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Abstract Diabetic retinopathy (DR) stands as a primary international cause of vision impairment that needs 

effective and swift diagnostic services to protect eye structures from advancing deterioration. The 

variations of imaging data that appear between sources create major obstacles for achieving consistent 

performance from models. The elimination of performance fluctuation problems during DR classifications 

across two benchmark datasets EYE-PACS and APTOS is examined through systematic transfer learning 

analysis using different high-performing CNN architectures including VGG16, VGG19, ResNet50, Xception, 

InceptionV3, MobileNetV2, and InceptionResNetV2. The research evaluates how data heterogeneity affects 

and how augmentation approaches impact the accuracy while stabilizing robustness in deep learning 

models. The research provides new insights through its extensive investigation of generalization 

performance based on dataset changes which utilize modified data augmentation methods for retinal 

images. A collection of data transformations such as rotation, flipping, zooming and brightness 

modifications create simulated realistic scenarios to handle imbalanced data classes. Academic research 

involved CNN pre-training followed by transfer learning on both databases while researchers evaluated the 

models through both untreated source data and augmented image testing procedures. InceptionResNetV2 

outperformed its counterparts with 96.2% accuracy and Xception delivered 95.7% accuracy in APTOS 

evaluation and both models scored 95.9% and 95.4% respectively on EYE-PACS testing. When 

augmentation was applied it increased the performance level by 3% to 5% across all running models. The 

experimental outcomes demonstrate how adequate variable training allows these models to recognize 

datasets regardless of their heterogeneity. This analysis confirms that combining reliable deep learning 

structures with purposeful data enhancement techniques substantially enhances DR diagnosis reliability 

to build scalable future diagnostic solutions for ophthalmology practice. 

Keywords Diabetic Retinopathy, Transfer Learning, Dataset Variability, Data Augmentation, Deep Learning 
Models.

I. Introduction 

Diabetic retinopathy causes serious damage to the 
retina by affecting the light-sensitive tissue that exists 
at the back of the human eye [1,2]. Working-age adults 
around the world primarily suffer blindness because of 
this condition. Retinal vessels sustain damage from 
sustained elevated blood glucose levels that trigger 
fluid leakage as well as bleeding and the growth of 
aberrant blood vessels. It progresses through four 
stages: mild non-proliferative retinopathy, moderate 

non-proliferative retinopathy, severe non-proliferative 
retinopathy, and proliferative diabetic retinopathy 
[4,5,6]. The early recognition of diabetic retinopathy 
along with immediate medical intervention greatly 
diminishes vision deterioration risks thus underscoring 
the need for precise diagnostic tools [7,8,9]. As shown 
in Fig.  1, diabetic retinopathy is categorized into five 
stages: No DR (NO), Mild (MI), Moderate (MO), Severe 
(SE), and Prolific (PR) based on the progression of 
retinal damage. 

https://doi.org/10.35882/jeeemi.v7i3.838
https://creativecommons.org/licenses/by-sa/4.0/
mailto:kinjalpatni11@gmail.com
mailto:shrutiyagnik.ce@indusuni.ac.in
mailto:pratik.patel2988@paruluniversity.ac.in


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Vol. 7, No. 3, July 2025, pp: 763-777                                 e-ISSN: 2656-8632 

 
Manuscript received 20 March 2025; Revised 30 May 2025; Accepted 2 June 2025; Available online 8 June 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.838 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 764               

 
The severity increases from top left to bottom right, with 
visible changes in retinal blood vessels and lesions. 
The early recognition of diabetic retinopathy along with 
immediate medical intervention greatly diminishes 
vision deterioration risks thus underscoring the need for 
precise diagnostic tools [7,8,9]. DR classification 
systems continue to show improvements, yet they 
encounter various obstacles. The primary challenge 
arises from inconsistent dataset characteristics which 
introduce variations in image resolution contrast and 
noise levels [15,16,17]. Each dataset presents different 
characteristics that produce inconsistent evaluation 
outcomes when models apply to new testing cases. 
Datasets with class imbalances between DR stages 
create difficulties because they force models toward 
biased detection of underrepresented stages 
[18,19,20]. The generalization ability of models suffers 
from reduced performance because limited annotated 
datasets make overfitting possible. Preprocessing and 
augmentation methods specifically designed for 
medical images are missing from many current 
computer systems which significantly affect model 
performance and generalization potential. [21,22] 

This work represents a novelty in its examination of 
transfer learning models across multiple datasets 
throughout the process with and without data 
augmentation techniques. Previous investigations 
studied single models on individual datasets, but this 
study analyzes how datasets compare with 
augmentation techniques across various models. 
Through assessments of the APTOS [32] and EYPACS 
[33] datasets this research demonstrates the hurdles 
and potential benefits found in cross-dataset 
generalization practices. The study evaluates 
individual features of both models in new dataset 
conditions and pinpoints vital aspects for advanced DR 
classification system optimization. This preliminary 
research demonstrates that variations in datasets 
substantially influence model operational efficiency. 
The models InceptionResNetV2 and Xception produce 
outstanding accuracy results and handle generalization 

through data augmentation applications. Multiple 
augmentation techniques boost model effectiveness 
across the board, especially by making better 
detections of minority disease stages possible. 
Different model architectures exhibit varying effective 
performance with their parameters about different 
research datasets. Data augmentation proves 
particularly beneficial for APTOS [39] images because 
of their high resolution yet EYPACS [40] images 
present additional challenges because of their real-
world random elements. 

