development of deep learning models, 
particularly Convolutional Neural Networks (CNN), has 
resulted in significant advancements in automated 
image segmentation techniques [10], [11]. CNN can 
improve polyp segmentation accuracy by integrating 
multi-scale image features to enhance segmentation 
performance [12], [13]. Although deep learning 
methods in previous research have produced good 
performance in segmentation tasks, few have 
considered important factors such as computational 
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complexity, number of parameters, and memory 
efficiency that are crucial in Point-of-Care (PoC) 

application scenarios [10]. 

One of the CNN architectures developed for image 
segmentation tasks is U-Net. The U-Net architecture 
consists of a downsampling encoder, upsampling 
decoder, and skip connections, which integrate local 
and global information during the encoding and 
decoding processes [14]. Several U-Net variants, such 
as UNet++ [15], have proposed using nested and 
dense skip connections to reduce the semantic gap 
between the encoder and decoder. The performance of 
UNet++ showed F1-Score and IoU results of 79.40% 
and 72.90% on the CVC-ClinicDB dataset and 82.10% 
and 74.30% on the Kvasir-Seg dataset, with a total of 
9.04 million parameters. The study by Li et al. [16] 
proposed the UNeSt architecture for polyp 
segmentation, using U-Net as the backbone and 
integrating deeply separable convolutional layers and a 
multi-layer perceptron to reduce the number of 
parameters and computational complexity. UNeSt 
produced computational parameters of 0.92 million 
with F1-Score and IoU values on the CVC-ClinicDB 
dataset of 86.50% and 79.09%. The UNet++ and 
UNeSt architectures have proven capable of 
performing polyp segmentation effectively but still 
result in many computational parameters and complex 
network structures. 

To address these issues, a more efficient Half-UNet 
architecture was proposed [17]. Half-UNet involves 
three main strategies to reduce network complexity: 
unifying the number of channels, full-scale feature 
fusion, and ghost modules. Evaluation of Half-UNet on 
the DDSM, LIDC-IDRI, and MICCAI 2009 datasets 
reduced the number of parameters by up to 98.6% 
without reducing medical image segmentation 
performance [17]. 

Research by Shu et al. [18] proposed a U-Net 
architecture integrated with Double Squeeze-and-
Excitation (DSE) in the bottleneck layer to enhance 
feature extraction. The DSE structure first extracts 
channel kernels using Global Average Pooling (GAP), 
followed by Global Max Pooling (GMP) extraction in the 
second stage. Evaluation of the CVC-ClinicDB dataset 
showed that the U-Net architecture with DSE 
outperformed the UNet++ model, with F1-Score and 
IoU values of 91.5% and 86.4%. Oktay et al. [19] 
introduced the Attention Gate (AG) mechanism, which 
focuses on generating adaptive feature maps and 
identifying feature responses to retain only the most 
relevant features. The integration of AG within the U-
Net architecture enhances the model's attention to 
target regions [19]. 

Xiong et al. [20] designed a segmentation 
architecture using the U-Net backbone with the addition 
of Channel Atrous Spatial Pyramid Pooling (CASPP). 

CASPP is a development of ASPP with the addition of 
the CBAM module [21] at the beginning of the module 
to pay more attention to important features. It 
effectively combines channel and spatial attention 
mechanisms while maintaining low computational 
overhead. This architecture improved the precision, F1-
Score, and IoU values by 0.32%, 1.42%, and 1.27%, 
respectively, compared to the highest values from other 
architectures in performing crack segmentation tasks 
on the DeepCrack537 dataset.  

Based on the related research above, this research 
focuses on developing a model that reduces 
computational parameters while improving the 
accuracy of polyp segmentation. The proposed 
architecture is the Dual Attention and Channel Atrous 
Spatial Pyramid Pooling Half-UNet (DACHalf-UNet), 
with the following main contributions: (1) Integration of 
Double Squeeze-and-Excitation (DSE) in the encoder 
after the Ghost Module; (2) Integration of Channel 
Atrous Spatial Pyramid Pooling (CASPP) in the 
bottleneck and decoder; and (3) Implementation of 
Attention Gate within the architecture. Integrating these 
methods in DACHalf-UNet is expected to enable 
accurate and efficient polyp medical image 
segmentation and can contribute to successful 
treatment outcomes. 

