
Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679 e-ISSN: 2656-8632

Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
 663

RESEARCH ARTICLE OPEN ACCESS

Power-Efficient 8-Bit ALU Design Using Squirrel
Search and Swarm Intelligence Algorithms

Ashish Pasaya , Sarman Hadia , and Kiritkumar Bhatt

Gujarat Technological University, Ahmedabad, India

Corresponding author: Sarman Hadia (e-mail: asso_s_k_hadia@gtu.edu.in), Author(s) Email: Ashish Pasaya
(e-mail: ashishec447@gmail.com, Kiritkumar Bhatt (e-mail: krbhatt2022@gmail.com)

Abstract The Arithmetic Logic Unit (ALU) serves as a core digital computing element which performs

arithmetic functions along with logic operations. The normal operation of ALU designs leads to increased

power consumption because of signal redundancy and continuous operation when new data inputs are

unavailable. The research implements the Squirrel Search Algorithm (SSA) combined with Swarm

Intelligence Algorithm (SIA) for 8-bit ALU optimization to achieve maximum resource efficiency alongside

computational accuracy. The optimization properties of SSA and SIA make them ideal choices for digital

circuit design applications because they yielded successful results in power-aware systems. The proposed

method utilizes SSA-based conditional execution paired with SIA-based transition minimization to direct

operations to execute only during fluctuating input data conditions thus eliminating undesired

calculations. Studies confirm SSA and SIA function more effectively than distributed clock gating for power

saving because they enable runtime-dependent optimization without creating significant computational

overhead. The experimental Xilinx Vivado tests executed on an AMD Spartan-7 FPGA (XC7S50FGGA484)

running at 100 MHz frequency established that SSA eliminates power consumption from 6 mW to 2 mW,

and SIA achieves a power level of 4 mW. The SSA algorithm generates worst negative slack (WNS) values

of 8.740 ns which SIA produces as 6.531 ns improving system timing performance. SSA-optimized ALU

requires the same number of LUTs as the unoptimized design at 42 LUTs yet SIA uses 50 LUTs because of

added logical elements. We observe no changes in flip-flop use during SSA where nine FFs remain yet SIA

shows an increase in its usage up to 29 FFs due to input tracking. The study proves that bio-inspired

methods create energy-efficient platforms which make them ideal for implementing ALU designs with

FPGAs. Research studies demonstrate that hybrid swarm intelligence techniques represent an unexplored

potential to optimize power-efficient architectures thus reinforcing their significance for future high-

performance energy-efficient digital systems.

Keywords Power-efficient ALU; Swarm Intelligence Algorithm (SIA); Squirrel Search Algorithm (SSA);

FPGA optimization; Dynamic power reduction; Low-power digital design; Heuristic techniques.

I. Introduction

The Arithmetic Logic Unit (ALU) serves as a critical
component in microprocessors, executing essential
arithmetic and logical operations. However,
conventional ALU architectures suffer from significant
power dissipation due to continuous processing cycles
and redundant signal transitions [1], [2]. Efficient power
management in digital systems is crucial, particularly in
embedded systems and FPGA-based designs, where
power constraints directly impact performance, device
longevity, and energy efficiency [3], [4], [5], [6], [7].
These factors include muscle fatigue [9], force variation
[10], and forearm orientation [11]. To address the
growing demand for energy-efficient digital systems,
researchers have increasingly turned to nature-
inspired optimization algorithms. These bio-inspired

techniques have demonstrated promising results in
reducing power consumption, improving battery life,
and optimizing resource utilization across a range of
computing and communication systems. For instance,
the Improved Squirrel Search Algorithm (ISSA)
enhances the balance between exploration and
exploitation in optimization problems through dynamic
strategies like jumping and progressive search
methods [33]. In energy management applications,
hybrid and traditional nature-inspired algorithms have
shown effectiveness in optimizing objectives such as
emission reduction, peak demand, and operational
cost, particularly in smart grids and microgrids [34].