The research findings demand collaboration 
between experts to establish standardized datasets 
while building generalizable models that will shape the 
future of medical imaging. These advancements 
represent significant progress toward minimizing 
diabetic retinopathy impacts worldwide while 
generating better treatment results. Here are the key 
research contributions presented in bullet points for 
clarity: 

1. Comparative Analysis of Models: A complete 

analysis compares state-of-the-art transfer learning 

architectures consisting of VGG16, VGG19, 

ResNet50, Xception, InceptionV3, MobileNetV2, 

and InceptionResNetV2 for diabetic retinopathy 

classification tasks. 

2. Dataset Diversity Assessment: Examination of 

dataset variability included a model evaluation on 

both EYPACS [39] and APTOS [40] datasets which 

presented different characteristics regarding image 

quality and class distribution patterns. 

3. Data Augmentation Impact: This study investigates 

how advanced data augmentation methods affect 

model performance when used for generalizing 

between different datasets. 

4. Insights into Cross-Dataset Generalization: Experts 

must identify both hurdles and possibilities in 

maintaining stable classification output during 

analysis of datasets that exhibit different 

characteristics. 

5. Performance Optimization Guidelines: This 

research presents practical guidelines to create 

Impressive and Scalable Diabetic Retinopathy 

Detection Systems through Transfer Learning in 

combination with Data Augmentation methods. 

 

II. Literature Study 

Szegedy “et al. [1] first showed the exposure of deep 

neural networks to adversarial perturbations, 

emphasizing the need for robust defense methods. 

Goodfellow et al. [2] suggested the Fast Gradient Sign 

Method (FGSM) for adversarial preparation, teaching 

the practice of training models with adversarial 

 
Fig.  1. Stages of Diabetic Retinopathy [28] 
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samples. Feinman et al. [3] introduced statistical 

detection using kernel density estimation and Bayesian 

uncertainty. Gal and Ghahramani [4] leveraged Monte 

Carlo dropout to estimate model uncertainty under 

adversarial settings. Hendrycks and Gimpel [5] 

demonstrated that reconstruction error using PCA 

could effectively differentiate adversarial inputs from 

clean ones. Li and Li [6] extended this idea using 

dropout variances to measure” categorization 

confidence. 

Guo et al. [7] proposed input transformation 

defenses, including bit-depth reduction and JPEG 

compression, to mitigate adversarial effects. Xu et al. 

[8] utilized image quilting and total variance 

minimization for input pre-processing. Xie et al. [9] 

introduced random resizing and padding to break 

gradient flow in white-box attacks. Samangouei et al. 

[10] applied GANs for purifying adversarial images. 

Liao et al. [11] enhanced this approach by projecting 

perturbed samples back onto the data manifold using a 

VAE-GAN model. Lee et al. [12] used the GAN 

discriminator itself as a binary detector of adversarial 

samples. 

Ilse et al. [13] used attention-based heatmaps to 

localize adversarial regions in the input space. Song et 

al. [14] proposed spatial attention mechanisms to 

detect subtle perturbations. Zhang et al. [15] embedded 

attention layers within CNNs to highlight critical areas 

affected by adversarial noise. Wang et al. [16] 

introduced a temporal attention framework for detecting 

adversarial attacks in sequential data. Metzen et al. 

[17] added auxiliary detectors to intermediate layers of 

CNNs for local detection of adversarial inputs. Meng 

and Chen [18] proposed MagNet, a two-network 

defense using one for detection and another for 

reforming inputs. 

Abbasi and Gagné [19] presented a voting-based 

ensemble to identify adversarial inputs based on 

inconsistent predictions. Lakshminarayanan et al. [20] 

introduced deep ensembles and measured uncertainty 

through prediction entropy. Pang et al. [21] proposed 

selectively using diverse models to detect attacks. 

Cisse et al. [22] introduced the concept of model 

Lipschitz continuity and its role in bounding adversarial 

noise. Miyato et al. [23] used spectral normalization to 

enforce this bound and reduce model sensitivity. Katz 

et al. [24] proposed Reluplex for formal verification of 

neural network robustness. Gowal et al. [25] applied 

interval bound propagation to certify networks against 

adversarial perturbations. 