 

Fig. 1. Stages of Research Methods 
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II. Method 

This research uses the methodology shown in Fig. 1. 
The research stages are divided into five main phases: 
(1) Dataset Preprocessing, (2) Model Architecture 
Design, (3) Hyperparameter Tuning, (4) Model 
Training. and (5) Model Evaluation. 
 
A. Dataset Preprocessing 

This research uses the CVC-ClinicDB [22] and Kvasir-
SEG [23] datasets. The CVC-ClinicDB contains 612 
polyp images and ground truth with a 288 x 368 pixels 
resolution. Kvasir-SEG contains 1000 polyp images 
and ground truth with varying resolutions ranging from 
332 x 487 to 1920 x 1072 pixels. The first step was 
resizing the images to 256 x 256 pixels. The datasets 
were then divided into training, validation, and test sets 
with a ratio of 80%, 10%, and 10%. Data augmentation 
was subsequently applied to the training set to increase 
the number of data and prevent overfitting. The 
augmentation techniques included horizontal flip, 
vertical flip, and rotations of 90° and 180°. Examples of 
both original and augmented images are shown in Fig. 
2.  

    

(a) (b) 

    

(c) (d) 

 

  

 

 (e)  

Fig. 2. Augmentation Results of (a) Original image, 
(b) 90 rotation, (c) 180 rotation, (d) Horizontal flip, 
and (e) Vertical flip. 

Table 1. Number of Dataset Splits  

Dataset 
Train 
Set 

Train Set 
(augmented) 

Validation 
Set 

Test 
Set 

CVC-
ClinicDB 

490 2450 61 61 

Kvasir-
SEG 

800 4000 100 100 

Table 1 presents the distribution of the training, 
validation, and test sets used in this study. The 
augmentation process is applied only to the training set 
in order to increase the variability of the training data 
and prevent overfitting. As a result, the number of 
training images in the CVC-ClinicDB dataset increased 
to 2,450, and in the Kvasir-SEG dataset to 4,000 
images.  

B. Model Architecture Design 

The overall architecture of DACHalf-UNet is shown in 
Fig. 3, which has five network depth levels with U-Net 
as the backbone. DACHalf-UNet implements the 
concepts of unified the number of filters at each level 
and full-scale feature fusion (FSFF) from Half-UNet. 
FSFF differs from traditional methods, such as the 
concatenation operations in U-Net and UNet3+, which 
have high computational complexity and memory 
usage [17]. In contrast, FSFF uses addition operations 
to maintain computational efficiency and reduce 
architectural complexity. In DACHalf-UNet, the number 
of filters for each block is the same.  

This model uses ghost modules as in Half-UNet to 
reduce the complexity and number of parameters while 
maintaining model performance. DSE block is placed  
after ghost module to adaptively enhance important 
image features. At the bottleneck, the CASPP block is 
applied to improve detailed feature extraction by 
suppressing redundant information and refining edge 
features by combining channel and spatial attention. 
This model also uses attention gates (AG) to help 
improve its focus on target regions. 

Ghost Module is a component within Convolutional 
Neural Network (CNN) architectures designed to 
reduce computational complexity and parameter count 
while maintaining model performance. Using 
convolutional layers to extract features from input 
images often results in redundant feature maps, 
increasing the number of parameters. These redundant 
features can lead to longer training times and 
excessive memory usage [24]. The number of 
parameters used in conventional convolution and the 
Ghost Module can be calculated using Eq. (1) and (2) 
[24], where 𝐾 is the kernel size, 𝐶𝑖𝑛 is the number of 

input channels, and 𝐶𝑜𝑢𝑡 is the number of output 

channels. 

