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Abstract The Arithmetic Logic Unit (ALU) serves as a core digital computing element which performs 

arithmetic functions along with logic operations. The normal operation of ALU designs leads to increased 

power consumption because of signal redundancy and continuous operation when new data inputs are 

unavailable. The research implements the Squirrel Search Algorithm (SSA) combined with Swarm 

Intelligence Algorithm (SIA) for 8-bit ALU optimization to achieve maximum resource efficiency alongside 

computational accuracy. The optimization properties of SSA and SIA make them ideal choices for digital 

circuit design applications because they yielded successful results in power-aware systems. The proposed 

method utilizes SSA-based conditional execution paired with SIA-based transition minimization to direct 

operations to execute only during fluctuating input data conditions thus eliminating undesired 

calculations. Studies confirm SSA and SIA function more effectively than distributed clock gating for power 

saving because they enable runtime-dependent optimization without creating significant computational 

overhead. The experimental Xilinx Vivado tests executed on an AMD Spartan-7 FPGA (XC7S50FGGA484) 

running at 100 MHz frequency established that SSA eliminates power consumption from 6 mW to 2 mW, 

and SIA achieves a power level of 4 mW. The SSA algorithm generates worst negative slack (WNS) values 

of 8.740 ns which SIA produces as 6.531 ns improving system timing performance. SSA-optimized ALU 

requires the same number of LUTs as the unoptimized design at 42 LUTs yet SIA uses 50 LUTs because of 

added logical elements. We observe no changes in flip-flop use during SSA where nine FFs remain yet SIA 

shows an increase in its usage up to 29 FFs due to input tracking. The study proves that bio-inspired 

methods create energy-efficient platforms which make them ideal for implementing ALU designs with 

FPGAs. Research studies demonstrate that hybrid swarm intelligence techniques represent an unexplored 

potential to optimize power-efficient architectures thus reinforcing their significance for future high-

performance energy-efficient digital systems. 

Keywords Power-efficient ALU; Swarm Intelligence Algorithm (SIA); Squirrel Search Algorithm (SSA); 

FPGA optimization; Dynamic power reduction; Low-power digital design; Heuristic techniques.

I. Introduction  

The Arithmetic Logic Unit (ALU) serves as a critical 
component in microprocessors, executing essential 
arithmetic and logical operations. However, 
conventional ALU architectures suffer from significant 
power dissipation due to continuous processing cycles 
and redundant signal transitions [1], [2]. Efficient power 
management in digital systems is crucial, particularly in 
embedded systems and FPGA-based designs, where 
power constraints directly impact performance, device 
longevity, and energy efficiency [3], [4], [5], [6], [7]. 
These factors include muscle fatigue [9], force variation 
[10], and forearm orientation [11]. To address the 
growing demand for energy-efficient digital systems, 
researchers have increasingly turned to nature-
inspired optimization algorithms. These bio-inspired 

techniques have demonstrated promising results in 
reducing power consumption, improving battery life, 
and optimizing resource utilization across a range of 
computing and communication systems. For instance, 
the Improved Squirrel Search Algorithm (ISSA) 
enhances the balance between exploration and 
exploitation in optimization problems through dynamic 
strategies like jumping and progressive search 
methods [33]. In energy management applications, 
hybrid and traditional nature-inspired algorithms have 
shown effectiveness in optimizing objectives such as 
emission reduction, peak demand, and operational 
cost, particularly in smart grids and microgrids [34]. 

In the context of wireless sensor networks (WSNs), 
energy-efficient routing protocols remain a major 
research focus due to the challenges posed by 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0002-7407-2520
https://orcid.org/0000-0001-9911-3969
https://orcid.org/0000-0001-9850-5506


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679                                                e-ISSN: 2656-8632 

 
Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 664               

inaccessible deployment environments. Algorithms like 
hybrid Falcon-ACO and Penguin Search Optimization 
have been employed to extend network lifespans and 
reduce energy usage [35], [38]. Clustering techniques, 
cluster head selection, and data aggregation have 
been further enhanced by using Earthworm 
Optimization Algorithm (EWA), Particle Swarm 
Optimization (PSO), and other metaheuristic strategies 
[36], [37]. 

Furthermore, novel routing mechanisms such as 
HPSOPIO integrate PSO and PIO to mitigate energy 
consumption in biologically inspired WSNs while 
improving metrics like packet delivery ratio and network 
lifetime [39]. In the realm of wireless power transfer, 
bio-inspired digital pre-distortion schemes based on 
algorithms like Seagull Optimization and Black Widow 
Optimization have been introduced to tackle hardware 
impairments and improve power conversion efficiency 
[40]. Energy optimization in smartphones is another 
area where nature-inspired methods have made 
significant contributions. The NIPO (Nature Inspired 
Power Optimization) system, for instance, applies 
PSO, ACO, and Cuckoo Search with Levy Flights to 
optimize OLED display power usage in Android-based 
devices. This system not only meets user-defined 
battery lifetime requirements but also demonstrates the 
practical applicability of bio-inspired methods in real-
time environments [41]. The integration of these 
advanced optimization algorithms into digital system 
design, including components like the ALU, opens up 
new possibilities for achieving low-power, high-
efficiency architectures. By leveraging the adaptive, 
distributed, and intelligent behaviours observed in 
natural systems, engineers can develop robust 
solutions to manage power consumption effectively in 
modern electronic devices. 

 

A. Related Work and Research Gap 

Several power optimization strategies have been 
explored for ALU architectures[8], [9], [10], [11], [12], 
[13], [14], [15]. Traditional methods such as clock 
gating and voltage scaling improve power efficiency but 
introduce latency and complexity[7], [16], [17],[18]. 
More recent approaches leverage machine learning 
and heuristic algorithms to dynamically optimize power 
consumption. However, these techniques often require 
extensive computational overhead, making them 
unsuitable for real-time applications. 

   Various heuristic algorithms, including the Squirrel 
Search Algorithm (SSA), Particle Swarm Optimization 
(PSO), and Fish Swarm Optimization Algorithm 
(FSOA), have demonstrated remarkable optimization 
potential across various domains, including digital 
circuit design[19], [20], [21], [22], [23], [24], [25], [26], 
[27]. SSA, in particular, has been widely explored for its 
efficient convergence behavior and adaptive search 

mechanisms[23]. Studies on SSA highlight its 
effectiveness in achieving competitive power savings 
while maintaining computational accuracy[28]. 
However, most existing research does not fully explore 
its limitations in comparison to other heuristic 
techniques. Unlike conventional power-saving 
techniques such as clock gating, the proposed SSA, 
SIA hybrid approach adaptively adjusts execution 
based on input variations, introducing an energy-
efficient framework not previously explored in FPGA-
based ALUs[29], [30], [31]. 