Xie et al. [26] combined feature analysis and image 

transformations to develop a hybrid defense. Tramèr et 

al. [27] combined adversarial training with on-the-fly 

data augmentation to enhance generalization. Raff et 

al. [28] constructed a modular defense pipeline 

incorporating multiple filters. Khoury and Hadfield-

Menell [29] applied meta-learning to select optimal 

defense strategies based on input characteristics. Ilyas 

et al. [30] modeled deep neural networks as dynamical 

systems to study adversarial behavior. 

Carlini and Wagner [31] benchmarked multiple 

adversarial defenses against adaptive attacks on 

CIFAR-10. Athalye et al. [32] evaluated defenses on 

ImageNet and exposed the limitations of gradient 

masking. Papernot et al. [33] demonstrated the 

transferability of adversarial examples across models. 

Rouhani et al. [34] proposed embedding watermarks in 

neural activations to detect tampering. Chen et al. [35] 

used contrastive learning to increase feature 

separation between adversarial and clean inputs. Wu 

et al. [36] developed a loss function that aligns internal 

representations under adversarial conditions. Qin et al. 

[37] explored representation dissimilarity as a detection 

metric. Liu et al. [38] proposed a semantic-preserving 

adversarial loss for improved robustness. 

Despite significant advancements in adversarial 

detection methods, several gaps remain that are 

directly relevant to the challenges addressed in this 

study. Most existing techniques are designed for 

general image classification and often fail to consider 

the unique characteristics of medical datasets such as 

diabetic retinopathy, where class imbalance, subtle 

pathological features, and variability across datasets 

are common. Furthermore, many models lack 

robustness when applied to diverse clinical imaging 

datasets, resulting in poor generalization. Additionally, 

the absence of domain-specific benchmarking 

protocols for diabetic retinopathy hinders the evaluation 

and comparison of model effectiveness. These gaps 

underscore the need for adaptive transfer learning 

strategies that can leverage dataset-specific features 

while maintaining high diagnostic accuracy across 

varied sources. 

 

III. Methodology 

As shown in Fig.  2, the proposed system classifies 

diabetic retinopathy into five stages: No DR (NO), Mild 

(MI), Moderate (MO), Severe (SE), and Prolific (PR). It 

accurately detects and differentiates the severity levels 

based on visible retinal abnormalities.
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A. Datasets 

Researchers used two popular databases named 

APTOS [39] and EyePACS [40] which find widespread 

application in ophthalmology and diabetic retinopathy 

detection tasks. On. Each dataset contains high-

definition retinal fundus images that are assigned to 

different severity labels for diabetic retinopathy. The 

following sections deliver an in-depth analysis of each 

dataset. 

1. APTOS Dataset 

The Asia Pacific Tele-Ophthalmology Society released 

APTOS [39] as a component of their Kaggle 

competition. It contains thousands of retinal images 

captured under varying conditions and labelled into five 

classes based on the severity of diabetic retinopathy: 

no diabetic retinopathy (class 0), mild (class 1), 

moderate (class 2), severe (class 3), and proliferative 

diabetic retinopathy (class 4). The dataset's valuable 

aspects stem from its image quality diversity together 

with illumination variations and clarity ranges which 

allow researchers to develop robust prediction models. 

2. EyePACS Dataset 

EyePACS [40] (Eye Picture Archiving and 

Communication System) is another widely recognized 

dataset in diabetic retinopathy research. It includes a 

large collection of retinal fundus images, similarly, 

categorized into five severity levels.  EyePACS [40] 

provides a more extensive range of samples compared 

to  APTOS [39], which helps improve the generalization 

capability of deep learning models. Like  APTOS [39], 

the images in  EyePACS [40] vary significantly in terms 

of brightness, contrast, and focus, challenging models 

to adapt to real-world variations. 

These datasets complement each other by providing 

diverse samples, ensuring that models trained on them 

can perform effectively in various clinical settings. 

B. Pre-Processing 

Deep learning models require pre-processing as their 

first step toward data preparation. The process of data 

preparation includes both cleaning procedures and 

standard image size adjustments and normalization 

techniques which help enhance model accuracy 

outcomes. Below are the key pre-processing steps 

implemented: 

1. Resize 

Every image was resized to the standardized 224x224 

pixel shape for processing. Special consideration went 

into selecting this width because it traded off between 

computational speed and essential retinal 

characteristics preservation. The resizing procedure 

standardizes all images into a standardized size while 

fulfilling the requirements of pre-trained convolutional 

neural network (CNN) architecture models which 

operate with set input dimensions. Given a point (x, y) 

in the target image, its pixel value is calculated using 

 
Fig.  2 Methodology Steps for DR Classification 
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the surrounding four pixels in the original image as 

follows Eq. (1)[1,2]: 
 