In the context of wireless sensor networks (WSNs),
energy-efficient routing protocols remain a major
research focus due to the challenges posed by

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0002-7407-2520
https://orcid.org/0000-0001-9911-3969
https://orcid.org/0000-0001-9850-5506

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679 e-ISSN: 2656-8632

Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
 664

inaccessible deployment environments. Algorithms like
hybrid Falcon-ACO and Penguin Search Optimization
have been employed to extend network lifespans and
reduce energy usage [35], [38]. Clustering techniques,
cluster head selection, and data aggregation have
been further enhanced by using Earthworm
Optimization Algorithm (EWA), Particle Swarm
Optimization (PSO), and other metaheuristic strategies
[36], [37].

Furthermore, novel routing mechanisms such as
HPSOPIO integrate PSO and PIO to mitigate energy
consumption in biologically inspired WSNs while
improving metrics like packet delivery ratio and network
lifetime [39]. In the realm of wireless power transfer,
bio-inspired digital pre-distortion schemes based on
algorithms like Seagull Optimization and Black Widow
Optimization have been introduced to tackle hardware
impairments and improve power conversion efficiency
[40]. Energy optimization in smartphones is another
area where nature-inspired methods have made
significant contributions. The NIPO (Nature Inspired
Power Optimization) system, for instance, applies
PSO, ACO, and Cuckoo Search with Levy Flights to
optimize OLED display power usage in Android-based
devices. This system not only meets user-defined
battery lifetime requirements but also demonstrates the
practical applicability of bio-inspired methods in real-
time environments [41]. The integration of these
advanced optimization algorithms into digital system
design, including components like the ALU, opens up
new possibilities for achieving low-power, high-
efficiency architectures. By leveraging the adaptive,
distributed, and intelligent behaviours observed in
natural systems, engineers can develop robust
solutions to manage power consumption effectively in
modern electronic devices.

A. Related Work and Research Gap

Several power optimization strategies have been
explored for ALU architectures[8], [9], [10], [11], [12],
[13], [14], [15]. Traditional methods such as clock
gating and voltage scaling improve power efficiency but
introduce latency and complexity[7], [16], [17],[18].
More recent approaches leverage machine learning
and heuristic algorithms to dynamically optimize power
consumption. However, these techniques often require
extensive computational overhead, making them
unsuitable for real-time applications.

 Various heuristic algorithms, including the Squirrel
Search Algorithm (SSA), Particle Swarm Optimization
(PSO), and Fish Swarm Optimization Algorithm
(FSOA), have demonstrated remarkable optimization
potential across various domains, including digital
circuit design[19], [20], [21], [22], [23], [24], [25], [26],
[27]. SSA, in particular, has been widely explored for its
efficient convergence behavior and adaptive search

mechanisms[23]. Studies on SSA highlight its
effectiveness in achieving competitive power savings
while maintaining computational accuracy[28].
However, most existing research does not fully explore
its limitations in comparison to other heuristic
techniques. Unlike conventional power-saving
techniques such as clock gating, the proposed SSA,
SIA hybrid approach adaptively adjusts execution
based on input variations, introducing an energy-
efficient framework not previously explored in FPGA-
based ALUs[29], [30], [31].

 In parallel, alternative power optimization
frameworks, such as distributed clock gating, have
shown significant energy savings (approximately 45%-
50% in 32-bit ALU designs)[16]. However, these
methods do not leverage swarm intelligence principles,
limiting their adaptability to dynamic input conditions.
Additionally, nature-inspired approaches, such as the
collapse-and-evolve model, have demonstrated power
and latency improvements but are yet to be integrated
with swarm-based methodologies[21], [32]. This gap
indicates the need for comparative studies on hybrid
optimization techniques, particularly in FPGA-based
ALU architectures.

B. Research Objective and Contribution

This research work introduces SIA and SSA integration
into an 8-bit ALU to achieve power reduction without
sacrificing execution quality. The proposed method
achieves power efficiency by integrating adaptive
search from SSA and SIA transition minimization
features. The contributions of this work include:

1. Introducing SSA-based conditional execution,

allowing the ALU to process operations only when

required, reducing unnecessary signal transitions.

2. Implementing SIA-based transition minimization,

3. ensuring that computations occur only when inputs

change, effectively lowering dynamic power

consumption.

4. Comparing SSA and SIA with conventional power

optimization strategies, such as clock gating, to

evaluate their effectiveness in reducing power

dissipation.

5. Analyzing power and timing improvements by

comparing optimized ALU designs, reinforcing the

role of nature-inspired algorithms in FPGA-based

power optimization.