   In parallel, alternative power optimization 
frameworks, such as distributed clock gating, have 
shown significant energy savings (approximately 45%-
50% in 32-bit ALU designs)[16]. However, these 
methods do not leverage swarm intelligence principles, 
limiting their adaptability to dynamic input conditions. 
Additionally, nature-inspired approaches, such as the 
collapse-and-evolve model, have demonstrated power 
and latency improvements but are yet to be integrated 
with swarm-based methodologies[21], [32]. This gap 
indicates the need for comparative studies on hybrid 
optimization techniques, particularly in FPGA-based 
ALU architectures. 

 

B. Research Objective and Contribution 

This research work introduces SIA and SSA integration 
into an 8-bit ALU to achieve power reduction without 
sacrificing execution quality. The proposed method 
achieves power efficiency by integrating adaptive 
search from SSA and SIA transition minimization 
features.  The contributions of this work include: 

1. Introducing SSA-based conditional execution, 

allowing the ALU to process operations only when 

required, reducing unnecessary signal transitions. 

2. Implementing SIA-based transition minimization,  

3. ensuring that computations occur only when inputs 

change, effectively lowering dynamic power 

consumption. 

4. Comparing SSA and SIA with conventional power   

optimization strategies, such as clock gating, to 

evaluate their effectiveness in reducing power 

dissipation. 

5. Analyzing power and timing improvements by 

comparing optimized ALU designs, reinforcing the 

role of nature-inspired algorithms in FPGA-based 

power optimization. 

6. Bridging the research gap in swarm intelligence 

applications for ALU designs, paving the way for 

future developments in hybrid optimization 

frameworks.  

   By addressing these objectives, this research 
underscores the significance of bio-inspired algorithms 
in digital circuit optimization, contributing to enhanced 
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computational efficiency and sustainability in modern 
computing systems. Additionally, this work highlights 
the growing importance of interdisciplinary 
approaches, integrating swarm intelligence with digital 
logic design to develop next-generation power-aware 
computing architectures. 

 

II. Materials and Methods 

A. Data Set and ALU Operations 

In our proposed design, the 8-bit ALU operates on two 

8-bit hexadecimal inputs, referred to as A and B, and 

performs a range of operations defined by a 4-bit 

Operation Code (Op Code). The supported operations 

are grouped into three primary categories. Under 

arithmetic operations, the ALU can perform Addition 

(0000) and Subtraction (0001). Logical operations 

include standard bitwise functions such as AND (0010), 

OR (0011), XOR (0100), and NOT (0101). For bit 

manipulation, the ALU also incorporates Left Shift 

(0110) and Right Shift (0111) capabilities. As illustrated 

in Fig. 1., the ALU architecture is modular, comprising 

distinct functional blocks: an Arithmetic Unit, a Logical 

Unit, a Shifter, and a centralized Control Unit. The 

Control Unit interprets the Op Code and activates the 

corresponding block, ensuring that only one operation 

is performed at a time through a Multiplexer-based 

selection mechanism. Additionally, the ALU produces 

essential status flags, such as the Zero Flag and Carry-

Out, to assist in interpreting computational outcomes. 

This design approach ensures both clarity and control 

in execution, while maintaining flexibility across a wide 

range of operations. 

   Table 1. offers a clear and organized summary of the 
testbench results. It displays the input combinations 
used, the operations performed based on their 
respective opcodes, and the results produced by the 
ALU. It also highlights the states of important flags Zero 
Flag and Carry-Out Flag, which help interpret the 

outcome and accuracy of each operation. This table 
serves as a helpful reference for verifying the ALU’s 
behavior and functionality across different test cases. 

Table 1. Operations of conventional 8-Bit ALU 

design with applied inputs and outputs obtained 

A 
(Hex) 

B 
(Hex) 

Op 
Code 

Operation 
Result 
(Hex) 

Zero 
Flag 

CarryOut 

0F 01 0000 F + 1 10 0 0 

0F 0F 0001 F – F 00 1 0 

0F 03 0010 F AND 3 03 0 - 

0F 03 0011 F OR 3 0F 0 - 

0F 03 0100 F XOR 3 0C 0 - 

0F -- 0101 NOT 1F F0 0 - 

0F -- 0110 F << 1 1E 0 0 

0F -- 0111 F >> 1 07 0 1 

 

ALU processes two 8-bit inputs, A and B, based on a 
4-bit operation code, executing fundamental operations 
such as addition, subtraction, bitwise logical functions 
(AND, OR, XOR, and NOT), as well as logical shift 
operations. For the addition operation (Op Code: 
0000), the ALU computes the sum of A and B, 
producing a result of 10 in hexadecimal, with no 
overflow (CarryOut = 0) and a nonzero output (Zero 
Flag = 0). 

   The subtraction operation (Op Code: 0001) results in 
00 when subtracting two identical values, setting the 
Zero Flag to 1, indicating a zero result, with no borrow 
generated (CarryOut = 0). Logical operations such as 
AND (Op Code: 0010), OR (Op Code: 0011), and XOR 
(Op Code: 0100) correctly produce expected bitwise 
results (03, 0F, and 0C in hexadecimal, respectively), 

with the Zero flag remaining unset as all results are 
nonzero. The NOT operation (Op Code: 0101) inverts 
all bits of A, resulting in F0, with the Zero flag remaining 
0. The shift operations demonstrate the expected 
behavior, where a left shift (Op Code: 0110) doubles 
the value (1E in hexadecimal) without setting the 

 
Fig. 1. Block diagram of conventional ALU design with main operational elements. 
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CarryOut flag, while a right shift (Op Code: 0111) 
halves the value (07 in hexadecimal), capturing the 
least significant bit shift-out in the CarryOut flag 
(CarryOut = 1). These results effectively validate the 
ALU’s capability to handle fundamental arithmetic and 
logical computations while correctly setting status flags 
based on the computed outputs. 

 

B. Swarm Intelligence-Based Optimization 

The Swarm Intelligence Algorithm (SIA) as shown in 
Fig. 2 further enhances power efficiency by ensuring 
computations occur only when inputs change. 

The Swarm Algorithm-Based Power Optimization block 

ensures efficient ALU operation by first checking 

whether the inputs (A, B, Op) have changed compared 

to the previous state using the prev_A, prev_B, and 

prev_Op signals in VHDL. If the inputs remain 

unchanged, redundant calculations are avoided, 

reducing dynamic power consumption. The decision 

block determines whether the inputs have changed; if 

they have, the ALU executes the required operation, 

while if they remain the same, the system retains the 

previous state, preventing unnecessary power usage. 