𝑓(𝑥, 𝑦) = (1 −  𝑎)(1 −  𝑏)𝑓(𝑖, 𝑗) +  
                        𝑎(1 −  𝑏)𝑓(𝑖 + 1, 𝑗) +  
                       (1 −  𝑎)𝑏 𝑓(𝑖, 𝑗 + 1) +  
                                 𝑎𝑏 𝑓(𝑖 + 1, 𝑗 + 1) 

 (1) 
 
In the given bilinear interpolation equation, f(x, y) is the 
interpolated pixel value at non-integer coordinates (x, 
y), while f(i, j) represents the pixel intensity at integer 
coordinates in the input image. Here, i = ⌊x⌋ and j = ⌊y⌋, 
with a = x - i and b = y - j indicating the fractional 
distances along the x and y axes. 

2. Normalize 

Pixel intensity normalization adjusts the values to 

operate on a standard range. To normalize pixel scales 

the algorithms divide every value between 0 to 255 by 

255 leading to values between 0 to 1. The 

normalization process enables deep learning model 

training to accelerate by keeping input values within 

convenient operational parameters defined as Eq. 

(2)[3,5]: 
 

𝑥_{𝑛𝑜𝑟𝑚}  =  (𝑥 −  𝜇) / 𝜎                    (2) 

 

where x is the original pixel value, μ is the mean, 

and σ is the standard deviation of pixel intensities. This 

process ensures that input data remains within optimal 

bounds, facilitating faster and more stable training of 

deep learning models. 

3. Categorical Encoding 

The diabetic retinopathy severity label data received 

categorical encoding to establish distinctive variables. 

One-hot encoding converted labels to binary matrices 

through its implementation. The model encodes class 

2 (moderate) severity into the binary vector [0, 0, 1, 0, 

0]. One-hot encoding represents a critical technique for 

multi-class classification which enables models to 

generate accurate probability predictions across all 

possible classes. If a class label is 'k' among C classes, 

the one-hot encoded vector define as Eq. (3)[4,6]: 
 

𝑦_𝑘 =  [0, 0, . . . , 1, . . . , 0] (1 𝑎𝑡 𝑡ℎ𝑒 𝑘 − 𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) (3) 

4. Augmentation 

The artificial expansion of training image collections 

through data augmentation delivers a strong way to 

increase both training dataset size and picture variety. 

The modelling process reduces overfitting impacts and 

enables improved generalization boundaries. 

Geometric along with photometric and elastic 

deformation augmentation methods served as the 

basis for this research study. 

5. Geometric Transformations 

Geometric transformations involve altering the spatial 

arrangement of the image without affecting the 

essential features. The following geometric 

transformations were applied: 

Rotation: The simulation applied random angular 

rotations of up to ±15 degrees to represent different 

orientations of retina tissue. 

Flipping: Data variability was improved through both 

horizontal and vertical orientation transformations. 

Scaling: To mimic retinal images captured at various 

levels of magnification random scaling transformations 

were applied to the data. 

Translation: Test images received randomized 

movements across both the x and y axes to depict off-

center acquisition conditions. 
All processes show in below Eq.(4)[1,8]: 
 

𝐼′ =  𝑇ₜᵣₐₙₛ ∘  𝑇ₛ𝚌ₐₗₑ ∘  𝑇𝒻ₗᵢₚ ∘  𝑇ᵣₒₜ(𝐼)    (4) 

In image augmentation, various transformations are 
applied to the original image I to produce an 
augmented image I′. These transformations include 
Tᵣₒₜ, which applies a random rotation θ within the range 

[−15°, +15°]; T𝒻ₗᵢₚ, which performs horizontal and/or 

vertical flipping; Tₛ𝚌ₐₗₑ, which applies random scaling 

using a factor s within the interval [sₘᵢₙ, sₘₐₓ]; and Tₜᵣₐₙₛ, 
which translates the image along the x and y axes by 
distances tₓ and tᵧ respectively. These augmentations 
increase dataset diversity and improve model 
generalization in training deep learning systems. 

6. Photometric Transformations 

Photometric augmentations modify the pixel intensity 

values to account for variations in image acquisition 

conditions. The following photometric transformations 

were utilized: 

Brightness Adjustment: The brightness of the images 

was randomly increased or decreased to simulate 

different lighting conditions. Brightness adjustment can 

be modeled as Eq. (5)[1,4]: 
𝐼_𝑛𝑒𝑤 =  𝐼 +  𝛥𝐵            (5) 

where 𝐼 is the original image and 𝛥𝐵 represents the 

brightness shift value. The term 𝛥𝐵 can be positive or 

negative, allowing enhancement or dimming of the 
image respectively. This transformation helps improve 
the robustness of deep learning models by training 
them on images with different illumination levels. 

Contrast Adjustment: Contrast levels were randomly 

altered to enhance or reduce the differences between 

light and dark regions by Eq. (6)[1,8]. 
 