𝑝𝑎𝑟𝑎𝑚𝑠 =  (𝐾2 ∗ 𝐶𝑖𝑛 + 1) ∗ 𝐶𝑜𝑢𝑡                    (1) 

𝑝𝑎𝑟𝑎𝑚𝑠 =  (𝐾2 ∗ (𝐶𝑖𝑛 + 1) + 2) ∗ 𝐶𝑜𝑢𝑡  / 2     (2) 

As shown in Fig. 4a, ghost module implements 

depth-wise and point-wise convolution, followed by 
batch normalization and an activation function. Point-
wise convolution uses 1x1 convolution to combine 
information between channels. Meanwhile, depth-wise 
convolution uses 3×3 convolution to extract important 
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spatial features from the input, thereby reducing the 
number of parameters required by the model. 

Fig. 4(b) illustrates the Double Squeeze-and-
Excitation (DSE). DSE In this research consists of two 
stages. The first stage transforms the input into a 
weight vector using global average pooling (GAP). 
Then, the convolution block functions perform the non-
linear transformation. The output of this block is 
normalized using ReLU and sigmoid functions to 
generate a weight vector. At the end of the first stage, 
the model will produce a weight vector representing 
important information from the input used in the second 
stage. In the second stage, the output from the first 
stage becomes the input for the second stage. The 
input in the second stage is processed using global 
max pooling (GMP). GMP aims to identify the 

maximum value across all elements of the input. This 
maximum value is processed in the convolution block. 
The output from the convolution block is normalized 
using the sigmoid function to constrain the output 
values between 0 and 1. This second stage will 
produce enhanced output by combining information 
from previously obtained weight vectors [19].  

Channel Atrous Spatial Pyramid Pooling (CASPP) 
is a block arrangement consisting of a convolutional 
block attention module (CBAM) and atrous spatial 
pyramid pooling (ASPP). In the CASPP structure, the 
CBAM block is placed at the beginning to emphasize 
important features in the image. There are two types of 
attention in CBAM: channel attention and spatial 
attention. As illustrated in Fig. 5(a), channel attention 
uses average pooling and max pooling to capture 

 
Fig. 3. Architecture of DACHalf-UNet 

 
 

(a) (b) 

Fig. 4. Architecture of (a) Ghost Module and (b) DSE 
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important information from feature maps. The output of 
the channel attention is then used as the input for the 
spatial attention, which focuses on highlighting the 
most relevant areas within the feature maps. The 
features extracted by CBAM are subsequently passed 
into a 3×3 convolution block. These features are 
forwarded to a dilated convolution block with 2, 3, 5, 
and 7 dilation rates. The outputs from the dilated 
convolution are concatenated and further processed 
using a 3x3 convolution block, batch normalization, and 
activation function. 

The Attention gate (AG) is applied to features 
transmitted through skip connections in the encoder 
stage to eliminate noise and irrelevant responses. The 
outputs from DSE and CASPP will become inputs to 
the AG. As shown in Fig. 5(b), the input passes through 
a 1x1 convolution block and batch normalization. The 
resulting output is then passed through an activation 
function, followed by another 1×1 convolution block 
and batch normalization, and finally processed with a 
sigmoid activation function. 

In its implementation, the feature 𝑥𝑙 and the gating 

signal g are convolved using a linear transformation 
and converted into attention coefficients using a 
sigmoid function. This transformation process is 
formulated in Eq. (3) [19]. Subsequently, the 𝑞𝑎𝑡𝑡 value 

is converted into the attention coefficient 𝑎𝑙 through the 

sigmoid activation function in Eq. (4) [19]. The attention 
coefficient is then used to adjust the input feature by 
performing element-wise multiplication, as described in 
Eq. (5) [19]. 

𝑞𝑎𝑡𝑡 =  𝜓𝑇  (𝜎1(𝑊𝑥𝑥𝑙  + 𝑊𝑔𝑔 + 𝑏𝑔)) +  𝑏𝜓        (3) 

𝛼𝑙 =  𝜎2(𝑞𝑎𝑡𝑡)                       (4) 

𝑥�̂�  =  𝑥𝑙 . 𝛼𝑙                           (5) 

where 𝑞𝑎𝑡𝑡 is the attention score used to determine 

feature relevance, 𝜓 is the parameter used in linear 

transformation, 𝜎 is the activation function used, 𝑊𝑥 is 

the weight matrix on the input feature 𝑥𝑙, 𝑊𝑔 is the 

weight matrix on the gating signal, 𝑏𝑔 is the bias value 

in the linear operation on the gating signal, and 𝑏𝜓 is 

the bias value after transformation with 𝜓. 