When inputs change, the ALU processing unit performs 

operations such as addition, subtraction, AND, OR, 

XOR, NOT, shift left, and shift right based on the 

opcode (Op), updating the output (Result) only when 

computation occurs. If the inputs remain unchanged, 

the system holds the last computed result without 

reprocessing, thereby minimizing power wastage, 

which is implemented in VHDL by skipping execution. 

The output handling mechanism updates Result, 

CarryOut, and Zero flags only when new computations 

take place; otherwise, previous values are retained, 

effectively preventing redundant updates and 

optimizing power consumption. 

   The Swarm Intelligence Algorithm is applied in the 
ALU Design through the conditional check mechanism 
that prevents redundant computations. The key 
algorithm implementing this are: 

 

Algorithm 1. Storing Previous Inputs for Power 
Optimization 
Step 1 Initialize an 8-bit variable prev_A 

with all bits set to 0. 

Step 2 Initialize an 8-bit variable prev_B 

with all bits set to 0. 

Step 3 Initialize a 4-bit variable 

prev_Opcode with all bits set to 0. 

Step 4 On each clock cycle, retrieve the 

current values of A, B, and Opcode. 

Step 5 Compare current inputs with prev_A, 

prev_B, and prev_Opcode. 

Step 6 If all inputs are unchanged. 

Step 7 Skip the ALU operation to reduce 

unnecessary power usage. 

Step 8 Else: 

Step 9  Execute the ALU operation. 

Step 10 Update prev_A, prev_B, and 

prev_Opcode with current values. 

 

This algorithm (Algorithm 1) enables the ALU to 
remember previous inputs and avoid executing 
redundant operations when no changes have occurred. 
This strategy aligns with Swarm Intelligence principles, 
where agents (e.g., ants, birds) make efficient 
decisions based on memory of past environments. For 
example, ants avoid revisiting unproductive paths by 
remembering pheromone trails, and birds adjust their 
flight based on historical movement patterns. Similarly, 
the ALU conserves energy by recognizing repeated 
inputs and preventing unnecessary switching activity, 
thereby reducing dynamic power consumption. 

 

 

 

 
Fig. 2. Block diagram of SIA applied to conventional ALU design for dynamic power reduction. 
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Algorithm 2. Checking for Input Changes 

Step 1 Check if any of the following 

conditions are true: 
 

    A ≠ prev_A 
 

    B ≠ prev_B 
 

    Op ≠ prev_Op 

Step 2 If any of the above conditions are 

true: 

Step 3     Update prev_A with the current 

value of A. 

Step 4     Update prev_B with the current 

value of B. 

Step 5     Update prev_Op with the current 

value of Op. 

 

   This algorithm (Algorithm 2) ensures that the ALU 
only reacts when a change in input values occurs. If all 
inputs remain the same as in the previous cycle, no 
update is made, avoiding redundant processing and 
saving power. This approach is inspired by the 
behavior of bees in swarm intelligence systems, where 
scouts only search for new flower sources when the 
existing ones become insufficient or depleted. In the 
same way, the ALU minimizes unnecessary effort by 
executing computations only when a meaningful 
change occurs in the operational environment. 

 

Algorithm 3. Avoiding Redundant Computation 

Step 1 If none of the input values have 

changed (i.e., A = prev_A, B = prev_B, 

and Op = prev_Op): 

Step 2 Do nothing — retain the current values 

of prev_A, prev_B, and prev_Op. 

   When the ALU detects that input values have not 
changed from the previous cycle, it avoids executing 
any operation. This prevents unnecessary logic 
transitions, thereby reducing dynamic power 
consumption. This strategy (Algorithm 3) mirrors the 
behavior of bird flocks in swarm intelligence systems 
when there are no external disturbances or threats, 
birds conserve energy by maintaining formation and 
minimizing movement. Likewise, the ALU remains idle 
when the computational context is stable, optimizing 
power usage without sacrificing performance. 

 

Algorithm 4. Power Optimization through Conditional 
Execution 

Step 1 
Based on the value of Op, perform the 

corresponding operation: 

Step 2 If Op = "0000" (Addition): 

Step 3 
Set temp_var = 0 & A_unsigned + 

B_unsigned. 

Step 4 
Assign lower 8 bits of temp_var to 

temp_result. 

Step 5 
Assign 9th bit of temp_var to 

carry_out_temp. 

Step 6 If Op = "0001" (Subtraction): 

Step 7 
Set temp_var = 0 & A_unsigned - 

B_unsigned. 

Step 8 Assign lower 8 bits to temp_result. 

Step 9 Assign 9th bit to carry_out_temp. 

Step 10 If Op = "0010" (AND): 

Step 11 Set temp_result = A AND B. 

Step 12 If Op = "0011" (OR): 

Step 13 Set temp_result = A OR B. 

Step 14 If Op = "0100" (XOR): 

Step 15 Set temp_result = A XOR B. 

Step 16 If Op = "0101" (NOT): 

Step 17 Set temp_result = bitwise NOT of A. 

Step 18 If Op = "0110" (Logical Shift Left): 

Step 19 
Shift A_unsigned left by 1 bit and 

assign to temp_result. 

Step 20 
Set carry_out_temp = original MSB of 

A (bit 7). 

Step 21 If Op = "0111"(Logical Shift Right): 

Step 22 
Shift A_unsigned right by 1 bit and 

assign to temp_result. 

Step 23 
Set carry_out_temp = original LSB of 

A (bit 0). 

Step 24 For all other cases: 

Step 25 
Do nothing, retain existing values 

of temp_result and carry_out_temp. 

 

   The ALU only executes operations when inputs 
change, thereby reducing unnecessary switching and 
power wastage. This (Algorithm 4) mimics how swarm 
systems dynamically allocate tasks, ensuring only 
necessary computations occur just as ants focus on 
foraging only when food sources change.  

 

1. Hardware Architecture Modifications for SIA 

The integration of SIA into the ALU design introduces 
several architectural enhancements to support 
transition-aware computation. Specifically, three 8-bit 
and 4-bit registers are added to store the previous 
cycle’s values of A, B, and Op, named prev_A, prev_B, 
and prev_Op respectively. These are used in 
conjunction with comparator logic, which evaluates 
whether the current inputs differ from their stored 
counterparts. A decision control block processes the 
comparison results and asserts a control signal 
(compute_enable), allowing or bypassing ALU 
operation accordingly. The main ALU data path is 
conditionally gated based on compute_enable, 
ensuring the execution unit only triggers when 
necessary. Additionally, output control logic ensures 
that the result (Result[7:0]), CarryOut, and Zero flag are 
updated only when the operation executes, otherwise 
retaining their previous values. This results in a 
conditional execution flow that reduces unnecessary 
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toggling and thus dynamic power. These logic additions 
are reflected in the increased usage of flip-flops and 
LUTs as reported in Section III.D. 