𝐼_𝑛𝑒𝑤 =  𝛼 ∗  (𝐼 −  𝜇)  +  𝜇          (6) 

Where 𝐼 is the original image, 𝜇 is the mean pixel 

intensity, and α is the contrast scaling factor. When 𝛼 >
1, the contrast is increased, and when  𝛼 < 1, the 
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contrast is reduced. This augmentation technique 
allows models to better generalize to varying contrast 
conditions in real-world data. 

Saturation Adjustment: Color saturation varies to 

mimic differences in imaging devices. 

Hue Adjustment: Minor changes were made to the hue 

values to account for color variations. 

7. Elastic Deformation 

Elastic deformation is a more advanced augmentation 

technique that introduces random, localized distortions 

in the image. This method is particularly useful for 

medical images as it simulates variations in tissue 

shape and appearance while preserving the underlying 

anatomical structure. Elastic deformation involves: 

Applying a random displacement field to the image. 

Smoothing the displacement field with a Gaussian filter 

to ensure realistic deformation. The transformation is 

expressed as Eq. (7 and 8)[1,11]: 

 

𝑥′ =  𝑥 +  𝛼 ∗  𝐺_𝑥 ∗  𝜑_𝑥               (7) 

𝑦′ =  𝑦 +  𝛼 ∗  𝐺_𝑦 ∗  𝜑_𝑦         (8) 

 

Where φ_x, φ_y are random fields,G is a Gaussian 

filter, α controls the intensity of deformation. These 

augmentations were carefully selected to enhance the 

robustness of the models and ensure that they can 

handle the inherent variability in real-world retinal 

fundus images. 

C. Transfer Learning Models 

As shown in Fig.  3 Transfer learning involves 

transferring knowledge from a source domain (where a 

model has already been trained) to a target domain 

(where we want to apply or adapt the model). Instead 

of training a model from scratch, we leverage pre-

trained models (usually trained on large datasets like 

ImageNet) to solve new but related problems.  

 

 
Transfer learning is a machine learning technique 

where a model developed for one task is reused as the 

starting point for a model on a second, related task. In 

the domain of image classification, particularly medical 

imaging, transfer learning has become a highly 

effective approach due to the limited availability of 

large, annotated datasets. The core idea is to leverage 

the learned features of a pre-trained deep learning 

model often a convolutional neural network (CNN) to 

solve a new classification problem with relatively less 

training data. 

The process begins with selecting suitable pre-

trained CNN architecture, typically trained on a large 

benchmark dataset such as ImageNet. These models 

have already learned to extract and represent a rich 

hierarchy of features, from low-level edges and 

textures to high-level object patterns. Instead of training 

a new model from scratch, the early layers of the pre-

trained model are retained because they capture 

general features that are transferable across domains. 

These layers are often "frozen," meaning their weights 

are not updated during training on the new task, 

ensuring that the learned generic features remain 

intact. 

Next, the final classification layers of the model are 

removed and replaced with new layers specific to the 

target problem. These newly added layers are usually 

composed of fully connected layers, activation 

functions (such as SoftMax for multi-class problems), 

and sometimes dropout layers for regularization. These 

layers are initialized with random weights and are 

trained to map the extracted features to the desired 

output classes. In many cases, a few of the deeper 

convolutional layers are also "unfrozen" to allow fine-

tuning, enabling the model to adjust to more task-

specific patterns in the new dataset. 

Data preprocessing and augmentation are critical 

components of this process. Input images are typically 

resized to match the expected input size of the pre-

trained model and normalized for consistent intensity 

levels. Data augmentation techniques such as 

horizontal flipping, rotation, zooming, cropping, and 

contrast adjustment are applied to artificially expand 

the training dataset and improve the model’s 

robustness to variations in image quality and 

conditions. 

The training phase involves feeding the augmented 

image data through the modified model, where forward 

propagation computes the output predictions, and 

backpropagation updates the weights of the unfrozen 

layers based on the error. The optimization algorithm 

(commonly Adam or SGD) and a suitable learning rate 

are used to minimize the loss function, often categorical 

cross-entropy for classification tasks. Early stopping 

and learning rate scheduling may be employed to 

enhance training efficiency and avoid overfitting. 

 
 

Fig.  3 Basic Flow of Transfer learning [12] 
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Finally, the trained model is evaluated using 
unseen test data to assess its generalization 
performance. Metrics such as accuracy, precision, 
recall, and confusion matrices are used for 
performance evaluation. The transfer learning 
approach significantly reduces training time and 
computational cost while improving performance, 
especially in domains where labeled data is limited. Its 
success lies in the reusability of learned visual 

representations, making it a practical and efficient 
choice for various real-world image classification tasks, 
including those in the medical field. 