C. Hyperparameter Tuning 

The next step is adjusting hyperparameter tuning to 
obtain optimal results and efficient parameters. 
Selecting appropriate hyperparameters for the model 
can directly impact model performance. As tabulated in 
Table 2, the initial hyperparameters used in this paper 
include a batch size of 16, 64 filters, [1]s, Adam 
optimizer, initial learning rate of 0.001 (divided by ten if 
the validation loss does not decrease for 10 epochs), 
ReLU activation function, attention ratio of 8, BCE loss 
function, and network depth of 5. 

Table 2. Initial Hyperparameters 

Hyperparameter Value 

Batch Size  16 

Filters 64 

Epoch 70 

Optimizer Adam 

Learning Rate 
0.001 (divided by ten if the 

validation loss does not 
decrease for 10 epochs) 

Activation Function ReLU 

Ratio Attention 8 

Loss Function Binary Cross-Entropy 

Depth 5 

 

 
 

(a) (b) 

Fig. 5. Architecture of (a) CASPP and (b) Attention Gate 
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D. Model Training 

After obtaining the optimal hyperparameters, the 
training process is carried out on the proposed model. 
The use of these parameters is expected to have a 
significant impact on the model’s performance. The 
training is conducted using the training set of the 
selected dataset. The input consists of RGB medical 
images, and the output is a segmented binary image. 
Weights were initialized using the He normal method, 
which is suitable for ReLU activations and helps 
improve training stability. Model training is performed 
on Google Colaboratory using the A100 GPU 
accelerator and TensorFlow framework. 

E. Model Evaluation 

Evaluation metrics are used to assess a model's 
performance. Common metrics for evaluating polyp 
segmentation results include Intersection over Union 
(IoU) and F1-Score. The formulas for calculating IoU 
and F1-Score are presented in Eq. (6) and (7) [25]. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                   (6) 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                     (7) 

TP (true positive) represents positive data that is 
correctly predicted, TN (true negative) represents 
negative data that is correctly predicted, FP (false 
positive) is negative data that is predicted as positive 

data, and FN (false negative) is positive data that is 
predicted as negative data. 
III. Result 

A. Hyperparameter Tuning 

The hyperparameter tuning process in this study was 
conducted by testing various types of optimizers, 
activation functions, attention ratios, loss functions, 
network depths, and filter sizes. For time efficiency, the 
hyperparameter tuning test in this research only used 
the CVC-ClinicDB dataset, and it was performed 
sequentially so that the initial hyperparameter values in 
Table 2 would change during the testing process. 

Optimizer, activation function, attention ratio, loss 
function, network depth, and number of filters were 
systematically tested to determine the best 
configurations for the proposed model, with all results 
are summarized in Table 3 and Fig. 6 displays the 
graphs of the hyperparameter tuning results. The 
optimizer evaluation used Adam and RMSprop. Based 
on the results, Adam optimizer achieved the highest 
F1-Score of 93.95% and an IoU of 89.00%, 
outperforming RMSprop. As for activation functions, 
GELU achieved the highest F1-Score of 94.23% and 
IoU of 89.28%. Attention ratio experiments showed that 
a ratio of 8 yielded the best results compared to 4 and 
16. In terms of loss functions, BCE outperformed Dice 
Loss and Tversky Loss, achieving the highest F1-Score 