 

2. Configuration and Tuning Parameters for SIA 
Implementation 

The implementation of the Swarm Intelligence 
Algorithm (SIA) in hardware is intentionally simplified 
for FPGA integration. Rather than using population-
based or probabilistic metaheuristic models, the tuning 
of SIA is achieved through hardware control constructs. 

Specifically, the prev_A, prev_B, and prev_Op 
registers store previous-cycle values, and their current 
counterparts are compared using fixed comparator 
logic. This comparison determines whether the 
compute_enable signal is asserted to trigger ALU 
computation. 

The design ensures input change detection at the byte 
level for A and B, and at the nibble level for the 4-bit 
opcode. The configuration was validated through 
iterative synthesis trials to minimize unnecessary 
toggling and optimize power consumption without 
compromising functionality. No runtime-adjustable 
parameters or heuristic weights were used, which helps 
maintain deterministic and resource-efficient behavior 
suitable for FPGA-based environments. The 
optimization process guided by SIA primarily targets 
power minimization, while ensuring that timing slack 
and hardware resource usage remain within 
acceptable bounds. 

 

C. SSA-Based Power Optimization 

The Squirrel Search Algorithm (SSA) is an evolutionary 
optimization technique inspired by the foraging 
behavior of squirrels. In this study, SSA is integrated 
into the ALU to enable conditional execution and 
prevent unnecessary transitions, reducing dynamic 
power dissipation. 

   The Block diagram in Fig. 3. illustrates the power 
optimization process of an ALU using the Squirrel 
Search Algorithm (SSA). The system receives input 
signals, which are processed through SSA-based 
power optimization to minimize energy consumption. A 
decision-making step evaluates whether the enable 
signal is active, if yes, the ALU processing units 
execute computations, generating outputs. If the 
enable signal is inactive, the system retains its previous 
state, preventing unnecessary power usage. This 
approach ensures adaptive power optimization by 

dynamically managing computations, leading to 
reduced total on-chip power consumption without 
compromising performance. SSA is Integrated into 
proposed ALU Design through the following way: 

 

Algorithm 5. Conditional Execution to Reduce 
Switching Power 

Step 1 Check if enable is equal to 1. 

Step 2 If true: 

Step 3 Check if Op, A, or B differ from their 

previous values. 

Step 4   If any input has changed: 

Step 5 Execute the ALU operation 

corresponding to Op. 

Step 6 Update prev_Op, prev_A, and prev_B. 

Step 7 Else: 

Step 8 Do nothing, retain previous result to 

avoid unnecessary toggling. 

Step 9 Else: 

Step 10 Skip computation entirely, the 

circuit remains idle. 

 
    This algorithm (Algorithm 5) ensures that ALU 
operations are gated by an enable signal and only 
proceed if inputs have changed. It minimizes dynamic 
power consumption by avoiding unnecessary 
computation and signal toggling a common cause of 
energy waste in digital circuits. 

 
Fig. 3. Block diagram of SSA applied to conventional ALU design for dynamic power reduction. 
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   This logic aligns with the behavior of the Squirrel 
Search Algorithm (SSA), where squirrels adjust their 
foraging actions based on environmental cues and 
energy states. In this context, the enable signal acts 
like a trigger, similar to a squirrel’s decision to forage 
only when resources or conditions demand it. This bio-
inspired control helps maintain system efficiency and 
adaptive responsiveness in hardware systems. 

 

Algorithm 6. Preventing Unnecessary Signal 
Transitions 

Step 1 If reset = 1: 

Step 2 Set temp_result = all 0s (reset ALU 

output to prevent unnecessary 

updates). 

Step 3  Set CarryOut = 0 (clear carry out to 

prevent redundant transition). 

Step 4 Else: 

Step 5 Keep temp_result unchanged (preserve 

previous ALU output). 

Step 6 Set CarryOut = carry_out_temp (reuse 

stored carry value to prevent 

toggling). 

Step 7 Check the value of temp_result: 

Step 8 If temp_result = 0: 

Step 9 Set Zero flag = 1 (indicates ALU 

output is zero). 

Step 10 Else: 

Step 11 Set Zero flag = 0 (indicates ALU 

output is non-zero). 

 

   This algorithm (Algorithm 6) ensures the ALU avoids 
unnecessary changes when a reset is triggered or 
when retaining the same result is sufficient. By 
preserving previous outputs and preventing signal 
toggling unless strictly needed, the system significantly 
reduces dynamic power. This mirrors the behavior of 
squirrels in the Squirrel Search Algorithm (SSA), which 
conserve energy by minimizing movement when 
external conditions (like food availability or 
environmental risk) do not demand action. Similarly, 
the ALU holds state unless change is necessary, 
optimizing performance for low-power digital systems.  
   To optimize power consumption in the ALU, 
computations should only be triggered when 
necessary. Activating the ALU solely in response to 
valid operation codes minimizes unnecessary 
switching, aligning with energy-efficient conditional 
execution. The following algorithm illustrates this 
selective computation approach. Algorithm 7 ensures 
that the ALU performs computations only when valid 
operational codes are received. If no matching 
operation code is detected, the ALU retains its previous 
output, reducing unnecessary activity and switching 
and therefore, power consumption. This mimics 
Squirrel Search Algorithm (SSA) behavior, where 
squirrels only exert effort (such as switching trees or 

exploring new food zones) when a meaningful change 
in the environment justifies it. In the same way, the ALU 
avoids engaging computation hardware unless a valid 
Op code necessitates it, leading to smarter and more 
energy-efficient processing. 
 

Algorithm 7. ALU Operations Executed Only When 
Necessary 

 
1. Hardware Architecture Modifications for SSA 
The implementation of SSA in the ALU architecture 
involves a simpler modification compared to SIA. A 
global enable control signal is introduced to govern 
whether the ALU performs computation during a given 
clock cycle. If enable is deasserted, the ALU remains 
idle, preserving its previous output state without 
performing any operation. This gating mechanism is 
implemented via a conditional wrapper around the 
execution unit, which checks enable before initiating 
the operation based on Op, A, and B. A reset path is 
also included to explicitly clear the result and flags 
when required, preventing residual toggling. This 
approach eliminates unnecessary computation cycles, 
minimizing internal switching activity and thereby 
reducing dynamic power. Since the design does not 
require input comparison or history tracking, the 
resource overhead is minimal, as supported by the 
resource data in Section III.D. 
 

Step 1 
Check the value of Op to determine the 

ALU operation. 

Step 2 If Op = “0000” (Addition): 

Step 3 
   Extend A and B with a leading 0 to 

form 9-bit values. 