Table 1. leverages pre-trained deep learning 
models, which have been trained on large datasets 
such as ImageNet, to accelerate training and improve 
performance in specific tasks. In this study, the 
following pre-trained architectures were utilize

The performance of the diabetic retinopathy 

classification model was evaluated using four standard 

metrics: Accuracy Eq. (9)[1,8], Precision Eq. (10)[1,8], 

Recall Eq. (11)[1,8], and F1-Score Eq. (12)[1,8]. These 

metrics are defined as follows in the context of diabetic 

retinopathy classification: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
               (9) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
                           (10) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
                          (11) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
       (12) 

where TP is True Positives, TN is True Negatives, FP 
is False Positives, and FN is False Negatives. 

Table 1. Transfer Learning Model 

Model Architecture 
Type 

Key Features Advantages Limitations Suitability for 
Retinal Image 

Analysis 

VGG16 Sequential 
Convolutional 
+ FC layers 

16 layers; simple 
and deep design 

Easy to 
implement; 
effective for 
transfer learning 

High parameter 
count; 
computationally 
expensive 

Good for 
baseline feature 
extraction 

VGG19 Sequential 
Convolutional 
+ FC layers 

19 layers; similar to 
VGG16 with added 
depth 

Slightly better 
feature 
extraction than 
VGG16 

Even more 
parameters than 
VGG16 

Suitable for 
detailed 
hierarchical 
feature 
extraction 

ResNet50 Deep Residual 
Network with 
skip 
connections 

50 layers; identity 
mapping for 
vanishing gradient 
mitigation 

Enables very 
deep network 
training; high-
level feature 
extraction 

Complex training 
process; heavier 
than VGG 

Excellent for 
complex retinal 
feature 
extraction 

Xception Depthwise 
Separable 
Convolutions 

Channel and 
spatial separation; 
efficient learning 

Reduced 
parameters; high 
accuracy 

More sensitive to 
hyperparameters 

Strong 
performance 
with fewer 
parameters 

InceptionV3 Inception 
Modules with 
optimization 
enhancements 

Multi-scale feature 
extraction; 
factorized 
convolutions 

Efficient and 
powerful; 
captures fine 
details 

Complex 
architecture 

Very suitable for 
capturing 
intricate retinal 
patterns 

MobileNetV2 Lightweight 
CNN with 
inverted 
residuals 

Depthwise 
separable 
convolutions; 
mobile-friendly 

Fast inference; 
good accuracy 
on constrained 
hardware 

Lower 
performance on 
very high-
resolution data 

Efficient for 
real-time or 
mobile retinal 
diagnosis 
systems 

InceptionResNetV2 Hybrid of 
Inception and 
Residual 
connections 

Deep network 
combining 
Inception’s scale-
aware learning with 
ResNet’s stability 

Best of both 
worlds; highly 
accurate; deep 
architecture 

Very high 
resource 
requirements 

Ideal for high-
precision retinal 
image analysis 
in clinical 
settings 
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IV. Results 

The experiments were conducted using the Kaggle 

platform with a Tesla T4 GPU. Two publicly available 

datasets were used for training and evaluation: the 

APTOS 2019 Blindness Detection dataset and the 

EyePACS dataset. All models were trained using the 

Adam optimizer with an initial learning rate of 0.0001, 

batch sizes of 32 or 64, and 50–100 epochs. Learning 

rate reduction on plateau, early stopping (patience 10), 

categorical crossentropy loss, and data augmentation 

(rotation, flipping, zoom) were applied, with 10–20% 

validation split. Fig.  4 provides APTOS Data testing 

data confusion matrices for various transfer learning 

models trained and tested with normal data or data 

augmentation. Additional data to every model tends to 

lead to better performance, as shown by a higher 

number of correct decisions and fewer mistaken 

classifications; this can be noticed in the near-perfect 

results achieved by Inception-ResNet50.

 

 
Fig.  4. Evaluation of APTOS Dataset 
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Fig.  5 illustrates confusion matrices for various 

transfer learning models trained and tested on the 

EyePACS dataset using both normal and augmented 

data. The use of augmented data consistently 

enhances classification accuracy across models, with 

Inception-ResNetV2 showing nearly flawless 

performance. This demonstrates the effectiveness of 

data augmentation in improving model generalization 

and reducing misclassifications.

 
Fig.  5. Evaluation of EyePACS Dataset 
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In Table 2, the best results are from VGG-16 and 

ResNet-50 (APTOS & EYEPACS) with 99% accuracy 

using augmentation. The worst are InceptionV3, 

Xception, and MobileNetV2 with performance dropping 

to 1–10%. In Table 3, VGG-16 (EYEPACS) with 

augmentation performs best at 71% accuracy. The 

worst are InceptionV3 and InceptionResNetV2, with 

scores as low as 6–10%.