6. Bridging the research gap in swarm intelligence

applications for ALU designs, paving the way for

future developments in hybrid optimization

frameworks.

 By addressing these objectives, this research
underscores the significance of bio-inspired algorithms
in digital circuit optimization, contributing to enhanced

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679 e-ISSN: 2656-8632

Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
 665

computational efficiency and sustainability in modern
computing systems. Additionally, this work highlights
the growing importance of interdisciplinary
approaches, integrating swarm intelligence with digital
logic design to develop next-generation power-aware
computing architectures.

II. Materials and Methods

A. Data Set and ALU Operations

In our proposed design, the 8-bit ALU operates on two

8-bit hexadecimal inputs, referred to as A and B, and

performs a range of operations defined by a 4-bit

Operation Code (Op Code). The supported operations

are grouped into three primary categories. Under

arithmetic operations, the ALU can perform Addition

(0000) and Subtraction (0001). Logical operations

include standard bitwise functions such as AND (0010),

OR (0011), XOR (0100), and NOT (0101). For bit

manipulation, the ALU also incorporates Left Shift

(0110) and Right Shift (0111) capabilities. As illustrated

in Fig. 1., the ALU architecture is modular, comprising

distinct functional blocks: an Arithmetic Unit, a Logical

Unit, a Shifter, and a centralized Control Unit. The

Control Unit interprets the Op Code and activates the

corresponding block, ensuring that only one operation

is performed at a time through a Multiplexer-based

selection mechanism. Additionally, the ALU produces

essential status flags, such as the Zero Flag and Carry-

Out, to assist in interpreting computational outcomes.

This design approach ensures both clarity and control

in execution, while maintaining flexibility across a wide

range of operations.

 Table 1. offers a clear and organized summary of the
testbench results. It displays the input combinations
used, the operations performed based on their
respective opcodes, and the results produced by the
ALU. It also highlights the states of important flags Zero
Flag and Carry-Out Flag, which help interpret the

outcome and accuracy of each operation. This table
serves as a helpful reference for verifying the ALU’s
behavior and functionality across different test cases.

Table 1. Operations of conventional 8-Bit ALU

design with applied inputs and outputs obtained

A
(Hex)

B
(Hex)

Op
Code

Operation
Result
(Hex)

Zero
Flag

CarryOut

0F 01 0000 F + 1 10 0 0

0F 0F 0001 F – F 00 1 0

0F 03 0010 F AND 3 03 0 -

0F 03 0011 F OR 3 0F 0 -

0F 03 0100 F XOR 3 0C 0 -

0F -- 0101 NOT 1F F0 0 -

0F -- 0110 F << 1 1E 0 0

0F -- 0111 F >> 1 07 0 1

ALU processes two 8-bit inputs, A and B, based on a
4-bit operation code, executing fundamental operations
such as addition, subtraction, bitwise logical functions
(AND, OR, XOR, and NOT), as well as logical shift
operations. For the addition operation (Op Code:
0000), the ALU computes the sum of A and B,
producing a result of 10 in hexadecimal, with no
overflow (CarryOut = 0) and a nonzero output (Zero
Flag = 0).

 The subtraction operation (Op Code: 0001) results in
00 when subtracting two identical values, setting the
Zero Flag to 1, indicating a zero result, with no borrow
generated (CarryOut = 0). Logical operations such as
AND (Op Code: 0010), OR (Op Code: 0011), and XOR
(Op Code: 0100) correctly produce expected bitwise
results (03, 0F, and 0C in hexadecimal, respectively),

with the Zero flag remaining unset as all results are
nonzero. The NOT operation (Op Code: 0101) inverts
all bits of A, resulting in F0, with the Zero flag remaining
0. The shift operations demonstrate the expected
behavior, where a left shift (Op Code: 0110) doubles
the value (1E in hexadecimal) without setting the

Fig. 1. Block diagram of conventional ALU design with main operational elements.

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679 e-ISSN: 2656-8632

Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
 666

CarryOut flag, while a right shift (Op Code: 0111)
halves the value (07 in hexadecimal), capturing the
least significant bit shift-out in the CarryOut flag
(CarryOut = 1). These results effectively validate the
ALU’s capability to handle fundamental arithmetic and
logical computations while correctly setting status flags
based on the computed outputs.