Step 4    Compute A + B. 

Step 5 
   Store lower 8 bits of the result in 

temp_result. 

Step 6 
   Store the 9th bit (carry-out) in 

carry_out_temp. 

Step 7 Else if Op = “0001” (Subtraction): 

Step 8 
   Extend A and B with a leading 0 to 

form 9-bit values. 

Step 9    Compute A – B. 

Step 10 
   Store lower 8 bits of the result in 

temp_result. 

Step 11 
   Store the 9th bit (borrow/carry-out) 

in carry_out_temp. 

Step 12 Else: 

Step 13 
   Do nothing, keep temp_result and 

carry_out_temp unchanged. 
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2. Configuration and Tuning Parameters for SSA 
Implementation 
In the hardware abstraction of the Squirrel Search 
Algorithm (SSA), the conditional execution behavior is 
modeled through a global enable signal. This signal is 
asserted externally or internally based on whether the 
system requires ALU computation, emulating the 
squirrel's energy-aware response to environmental 
triggers. The SSA implementation does not involve 
iterative search, dynamic movement modeling, or 
weight-based decisions. Instead, it uses a gated 
execution mechanism with simple control logic that 
wraps around the ALU datapath. The control logic was 
configured to bypass computation when enable is low, 
effectively eliminating dynamic power consumption 
during idle cycles. This approach avoids traditional 
metaheuristic hyperparameters and offers a 
deterministic control model optimized for resource-
constrained digital systems. The optimization process 
guided by SSA primarily targets power minimization, 
while ensuring that timing slack and hardware resource 
usage remain within acceptable bounds. 
 

C. Integration into FPGA Design Flow 

The SSA and SIA algorithms were integrated into the 
FPGA design flow using Xilinx Vivado 2023.1, targeting 
an AMD Spartan-7 (xc7s6csga225) FPGA operating at 
100 MHz. The process began with designing a 
conventional 8-bit ALU in VHDL, followed by functional 
simulation, synthesis, and implementation to establish 
baseline values for power, timing, and resource 
utilization. Subsequently, SSA and SIA were applied 
sequentially to the ALU design. Each algorithm 
generated optimized control parameters, which were 
incorporated through VHDL generics and conditional 
logic without altering the functional behavior. These 

modified versions were tested using the same 
simulation, synthesis, and implementation steps as the 
baseline. 
   Custom XDC constraints were used to support low-
power features such as clock gating and timing control. 
Power analysis was performed using Vivado’s in-built 
power analyzer after implementation. This consistent, 
tool-supported flow allowed direct comparison of 
conventional, SSA-optimized, and SIA-optimized 
designs. The approach is portable to other toolchains 
by adapting constraints and configuration logic, 
supporting practical adoption in diverse FPGA 
environments. 
 

III. Results 

A. Power Analysis 

Power consumption was measured for three ALU 
configurations: 

•  Baseline (Unoptimized ALU) 

•  SSA-Optimized ALU 

•  SIA-Optimized ALU 

 

The Table 2. and Fig. 4. presents the power reduction 
results of an ALU design before and after applying 
optimization techniques using the Swarm Intelligence 
Algorithm and the Squirrel Search Algorithm. Before 
optimization, the total on-chip power consumption was 
24 mW, with dynamic power at 6 mW and static power 
at 18 mW. After applying the Swarm Intelligence 
Algorithm, dynamic power reduced to 4 mW, leading to 
a total on-chip power consumption of 22 mW. Further 
optimization using the Squirrel Search Algorithm 

Table 2. Power Analysis (in mW) of conventional 8-Bit ALU design before optimization and after 
optimization  

ALU Design 
Clocks 
(mW) 

Signals 
(mW) 

Logic 
(mW) 

I/O (mW) 
Dynamic 

Power (mW) 
Static Power 

(mW) 

Total   
On-chip 
Power 
(mW) 

Before 
optimization 

 

0.48 
 

0.3 0.24 
 
 

4.98 
 

6 18 24 

After Swarm 
Intelligence 
Algorithm 

 

0.56 
 

0.32 0.24 
 

2.88 
 

4 18 22 

After Squirrel 
Search 

Algorithm 
 

0.4 
 

0.22 0.18 
 

1.2 
 

2 18 20 
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resulted in a more significant reduction, with dynamic 
power dropping to 2 mW and total on-chip power 
decreasing to 20 mW. This indicates that the Squirrel 
Search Algorithm achieved superior power efficiency 
compared to the Swarm Intelligence Algorithm, making 
it a more effective technique for reducing ALU power 
consumption. 

 

B. Functional Simulation Results 

The Table 3. and Fig. 5. illustrate the power reduction 
effectiveness of the Swarm Intelligence Algorithm and 
the Squirrel Search Algorithm in optimizing ALU 
design. Initially, before optimization, the dynamic power 
consumption was 6 mW, while the total on-chip power 
was 24 mW. After applying the Swarm Intelligence 
Algorithm, dynamic power reduced to 4 mW, achieving 
a 33.33% reduction, while the total on-chip power 
dropped to 22 mW, reflecting an 8.33% reduction. The 
Squirrel Search Algorithm provided even greater 
efficiency, reducing dynamic power to 2 mW (66.66% 
reduction) and lowering total on-chip power to 20 mW, 
marking a 16.66% reduction. These results highlight 

that while both optimization techniques improve power 
efficiency, the Squirrel Search Algorithm outperforms 

 
Fig. 4. a) Power dissipation of ALU before optimization b) Power dissipation of ALU after applying 
Swarm Intelligence Algorithm c) Power dissipation of ALU design after applying Squirrel Search 
Algorithm d) Power dissipation comparison across each design 

 

 

 

Table 3. Percentage Reduction of Dynamic Power and Total On-chip Power of ALU Design before and 
after optimization  

ALU Design 
Dynamic 
Power (mW) 

% Reduction in 
Dynamic Power 

Static 
Power 
(mW) 

Total On-chip 
Power (mW) 

% Reduction in 
Total On-chip 
Power 

Before 
optimization 
 

6 --- 18 24 --- 

After 
application of 
Swarm 
Intelligence 
 

4 33.33 18 22 8.33 

After 
application of 
Squirrel 
Search 
Algorithm 
 

2 66.66 18 20 16.66 

 

 

Fig. 5. Comparison of Percentage Reduction in 
Power Consumption of ALU Design with 
impact of SIA and SSA. 
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the Swarm Intelligence Algorithm in minimizing 
dynamic and total on-chip power consumption. 