Table 3. Hyperparameter Tuning Test Results 

Hyperparameter F1-Score IoU Trainable Parameter 

Optimizer 
Adam 93.95% 89.00% 568,387 

RMSProp 92.99% 87.51% 568,387 

Activation 
Function 

ReLU 93.95% 89% 568,387 

GELU 94.23% 89.28% 568,387 

SELU 92.08% 86.13% 568,387 

Ratio Attention 

4 93.37% 88.08% 582,835 

8 94.23% 89.28% 568,387 

16 92.08% 86.13% 561,163 

Loss Function 

Dile Loss 92.08% 86.13% 568,387 

BCE 94.23% 89.28% 568,387 

Treversky Loss 93.46% 88.58% 568,387 

Depth 

3 92.32% 86.46% 467,229 

4 93.17% 87.73% 517,808 

5 94.23% 89.28% 568,387 

Filter 

16 92.32% 86.46% 65,887 

32 93.17% 87.73% 256,763 

64 94.23% 89.28% 568,387 
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and IoU. In terms of network depth, depth of 5 achieved 
the highest F1-Score and IoU values. Furthermore, the 
results demonstrate that increasing the network depth 
leads to a corresponding increase in the number of 
trainable parameters, rising from 467,229 at depth 3 to 
568,387 at depth 5, thereby highlighting a trade-off 
between model complexity and performance.The 
number of filters 64 achieved the highest F1-Score and 
IoU values. Therefore, filter 64 was selected for use in 
subsequent experiments. 
B. Model Ablation 

To comprehensively evaluate the effectiveness of each 
block in the proposed method, this study conducted 
several ablation experiments on two public polyp 
segmentation datasets. The ablation experiments 
conducted in this study are as follows: (1) Ablation 1: 
Half-UNet, (2) Ablation 2: DACHalf-UNet without AG, 
(3) Ablation 3: DACHalf-UNet without DSE, (4) Ablation 
4: DACHalf-UNet without CASPP, and (5) Ablation 5: 
DACHalf-UNet (proposed method). 

As tabulated in Table 4, the proposed DACHalf-

UNet yields the best performance over the CVC 
dataset, achieving 94.23% and 89.28% for the F1 score 
and IoU, respectively. The Kvasir-SEG dataset 
achieved an F1-Score of 88.40% and IoU of 81.47%. 
The total number of trainable parameters in the 
proposed model is 568,387. Specifically, the 
introduction of CASPP block in the ablation 
experiments led to a gradual increase in the number of 
trainable parameters compared to other configurations. 
However, it provided the most significant improvement 
in segmentation performance among the ablation 
experiment. As shown in Fig. 7, the proposed method 
segments polyp regions more completely than other 
ablation experiments. The first input image in the left 
column for example, although other methods can also 
segment the target area, the proposed method 
provides a much more refined segmentation result. The 
segmentation results of Half-UNet in Fig. 7b are 
incomplete, however our proposed method can obtain 
the segmentation result that is much closer to the 
ground truth. 

Table 4. Ablation Experiment Results on CVC-ClinicDB and Kvasir-SEG 

Method 
CVC-ClinicDB Kvasir-SEG Trainable 

Parameter F1-Score IoU F1-Score IoU 

Ablation 1 87.08% 77.12% 84.55% 73.23% 0.22 M 

Ablation 2  93.82% 89% 86.01% 78.67% 0.53 M 

Ablation 3 93.47% 88.09% 87.42% 80.22% 0.55 M 

Ablation 4 92.97% 88% 86.05% 78.08% 0.26 M 

Ablation 5 94.23% 89.28% 88.40% 81.47% 0.56 M 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 6. Hyperparameter Tuning Graph Results: (a) Optimizer, (b) Activation Function, (c) Ratio Attention, 
(d) Loss Function, (e) Depth, and (f) Filter 
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C. Experimental Results 

The hyperparameter tuning and model ablation 
processes produced the optimal parameters and the 
best-performing model. The optimal hyperparameters 
were then used to train the model on the CVC-ClinicDB 
and Kvasir-SEG datasets. Table 5 presents the optimal 
hyperparameters values during the tuning process. 

Table 5. Optimal Hyperparameters 

Hyperparameter Value 

Batch Size  16 

Filters 64 

Epoch 70 

Optimizer Adam 

Learning Rate 
0.001 (divided by ten if the 

validation loss does not 
decrease for 10 epochs) 

Activation Function GELU 

Ratio Attention 8 

Loss Function Binary Cross-Entropy 

Depth 5 

Table 6. Experiment Results  

Dataset F1-Score IoU 
Trainable 
Parameter 

CVC-ClinicDB 94.23% 89.28% 
568,387 

Kvasir-SEG 88.40% 81.47% 

After the training process, the next step is to 
evaluate the model using the testing set from both 
datasets to assess the model’s performance in 
segmentation tasks. Table 6 presents the F1-Score 
and IoU values obtained during the evaluation process, 
along with comparisons between the ground truth 
images and the predicted images in this study, as 
shown in Table 7 for the CVC-ClinicDB dataset and the 
Kvasir-SEG dataset. 