B. Swarm Intelligence-Based Optimization

The Swarm Intelligence Algorithm (SIA) as shown in
Fig. 2 further enhances power efficiency by ensuring
computations occur only when inputs change.

The Swarm Algorithm-Based Power Optimization block

ensures efficient ALU operation by first checking

whether the inputs (A, B, Op) have changed compared

to the previous state using the prev_A, prev_B, and

prev_Op signals in VHDL. If the inputs remain

unchanged, redundant calculations are avoided,

reducing dynamic power consumption. The decision

block determines whether the inputs have changed; if

they have, the ALU executes the required operation,

while if they remain the same, the system retains the

previous state, preventing unnecessary power usage.

When inputs change, the ALU processing unit performs

operations such as addition, subtraction, AND, OR,

XOR, NOT, shift left, and shift right based on the

opcode (Op), updating the output (Result) only when

computation occurs. If the inputs remain unchanged,

the system holds the last computed result without

reprocessing, thereby minimizing power wastage,

which is implemented in VHDL by skipping execution.

The output handling mechanism updates Result,

CarryOut, and Zero flags only when new computations

take place; otherwise, previous values are retained,

effectively preventing redundant updates and

optimizing power consumption.

 The Swarm Intelligence Algorithm is applied in the
ALU Design through the conditional check mechanism
that prevents redundant computations. The key
algorithm implementing this are:

Algorithm 1. Storing Previous Inputs for Power
Optimization
Step 1 Initialize an 8-bit variable prev_A

with all bits set to 0.

Step 2 Initialize an 8-bit variable prev_B

with all bits set to 0.

Step 3 Initialize a 4-bit variable

prev_Opcode with all bits set to 0.

Step 4 On each clock cycle, retrieve the

current values of A, B, and Opcode.

Step 5 Compare current inputs with prev_A,

prev_B, and prev_Opcode.

Step 6 If all inputs are unchanged.

Step 7 Skip the ALU operation to reduce

unnecessary power usage.

Step 8 Else:

Step 9 Execute the ALU operation.

Step 10 Update prev_A, prev_B, and

prev_Opcode with current values.

This algorithm (Algorithm 1) enables the ALU to
remember previous inputs and avoid executing
redundant operations when no changes have occurred.
This strategy aligns with Swarm Intelligence principles,
where agents (e.g., ants, birds) make efficient
decisions based on memory of past environments. For
example, ants avoid revisiting unproductive paths by
remembering pheromone trails, and birds adjust their
flight based on historical movement patterns. Similarly,
the ALU conserves energy by recognizing repeated
inputs and preventing unnecessary switching activity,
thereby reducing dynamic power consumption.

Fig. 2. Block diagram of SIA applied to conventional ALU design for dynamic power reduction.

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679 e-ISSN: 2656-8632

Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
 667

Algorithm 2. Checking for Input Changes

Step 1 Check if any of the following

conditions are true:

 A ≠ prev_A

 B ≠ prev_B

 Op ≠ prev_Op

Step 2 If any of the above conditions are

true:

Step 3 Update prev_A with the current

value of A.

Step 4 Update prev_B with the current

value of B.

Step 5 Update prev_Op with the current

value of Op.

 This algorithm (Algorithm 2) ensures that the ALU
only reacts when a change in input values occurs. If all
inputs remain the same as in the previous cycle, no
update is made, avoiding redundant processing and
saving power. This approach is inspired by the
behavior of bees in swarm intelligence systems, where
scouts only search for new flower sources when the
existing ones become insufficient or depleted. In the
same way, the ALU minimizes unnecessary effort by
executing computations only when a meaningful
change occurs in the operational environment.

Algorithm 3. Avoiding Redundant Computation

Step 1 If none of the input values have

changed (i.e., A = prev_A, B = prev_B,

and Op = prev_Op):

Step 2 Do nothing — retain the current values

of prev_A, prev_B, and prev_Op.

 When the ALU detects that input values have not
changed from the previous cycle, it avoids executing
any operation. This prevents unnecessary logic
transitions, thereby reducing dynamic power
consumption. This strategy (Algorithm 3) mirrors the
behavior of bird flocks in swarm intelligence systems
when there are no external disturbances or threats,
birds conserve energy by maintaining formation and
minimizing movement. Likewise, the ALU remains idle
when the computational context is stable, optimizing
power usage without sacrificing performance.