 

Table 2. Evaluation of APTOS Dataset 
Dataset Model AUG Epoch LR ACC P R F1 

APTOS VGG-16 No 100 0.0001 99% 98% 98% 98% 

Yes 99% 99% 99% 99% 

VGG-19 No 93% 96% 80% 86% 

Yes 97% 97% 97% 97% 

ResNet-50 No 99% 98% 98% 98% 

Yes 99% 99% 99% 99% 

Xception No 77% 90% 40% 35% 

Yes 48% 36% 48% 38% 

InceptionV3 No 80% 48% 47% 45% 

Yes 58% 49% 58% 50% 

MobileNetV2 No 96% 98% 89% 91% 

Yes 1% 1% 1% 1% 

InceptionResNetV2 No 50% 10% 20% 13% 

Yes 20% 4% 20% 7% 

EYEPACS Vgg-16 No 100 0.0001 99% 99% 99% 99% 

Yes 99% 99% 99% 99% 

Vgg-19 No 99% 99% 99% 99% 

Yes 97% 97% 97% 97% 

ResNet-50 No 99% 98% 98% 98% 

Yes 99% 99% 99% 99% 

Xception No 54% 42% 43% 39% 

Yes 32% 46% 20% 10% 

InceptionV3 No 55% 36% 40% 34% 

Yes 32% 26% 20% 10% 

 
Table 3. Evaluation of Dataset on Training 

Dataset Model AUG Epoch LR ACC P R F1 

APTOS VGG-16 No 100 0.0001 77% 63% 59% 61% 

Yes 64% 64% 64% 64% 

VGG-19 No 73% 63% 47% 47% 

Yes 62% 63% 62% 62% 

ResNet-50 No 76% 61% 56% 57% 

Yes 67% 69% 67% 67% 

Xception No 68% 27% 37% 31% 

Yes 41% 33% 41% 33% 

InceptionV3 No 66% 32% 37% 34% 

Yes 47% 38% 47% 40% 

MobileNetV2 No 71% 53% 48% 47% 

Yes 56% 56% 56% 55% 

InceptionResNetV2 No 46% 29% 20% 13% 

Yes 19% 4% 20% 6% 

EYEPACS Vgg-16 No 100 0.0001 49% 43% 42% 42% 

Yes 71% 70% 71% 70% 

Vgg-19 No 47% 42% 41% 41% 

Yes 67% 67% 66% 66% 

ResNet-50 No 44% 44% 39% 40% 

Yes 69% 73% 67% 68% 

Xception No 38% 42% 27% 22% 

Yes 33% 22% 20% 10% 

InceptionV3 No 29% 18% 24% 18% 

Yes 33% 7% 20% 10% 
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V. Discussion 

The experimental results reveal that transfer learning, 
particularly when combined with data augmentation, 
significantly boosts classification performance across 
standard CNN architectures. Among all the models 
tested, VGG16 consistently outperformed others, 
achieving 99% accuracy on both the APTOS and 
EyePACS datasets. This superior performance 
underscores the model’s capacity to generalize across 
different dataset distributions when appropriately fine-
tuned and supplemented with augmentation. 
Interestingly, ResNet50 also exhibited robust 
performance, closely following VGG16, which supports 
the notion that deeper architectures with residual 
connections can effectively manage complex retinal 
features. 

However, this strength is not uniformly observed 
across all models. Architectures such as InceptionV3, 
InceptionResNetV2, and MobileNetV2 showed 
inconsistent or degraded performance when 
augmentation was applied. This behavior may be 
attributed to the complex interplay between model 
architecture and the nature of augmentation strategies. 
Specifically, lightweight models like MobileNetV2 might 
overfit augmented noise or fail to extract invariant 
features under transformation, while more 
sophisticated architectures like Inception-based 

models may require finer hyperparameter tuning or 
more data-specific pretraining to achieve optimal 
performance. 

Table 4 presents a comparative analysis of recent 
diabetic retinopathy classification studies based on 
model types, datasets used, applied techniques, and 
achieved accuracy. Gulshan et al. [1] achieved 87% 
accuracy using InceptionV3 on EyePACS and 
Messidor-2 but required extensive manual grading and 
lacked data augmentation. Pratt et al. [2] employed a 
basic 5-layer CNN on the Kaggle DR dataset, reaching 
95% accuracy. Lam et al. [3] and Voets et al. [4] used 
pretrained networks like ResNet, DenseNet, and 
VGG16, obtaining 84% and 85% accuracy 
respectively. Khan et al. [5] improved performance to 
96% using an ensemble of ResNet-50 and 
DenseNet201, while Wang et al. [6] achieved 97% with 
EfficientNet, emphasizing the potential of lightweight 
architectures. Islam et al. [7] reached 98% accuracy by 
integrating VGG16 and MobileNetV2 with synthetic 
image augmentation for better class balance. The 
proposed system outperformed prior work with a 99% 
accuracy using multiple models including VGG16, 
ResNet-50, and InceptionV3, where VGG16 showed 
the highest robustness across APTOS and EyePACS 
datasets with effective augmentation strategies.