   The functional simulation results shown in Fig. 6. 
provide a comprehensive validation of the ALU's 

correct functionality following power optimization 
through the Swarm Intelligence Algorithm (SIA) and the 
Squirrel Search Algorithm (SSA). The waveform 
depicts a series of test vectors applied to the ALU 
inputs, A[7:0], B[7:0], and the operation selector 
Op[3:0], across multiple clock cycles. As seen in the 
figure, A holds a constant value of 0F, while B changes 
sequentially from 01 to 07, and Op increments from 0 
to 7, representing various arithmetic and logic 
operations such as addition, subtraction, bitwise AND, 
OR, and shifts. 
   The corresponding output signal Result[7:0] 
accurately reflects the expected outcome of each 
operation. For instance, when Op = 0, the ALU might 
be performing addition, producing a valid result (10) for 
inputs A = 0F and B = 01. Similarly, in later cycles, 
results like 00, 0C, and F0 appear, aligning with 
expected logic outputs for the given operations and 
operands. These consistent results indicate that the 
core computational logic of the ALU is unaffected by 
the applied optimization algorithms. 
   In addition to correct result generation, the simulation 
also shows appropriate transitions in the CarryOut and 
Zero flags. These status flags are crucial for indicating 
arithmetic overflow and zero results, respectively. For 
example, a high CarryOut bit in certain addition 
operations and the Zero flag being asserted when the 
result is 00 serve as further proof that the control logic 
remains intact and fully functional. 

   Most importantly, this functional validation confirms 
that despite the significant reductions in dynamic and 
total on-chip power consumption, as outlined in the 
earlier power analysis figures, the optimized ALU 

design maintains full operational integrity. The 
waveform effectively demonstrates that the ALU 
continues to produce correct outputs under varied input 
conditions, thereby ensuring that power optimization 
does not compromise computational correctness, 
which is a critical requirement in low-power, high-
performance digital systems. 
 

C. Timing Analysis 

The timing analysis results for the ALU design, 
following the application of the Squirrel Search 
Algorithm (SSA) and the Swarm Intelligence Algorithm 
(SIA), are presented in the Table 4. and visually 
illustrated in the accompanying Fig. 7. chart. These 
metrics provide not only a snapshot of the design's 
timing performance, but also offer valuable insight into 
the resilience and stability of the optimized circuits 
under worst-case operating conditions. In FPGA-based 
systems, achieving timing closure is a critical 
milestone, especially when targeting higher operating 
frequencies or integrating complex logic. The ability of 
an optimization algorithm to maintain or improve timing 

margins while reducing power consumption is a strong 
indicator of its practical viability. Among the evaluated 
metrics, the Worst Negative Slack (WNS) stands out as 
a key parameter that quantifies how close the design is 
to violating setup timing requirements.  The SSA-
optimized design shows a WNS of 8.740 ns, a 
noticeable improvement over the 6.531 ns observed 

 
Fig. 6. Functional Simulation Result of conventional 8-Bit ALU design before and after application of SIA 
and SSA indicating unchanged design functionality  
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with the SIA-optimized version. This larger positive 

slack margin not only reflects better timing closure but 
also indicates greater immunity to timing variations due 
to PVT (Process, Voltage, and Temperature) 
fluctuations, which are especially critical in mission-
critical or high-performance designs. Both optimization 
approaches achieve a Total Negative Slack (TNS) of 
0.000 ns, confirming that there are no setup violations 
and that the design meets its timing requirements 
across all paths at the given clock constraint. 

In terms of hold analysis, the Worst Hold Slack (WHS) 
is also more favorable under SSA, measuring 0.395 ns 
versus 0.250 ns for SIA. This indicates that SSA better 
handles short-path conditions, which can be a common 
challenge in pipelined or deeply parallel architectures. 
The Total Hold Slack (THS) is 0.000 ns for both, 
showing that no hold-time violations are present in 
either design. Together, these results confirm that both 
SSA and SIA maintain timing correctness, but SSA 
delivers more comfortable timing margins, making the 
design more robust against dynamic timing 
uncertainties such as crosstalk, temperature drift, or 
slight clock jitter. 
   These findings are particularly significant when 
considered alongside the earlier power analysis, which 

demonstrated SSA's superior energy-saving 
capabilities. The combination of enhanced timing 
reliability and reduced power consumption makes SSA 
a compelling optimization approach for FPGA designs 
where performance, power efficiency, and operational 
reliability must be carefully balanced. This dual benefit 
is especially valuable in applications such as 
biomedical devices, portable health monitors, 
implantable systems, and real-time diagnostic 
platforms, where low power consumption is critical to 
prolong battery life, and deterministic performance is 
essential for ensuring accurate, timely processing of 
physiological signals. By achieving both energy 
efficiency and timing robustness, SSA-optimized 
designs are well-suited for modern biomedical 
applications that demand compact, low-power, yet 
high-performance computing at the edge. 

D. Resource Utilization Analysis 

To evaluate the hardware efficiency of the ALU 
implementations after applying the Squirrel Search 
Algorithm (SSA) and the Swarm Intelligence Algorithm 
(SIA), the FPGA resource utilization was analyzed in 
terms of Look-Up Tables (LUTs), Flip-Flops (FFs), 
Digital Signal Processing (DSP) slices, and Block 
RAMs (BRAMs). These resources are critical indicators 
of how efficiently the design maps onto the FPGA 
fabric. The detailed results are summarized in Table 5. 
and visualized in Fig. 8., which compares the resource 
usage across the unoptimized ALU, the SIA-optimized 
version, and the SSA-optimized design. 
   From the analysis, the SSA-optimized ALU 
demonstrates notable hardware efficiency by retaining 
the same number of LUTs (42) as the unoptimized 
version. This indicates that the SSA method achieves 
power and timing improvements without increasing the 
logic complexity of the design, making it ideal for 
resource-constrained applications. In contrast, the SIA-

Table 4. WNS and WHS details of ALU design 
with SSA and SIA optimization  

Metric 
SSA 
Optimization 

SIA 
Optimization 

Worst Negative 
Slack (WNS) 

8.740 ns 6.531 ns 

Total Negative 
Slack (TNS) 

0.000 ns 0.000 ns 

Worst Hold 
Slack (WHS) 

0.395 ns 0.250 ns 

Total Hold Slack 
(THS) 

0.000 ns 0.000 ns 

 

Fig. 8. FPGA Resource Utilization for 
conventional 8-Bit ALU, SIA and SSA optimized 
design  

Fig. 7. Comparison Worst Negative Slack and 
Worst Hold Slack of ALU design for both SIA and 
SSA  
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optimized ALU consumes 50 LUTs, suggesting 
additional logic overhead, most likely due to the 
inclusion of comparison modules or internal buffers 
used to track or store past values during the 
optimization process. 