Algorithm 4. Power Optimization through Conditional
Execution

Step 1
Based on the value of Op, perform the

corresponding operation:

Step 2 If Op = "0000" (Addition):

Step 3
Set temp_var = 0 & A_unsigned +

B_unsigned.

Step 4
Assign lower 8 bits of temp_var to

temp_result.

Step 5
Assign 9th bit of temp_var to

carry_out_temp.

Step 6 If Op = "0001" (Subtraction):

Step 7
Set temp_var = 0 & A_unsigned -

B_unsigned.

Step 8 Assign lower 8 bits to temp_result.

Step 9 Assign 9th bit to carry_out_temp.

Step 10 If Op = "0010" (AND):

Step 11 Set temp_result = A AND B.

Step 12 If Op = "0011" (OR):

Step 13 Set temp_result = A OR B.

Step 14 If Op = "0100" (XOR):

Step 15 Set temp_result = A XOR B.

Step 16 If Op = "0101" (NOT):

Step 17 Set temp_result = bitwise NOT of A.

Step 18 If Op = "0110" (Logical Shift Left):

Step 19
Shift A_unsigned left by 1 bit and

assign to temp_result.

Step 20
Set carry_out_temp = original MSB of

A (bit 7).

Step 21 If Op = "0111"(Logical Shift Right):

Step 22
Shift A_unsigned right by 1 bit and

assign to temp_result.

Step 23
Set carry_out_temp = original LSB of

A (bit 0).

Step 24 For all other cases:

Step 25
Do nothing, retain existing values

of temp_result and carry_out_temp.

 The ALU only executes operations when inputs
change, thereby reducing unnecessary switching and
power wastage. This (Algorithm 4) mimics how swarm
systems dynamically allocate tasks, ensuring only
necessary computations occur just as ants focus on
foraging only when food sources change.

1. Hardware Architecture Modifications for SIA

The integration of SIA into the ALU design introduces
several architectural enhancements to support
transition-aware computation. Specifically, three 8-bit
and 4-bit registers are added to store the previous
cycle’s values of A, B, and Op, named prev_A, prev_B,
and prev_Op respectively. These are used in
conjunction with comparator logic, which evaluates
whether the current inputs differ from their stored
counterparts. A decision control block processes the
comparison results and asserts a control signal
(compute_enable), allowing or bypassing ALU
operation accordingly. The main ALU data path is
conditionally gated based on compute_enable,
ensuring the execution unit only triggers when
necessary. Additionally, output control logic ensures
that the result (Result[7:0]), CarryOut, and Zero flag are
updated only when the operation executes, otherwise
retaining their previous values. This results in a
conditional execution flow that reduces unnecessary

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679 e-ISSN: 2656-8632

Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
 668

toggling and thus dynamic power. These logic additions
are reflected in the increased usage of flip-flops and
LUTs as reported in Section III.D.

2. Configuration and Tuning Parameters for SIA
Implementation

The implementation of the Swarm Intelligence
Algorithm (SIA) in hardware is intentionally simplified
for FPGA integration. Rather than using population-
based or probabilistic metaheuristic models, the tuning
of SIA is achieved through hardware control constructs.

Specifically, the prev_A, prev_B, and prev_Op
registers store previous-cycle values, and their current
counterparts are compared using fixed comparator
logic. This comparison determines whether the
compute_enable signal is asserted to trigger ALU
computation.

The design ensures input change detection at the byte
level for A and B, and at the nibble level for the 4-bit
opcode. The configuration was validated through
iterative synthesis trials to minimize unnecessary
toggling and optimize power consumption without
compromising functionality. No runtime-adjustable
parameters or heuristic weights were used, which helps
maintain deterministic and resource-efficient behavior
suitable for FPGA-based environments. The
optimization process guided by SIA primarily targets
power minimization, while ensuring that timing slack
and hardware resource usage remain within
acceptable bounds.