Training and validation losses were monitored to 
assess model convergence and detect overfitting. 
Training required 17 seconds per epoch for CVC-
ClinicDB and 31 seconds per epoch for Kvasir-SEG. As 
shown in Fig. 8a and 8b, both training and validation 
losses stabilized after the 40th epoch for both datasets. 
Final training and validation losses were 0.012 and 
0.051 for CVC-ClinicDB, and 0.055 and 0.125 for 
Kvasir-SEG, respectively. 
 

IV. Discussion 
This study introduces DACHalf-UNet, a novel deep 
learning polyp segmentation architecture that balances 
high segmentation accuracy and computational 
efficiency. The performance of DACHalf-UNet will be 
compared with U-Net [26], U-Net++ [15], ResU-Net 
[27], AGU-Net [28], CSAP-UNet [29], PRCNet [10], 
UNeXt [30], and UNeSt [16]. The results presented in 
Table 8 demonstrate the model's effectiveness on the 
CVC-ClinicDB and Kvasir-SEG datasets. The 
DACHalf-UNet achieved an F1-Score of 94.23% and 
IoU of 89.28% on CVC-ClinicDB, and an F1-Score of 
88.40% and IoU of 81.47% on Kvasir-SEG, 
demonstrating high accuracy in polyp region 

CVC-
ClinicDB 

       

       

Kvasir-SEG        

       
 (a) (b) (c) (d) (e) (f)  (g) 

Fig. 7. Qualitative Comparison of Model Ablation (a) Input Image, (b) Ablation 1, (c) Ablation 2, (d) Ablation 
3, (e) Ablation 4, (f) Ablation 5, and (g) Ground Truth 
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segmentation. These results indicate that DACHalf-
UNet is capable of accurately segmenting polyps, even 
in challenging conditions such as low contrast or 
irregular shapes. 

The enhanced segmentation performance 
demonstrates substantial clinical relevance. Improved 
IoU values facilitate precise polyp boundary 
identification, which is essential for accurate size 
assessment and complete endoscopic removal, 
consequently reducing recurrence rates. Enhanced F1-
scores, achieved through better recall, enable 
identification of small or inconspicuous polyps 

frequently overlooked in clinical practice. Furthermore, 
increased precision minimizes false-positive results, 
reducing unnecessary follow-up examinations and 
clinical ambiguity. These advancements collectively 
strengthen diagnostic reliability in colorectal cancer 
screening, support informed surgical decision-making, 
and contribute to improved patient care outcomes. 

The architectural components of DACHalf-UNet 
significantly contributed to its performance. The DSE 
block, placed after the Ghost Modules in the encoder, 
enhanced feature recalibration by emphasizing 
important features. The CASPP module, used in the 

  
(a) (b) 

Fig. 8. Training and Validation Loss on: (a) CVC-ClinicDB and (b) Kvasir-SEG 

 
Table 7. Experiment Results on CVC-ClinicDB and Kvasir-SEG 

Dataset Input Image 
Ground 
Truth 

Predicted 
Image 

F1-Score/IoU 
(%) 

CVC-ClinicDB 

   

98.12/96.31 

   

98.26/96.58 

   

97.95/95.98 

Kvasir-SEG 

   

98.44/96.93 

   

98.10/96.27 

   

97.77/95.64 
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bottleneck and decoder, improved multi-scale feature 
extraction and edge refinement through combined 
channel and spatial attention. Attention Gates in the 
skip connections further refined segmentation by 
focusing on relevant polyp regions and suppressing 
irrelevant features. 