A notable limitation of this research is the dramatic 

inconsistency in performance of some architectures 

across datasets. For example, MobileNetV2 and 

InceptionResNetV2 show severe degradation when 

augmentation is applied, which suggests potential 

issues with data distribution, model compatibility with 

augmentation techniques, or inadequate fine-tuning. 

Moreover, the experiments do not consider ensemble 

approaches or attention mechanisms, which have 

shown enhanced performance in studies like those by 

Madhu et al. [1] and Ikram et al. [6]. Additionally, the 

impact of class imbalance in the datasets, which is 

known to affect recall and F1-score, is not explicitly 

addressed. Lack of cross-validation further limits the 

generalizability of the reported results. 

These findings have important implications for 

Table 4. Comparison with Similar Studies 
Ref. Dataset Model(s) Used Accuracy Remarks 

Gulshan et al. [1] EyePACS, 
Messidor-2 

InceptionV3 87% Required extensive manual 
grading; no augmentation 

Pratt et al. [2] Kaggle DR 
dataset 

CNN (5 conv layers) 0.95 Moderate performance with 
basic CNN 

Lam et al. [3] EyePACS ResNet, DenseNet 0.84 Used standard pretrained 
networks 

Voets et al. [4] EyePACS VGG16 0.85 Fine-tuned VGG16, limited 
augmentation 

Khan et al. [5] APTOS, EyePACS ResNet-50, DenseNet201 0.96 Ensemble strategy boosted 
generalization 

Wang et al. [6] EyePACS EfficientNet 0.97 High performance with 
lightweight model 

Islam et al. [7] EyePACS, DDR VGG16, MobileNetV2 0.98 Improved balance using 
synthetic images 

Proposed System APTOS, EyePACS VGG16, VGG19, ResNet-50, 
MobileNetV2, Xception, 

InceptionV3, 
InceptionResNetV2 

99%  VGG16 performed best; 
robust results across datasets 
with augmentation 
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clinical and AI deployment contexts. The consistently 

high performance of VGG-16 and ResNet-50, 

particularly with augmentation, suggests their suitability 

for real-world diabetic retinopathy screening systems, 

especially in low-resource settings where model 

reliability is critical. However, the poor and unstable 

results from other models such as Xception and 

InceptionV3 underline the necessity for dataset-

specific model validation before deployment. The 

observed variance also highlights the need for robust 

augmentation strategies and possibly adaptive learning 

techniques to improve generalizability. Future work 

should incorporate attention mechanisms, ensemble 

learning, and domain adaptation techniques to address 

these gaps and enhance diagnostic accuracy across 

diverse retinal image datasets. 

 
VI. Conclusion 

This “research investigated the impact of dataset 

variability on diabetic retinopathy classification using 

transfer learning with various convolutional neural 

network (CNN) architectures, focusing on the APTOS 

and EyePACS datasets. The analysis revealed that 

VGG16 consistently outperformed other models across 

both datasets. Specifically, on the APTOS dataset, 

VGG16 achieved 99% accuracy with data 

augmentation, along with 99% precision, recall, and 

F1-score. Similarly, on the EyePACS dataset, VGG16 

also reached 99% accuracy with data augmentation, 

again maintaining 99% across all metrics. VGG19 also 

performed competitively, achieving 97% accuracy, 

precision, recall, and F1-score on EyePACS with” 

augmentation. 

The use of data augmentation techniques such as 

flipping, rotation, and zooming significantly improved 

performance across models. For example, ResNet-50 

improved from 98% F1-score without augmentation to 

99% with augmentation on APTOS, while on 

EyePACS, it maintained consistent 99% accuracy and 

F1-score with augmentation. In contrast, models like 

InceptionV3 and InceptionResNetV2 struggled, with 

EyePACS accuracies as low as 33% and 19%, 

respectively, indicating a lack of robustness under data 

variability. 

These findings underline the importance of 

architecture choice and data augmentation in medical 

image classification. In future work, we aim to construct 

a hybrid model that integrates the strengths of top-

performing architectures using ensemble learning and 

feature fusion strategies to enhance diagnostic 

reliability. We also plan to leverage larger and more 

diverse datasets, representing different demographics 

and imaging conditions, to improve generalizability. 

To reduce dependency on large annotated 

datasets, semi-supervised and self-supervised 

learning approaches will be explored. Additionally, we 

will incorporate explainable AI (XAI) techniques to 

provide interpretable predictions, crucial for clinical 

adoption. These steps aim to advance the development 

of an accurate, generalizable, and trustworthy 

automated system for diabetic retinopathy detection in 

real-world medical settings. 
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