   A significant difference is observed in Flip-Flop (FF) 
usage. While both the unoptimized and SSA-optimized 
ALUs utilize only 9 FFs, the SIA-optimized ALU spikes 
to 29 FFs. This increase can be attributed to the internal 
state retention mechanisms in the SIA approach, where 
prior inputs or intermediate states may be stored to 
influence current decisions. In comparison, SSA 
maintains a minimalist FF footprint by reducing 
unnecessary transitions and avoiding additional state-
holding logic, thereby preserving energy and reducing 
switching activity. In terms of DSP slice usage, all three 
designs fall within a narrow range, with the unoptimized 
and SIA-optimized ALUs both using 32 DSP slices, and  
the SSA-optimized version slightly increasing to 33.  
  This minor increment in SSA may stem from the use 
of additional control or conditional execution logic 
required for dynamic power optimization. However, the 
increase is minimal and does not substantially impact 
the overall resource footprint, especially when weighed 
against SSA's power and timing benefits. 
  Finally, the Block RAM (BRAM) usage remains 
consistent across all three ALU versions, with 1 BRAM 
utilized. This consistency confirms that neither 
optimization strategy imposes extra memory demands 
or alters the data storage architecture of the ALU 
design. Maintaining a fixed BRAM count is particularly 
important in FPGAs with limited on-chip memory 
capacity. 

 

IV. Discussion 

This study provides a detailed and practical evaluation 
of two bio-inspired optimization techniques, Squirrel 
Search Algorithm (SSA) and Swarm Intelligence 
Algorithm (SIA), when applied to an 8-bit ALU 
implemented on an FPGA platform. The primary goal 

was to assess the impact of these techniques on 
dynamic power reduction, timing performance, and 
hardware resource efficiency, offering a benchmark for 
integrating swarm-based methods into real-world low-
power digital circuit design. 

The findings clearly demonstrate that both SSA and 
SIA significantly improve energy efficiency and timing 
performance in FPGA-based 8-bit ALUs. SSA achieved 
a 66.66% reduction in dynamic power, lowering 
consumption from 6 mW to 2 mW, with no increase in 
hardware resources. This gain stems from its 
conditional execution strategy, which triggers 
computation only when new input data is detected, 
minimizing unnecessary transitions and switching 
activity. In contrast, SIA delivered a 33.33% power 
reduction, dropping from 6 mW to 4 mW, by leveraging 
input-tracking mechanisms to suppress redundant 
processing. However, this benefit came with increased 
hardware usage: 50 LUTs and 29 FFs compared to 42 
LUTs and 9 FFs for both SSA and the baseline. The 
resource overhead in SIA results from added logic for 
storing and comparing input states. 
 
Table 6. Comparative Analysis of Overhead vs. 
Power Savings 

Metric 
Unoptimized 
ALU 

SSA-
Optimized 
ALU 

SIA-
Optimized 
ALU 

Flip-Flops 
(FFs) 

9 9 29 

LUTs 42 42 50 

Dynamic 
Power (mW) 

6 2 4 

Total On-Chip 
Power (mW) 

24 20 22 

Dynamic 
Power 
Savings (%) 

— 66.7% 33.3% 

Resource 
Overhead 
(FF+LUT) 

— 0 
+28 
(FF+LUT) 

 
Timing analysis reinforces SSA’s advantage, showing 
a Worst Negative Slack (WNS) of 8.740 ns, compared 
to 6.531 ns for SIA. Both designs satisfied all 
constraints, with zero Total Negative Slack (TNS) and 
Total Hold Slack (THS), confirming that setup and hold 
conditions were met across all timing paths. SSA’s 
superior WNS suggests greater robustness under 
process-voltage-temperature (PVT) variations, making 
it more reliable for time-sensitive or constrained 
applications. These results are quantitatively 

Table 5. Resource Utilization details of ALU 
design with and without optimization methods  

Resource 
Unoptimized 
ALU 

SIA-
Optimized 
ALU 

SSA-
Optimized 
ALU 

LUTs 
Used 

42 50 42 

Flip-Flops 
(FFs) 

9 29 9 

DSP 
Slices 

32 32 33 

BRAMs 1 1 1 
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summarized in Table 6., highlighting the trade-off 
between power savings and resource overhead. 
   The data confirms that SSA delivers the most efficient 
power-to-resource trade-off, offering maximum 
dynamic power savings with zero additional resource 
cost, making it highly suitable for low-power, area-
constrained FPGA implementations. Meanwhile, SIA 
incurs an overhead of 28 logic elements, including a 
19.0% increase in LUTs and a 222.2% increase in FFs. 
Despite this, the overall utilization remains negligible 
relative to the FPGA’s available capacity of 3750 LUTs 
and 7500 FFs. Thus, SIA remains a viable option in 
systems where moderate energy savings, enhanced 
input-state awareness, and fine-grained control are 
desirable, and where area constraints are less critical. 

These outcomes align with trends observed in 
related research. A low-powered, self-testable ALU 
design was presented in [1], focusing on energy-
efficient architecture and fault detection capabilities. 
While the study in [1] emphasized power efficiency, it 
did not explore optimization through swarm intelligence 
or bio-inspired algorithms. Similarly, swarm-based 
circuit optimization was discussed in [24], where 
moderate improvements in area and energy efficiency 
were reported. However, as with [1], the work in [24] 
was limited to theoretical evaluation and lacked 
practical implementation or post-synthesis hardware 
validation. In contrast, the present study bridges this 
gap by verifying SSA and SIA-based optimizations 
through synthesis and simulation on an AMD Spartan-
7 FPGA (xc7s6csga225), thereby demonstrating their 
real-world applicability. 

While the results are promising, there are several 
limitations to consider. The analysis was confined to an 
8-bit ALU, and further validation is needed to 
understand how these techniques scale with more 
complex architectures, such as 16-bit or 32-bit ALUs or 
digital signal processing blocks. The adaptive 
principles behind SSA and SIA, conditional execution 
and transition minimization, are conceptually scalable 
to larger data paths, and thus hold promise for power 
savings in wider architectures. Additionally, like many 
bio-inspired algorithms, SSA and SIA may exhibit 
sensitivity to initial parameter settings, which could 
impact convergence speed and solution quality, 
especially in larger or more complex architectures. 
Future work will explore adaptive parameter tuning and 
hybrid strategies to mitigate these challenges. 
However, our current findings indicate that scaling may 
introduce challenges including increased control logic 
complexity, higher resource utilization, and more 
demanding timing closure due to longer critical paths 
and wider input-tracking mechanisms, especially 
notable in the SIA implementation. To overcome these, 
future work should explore hierarchical or pipelined 
control schemes, and investigate hybrid SSA-SIA 
models to balance power reduction with manageable 