Ablation studies provided valuable insights into the 
contributions of these individual components. The 
proposed method consistently outperformed other 
configurations, highlighting the synergistic effect of 
integrating DSE, CASPP, and attention gate. For 
instance, the comparison between Half-UNet and 
DACHalf-UNet shows substantial improvements in F1-
Score and IoU on both datasets. The qualitative results 
in Fig. 7 further illustrate that the proposed method 
produces more complete and refined segmentation 
masks compared to the ablated versions, aligning more 
closely with the ground truth. 

As shown in Table 8, DACHalf-UNet outperforms 
several state-of-the-art polyp segmentation methods 
on both CVC-ClinicDB and Kvasir-SEG datasets, 
achieving a strong balance of segmentation accuracy 
and efficiency with only 0.56 million parameters and 
30.29 GFLOPs.  

Despite its promising results, this study has several 
limitations. The evaluation was conducted on only two 
public datasets, which may not fully capture the 
diversity of polyp appearances, sizes, and imaging 
conditions encountered in real-world clinical settings. 
Additionally, the use of fixed train, validation, and test 
splits may not adequately reflect performance 
variability across different data distributions. The 
model’s reliance on 2D image segmentation may also 
limit its ability to capture spatial context inherent in 3D 
or video-based data. 

To address these limitations, future research should 
focus on validating the DACHalf-UNet model across 

multiple clinical centers and varied imaging systems to 
ensure its reliability in diverse clinical scenarios. 
Prospective clinical trials are necessary to assess its 
real-world diagnostic value and integration potential. 
Expanding the application of DACHalf-UNet to other 
medical imaging tasks could further demonstrate its 
versatility.  

V. Conclusion 
This study proposes a novel neural network model for 
polyp medical image segmentation with optimal 
performance and improved efficiency. The proposed 
method, Dual Attention and Channel Atrous Spatial 
Pyramid Pooling Half-UNet (DACHalf-UNet) builds 
upon the U-Net architecture by integrating DSE block, 
Attention Gate, CASPP, and ghost module. The 
integration of these components has been shown to 
enhance model performance while maintaining low 
computational cost. The DACHalf-UNet model was 
trained and evaluated on the CVC-ClinicDB and Kvasir-
SEG datasets over 70 epochs. Evaluation on the CVC-
ClinicDB dataset yielded an F1-score of 94.23% and 
IoU of 89.28%, while the Kvasir-SEG dataset achieved 
an F1-score of 88.40% and IoU of 81.47%. DACHalf-
UNet outperformed U-Net, U-Net++, ResU-Net, AGU-
Net, CSAP-UNet, PRCNet, UNeXt, and UNeSt in polyp 
segmentation, achieving higher F1-Score and IoU 
metrics. The proposed method achieved computational 
efficiency with only 0.56 million trainable parameters 
and 30.29 GFLOPs, demonstrating that DACHalf-UNet 
delivers optimal segmentation performance while 
maintaining low computational complexity. For future 
work, DACHalf-UNet can be extended to other medical 
image segmentation tasks such as liver, brain, or lung 
segmentation, explored for real-time deployment in 
clinical settings, optimized through model compression 
techniques, and adapted for 3D volumetric image 
analysis. 

Table 8. Quantitative Comparison with Previous Methods 

Method 
CVC-ClinicDB Kvasir-SEG Trainable 

Parameter F1-Score IoU F1-Score IoU 

U-Net  85.53% 77.26% 82.69% 73.24% 34.53 M 

U-Net++   86.19% 78.19% 86.05% 77.01% 9.16 M 

ResUNet-a  81.33% 70.66% 78.59% 67.09% 13.17 M 

AGU-Net 92.13% 86.50% 85.55% 78.87% 1.17 M 

CSAP-UNet 88.61% 81.54% 84.28% 76.53% 139.70 M 

PRCNet 92.50% 86.90% 79.90% 71.60% 31.17 M 

UNeXt  82.81% 73.85% 81.58% 71.53% 1.47 M 

UNeSt 86.50% 79.09% 82.69% 72.85% 0.92 M 

DACHalf-UNet 
(Proposed Method) 

94.23% 89.28% 88.40% 81.47% 0.56 M 
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