hardware overhead, ensuring practical applicability to 
complex digital designs.  
   Moreover, power measurements were performed 
using static testbenches; the effectiveness of SSA and 
SIA under dynamically varying workloads, as 
encountered in real-world applications, remains 
unexplored. SIA also introduces additional design 
complexity due to its reliance on input history tracking, 
which may complicate timing closure in larger or high-
speed pipelines. Furthermore, the study lacks 
hardware co-simulation or empirical power 
measurement using physical instrumentation, which 
would provide more comprehensive validation of power 
claims under realistic operating conditions. 
   While our study provides valuable insights into power 
reduction through SSA and SIA optimization using 
Vivado’s static power estimation tools, it is important to 
acknowledge limitations in measurement accuracy. 
The current power analysis relies primarily on post-
synthesis simulation data, which may not fully capture 
dynamic power variations, transient switching effects, 
or real-world environmental influences such as 
temperature fluctuations and voltage noise. To 
enhance the fidelity and applicability of power 
measurements, future work should explore the 
integration of real-time on-chip power monitoring 
capabilities. This could involve utilizing FPGA-
embedded power sensors or  Power Monitor IP cores 
to collect live power consumption data under dynamic 
operating conditions. Additionally, coupling these with 
external measurement instruments or hardware-in-the-
loop testing setups would provide a more 
comprehensive validation framework. Such 
approaches would enable a deeper understanding of 
the effectiveness of bio-inspired optimization 
techniques in real-world scenarios, ensuring that power 
savings translate accurately from simulation to practical 
deployment. 
   Despite these limitations, the implications of this work 
are significant. SSA, in particular, stands out as a 
practical solution for ultra-low-power, resource-efficient 
digital systems, including wearable biomedical 
monitors, portable diagnostics, and IoT edge-
computing platforms. These systems require both tight 
timing constraints and low energy budgets, conditions 
under which SSA demonstrates clear advantages. 
Additionally, this research opens pathways for future 
exploration into hybrid optimization models. For 
example, combining SSA’s conditional execution with 
SIA’s input transition detection could lead to a more 
adaptive and fine-tuned optimization strategy. Such 
hybrid approaches may prove especially useful in 
scenarios requiring real-time responsiveness with 
dynamically fluctuating workloads, including AI-based 
edge devices and smart health monitoring systems. 
These bio-inspired techniques not only extend 
traditional low-power design methods but offer adaptive 
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capabilities that static techniques like clock gating 
cannot provide, making them well-suited for real-time, 
data-driven digital systems. 
   The current implementation of SSA and SIA 
algorithms is based on static analysis, where the 
optimization process is performed offline using 
representative input scenarios. While this enables 
effective design-time power minimization, the 
algorithms do not adapt dynamically to variations in 
input patterns, workload fluctuations, or environmental 
conditions. In practical real-time systems, such 
adaptability could enhance robustness and efficiency. 
Future research can explore integrating real-time 
monitoring and adaptive optimization strategies, 
enabling SSA and SIA to respond dynamically to 
operational changes. 
   However, integrating SSA and SIA, or extending 
them into more complex hybrid models, also introduces 
potential challenges that must be carefully considered. 
Combining multiple bio-inspired techniques increases 
the design complexity, as each optimization layer adds 
its own control logic and state management 
requirements. For instance, simultaneously 
implementing SSA’s enable-based conditional 
execution and SIA’s input change detection may lead 
to overlapping or redundant logic paths, complicating 
RTL design and timing coordination. Additionally, these 
hybrid methods may face convergence challenges, 
especially when optimization goals compete or interact 
nonlinearly, potentially requiring careful tuning of 
parameters and heuristics to avoid suboptimal or 
unstable behavior. The overhead introduced by 
combined logic may also impact resource utilization 
and timing closure, particularly in high-speed or 
resource-constrained environments. As current FPGA 
synthesis tools are primarily optimized for conventional 
low-power techniques, integrating hybrid swarm-based 
logic may demand custom synthesis constraints, 
testbenches, and verification strategies to ensure 
correct and efficient implementation. Future research 
should therefore focus not only on demonstrating the 
effectiveness of such models but also on developing 
scalable and maintainable frameworks that balance 
power savings with implementation feasibility. 
 
V. Conclusion 

The aim of this study was to design a power-efficient 8-
bit ALU by applying the Swarm Intelligence Algorithm 
(SIA) and the Squirrel Search Algorithm (SSA) for 
optimization. The goal was to reduce power dissipation 
while maintaining performance in terms of resource 
utilization and timing. The main findings of the study 
showed a significant reduction in power dissipation with 
the application of both optimization algorithms. The 
Swarm Intelligence Algorithm (SIA) reduced dynamic 
power dissipation to 4 mW and the total on-chip power 

dissipation to 22 mW, while the Squirrel Search 
Algorithm (SSA) achieved even better results with 
dynamic power at 2 mW and total on-chip power at 20 
mW. These results demonstrate a notable 
improvement in power efficiency compared to the 
unoptimized ALU, which had a dynamic power 
dissipation of 6 mW and total on-chip power of 24 mW. 

   In terms of resource utilization, the SSA-optimized 
ALU required fewer LUTs and flip-flops (42 LUTs and 9 
flip-flops) compared to the SIA-optimized ALU (50 
LUTs and 29 flip-flops). Despite this, the SIA-optimized 
ALU exhibited better timing performance, as indicated 
by a smaller Worst Hold Slack (WHS) value of 0.250 
ns, compared to 0.395 ns for the SSA-optimized ALU. 
Both optimization methods resulted in Total Negative 
Slack (TNS) and Total Hold Slack (THS) values of 
0.000 ns, indicating no timing violations. 

   Overall, both optimization methods successfully 
reduced power dissipation, improved timing, and 
utilized resources effectively, with the SSA optimization 
providing the best overall results in terms of power 
efficiency. Future research can focus on developing 
hybrid models that combine SSA and SIA, leveraging 
the strengths of both techniques to achieve enhanced 
power efficiency while optimizing resource utilization. 
By integrating the conditional execution strategy of 
SSA with the redundant computation minimization of 
SIA, a more balanced and efficient power optimization 
framework can be established. Additionally, further 
investigations can explore the scalability of SSA and 
SIA in larger ALU architectures, such as 16-bit or 32-
bit designs, to evaluate performance trade-offs, 
computational efficiency, and power savings in more 
complex digital systems. Another promising direction 
involves AI-assisted adaptive optimization, where 
machine learning techniques can be integrated with 
swarm intelligence algorithms to enable dynamic, real-
time power management. This would allow FPGA-
based ALUs to intelligently adjust power consumption 
based on workload variations, leading to more energy-
efficient and adaptive computing architectures. 
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