C. SSA-Based Power Optimization

The Squirrel Search Algorithm (SSA) is an evolutionary
optimization technique inspired by the foraging
behavior of squirrels. In this study, SSA is integrated
into the ALU to enable conditional execution and
prevent unnecessary transitions, reducing dynamic
power dissipation.

 The Block diagram in Fig. 3. illustrates the power
optimization process of an ALU using the Squirrel
Search Algorithm (SSA). The system receives input
signals, which are processed through SSA-based
power optimization to minimize energy consumption. A
decision-making step evaluates whether the enable
signal is active, if yes, the ALU processing units
execute computations, generating outputs. If the
enable signal is inactive, the system retains its previous
state, preventing unnecessary power usage. This
approach ensures adaptive power optimization by

dynamically managing computations, leading to
reduced total on-chip power consumption without
compromising performance. SSA is Integrated into
proposed ALU Design through the following way:

Algorithm 5. Conditional Execution to Reduce
Switching Power

Step 1 Check if enable is equal to 1.

Step 2 If true:

Step 3 Check if Op, A, or B differ from their

previous values.

Step 4 If any input has changed:

Step 5 Execute the ALU operation

corresponding to Op.

Step 6 Update prev_Op, prev_A, and prev_B.

Step 7 Else:

Step 8 Do nothing, retain previous result to

avoid unnecessary toggling.

Step 9 Else:

Step 10 Skip computation entirely, the

circuit remains idle.

 This algorithm (Algorithm 5) ensures that ALU
operations are gated by an enable signal and only
proceed if inputs have changed. It minimizes dynamic
power consumption by avoiding unnecessary
computation and signal toggling a common cause of
energy waste in digital circuits.

Fig. 3. Block diagram of SSA applied to conventional ALU design for dynamic power reduction.

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679 e-ISSN: 2656-8632

Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
 669

 This logic aligns with the behavior of the Squirrel
Search Algorithm (SSA), where squirrels adjust their
foraging actions based on environmental cues and
energy states. In this context, the enable signal acts
like a trigger, similar to a squirrel’s decision to forage
only when resources or conditions demand it. This bio-
inspired control helps maintain system efficiency and
adaptive responsiveness in hardware systems.

Algorithm 6. Preventing Unnecessary Signal
Transitions

Step 1 If reset = 1:

Step 2 Set temp_result = all 0s (reset ALU

output to prevent unnecessary

updates).

Step 3 Set CarryOut = 0 (clear carry out to

prevent redundant transition).

Step 4 Else:

Step 5 Keep temp_result unchanged (preserve

previous ALU output).

Step 6 Set CarryOut = carry_out_temp (reuse

stored carry value to prevent

toggling).

Step 7 Check the value of temp_result:

Step 8 If temp_result = 0:

Step 9 Set Zero flag = 1 (indicates ALU

output is zero).

Step 10 Else:

Step 11 Set Zero flag = 0 (indicates ALU

output is non-zero).

 This algorithm (Algorithm 6) ensures the ALU avoids
unnecessary changes when a reset is triggered or
when retaining the same result is sufficient. By
preserving previous outputs and preventing signal
toggling unless strictly needed, the system significantly
reduces dynamic power. This mirrors the behavior of
squirrels in the Squirrel Search Algorithm (SSA), which
conserve energy by minimizing movement when
external conditions (like food availability or
environmental risk) do not demand action. Similarly,
the ALU holds state unless change is necessary,
optimizing performance for low-power digital systems.
 To optimize power consumption in the ALU,
computations should only be triggered when
necessary. Activating the ALU solely in response to
valid operation codes minimizes unnecessary
switching, aligning with energy-efficient conditional
execution. The following algorithm illustrates this
selective computation approach. Algorithm 7 ensures
that the ALU performs computations only when valid
operational codes are received. If no matching
operation code is detected, the ALU retains its previous
output, reducing unnecessary activity and switching
and therefore, power consumption. This mimics
Squirrel Search Algorithm (SSA) behavior, where
squirrels only exert effort (such as switching trees or

exploring new food zones) when a meaningful change
in the environment justifies it. In the same way, the ALU
avoids engaging computation hardware unless a valid
Op code necessitates it, leading to smarter and more
energy-efficient processing.

Algorithm 7. ALU Operations Executed Only When
Necessary

1. Hardware Architecture Modifications for SSA
The implementation of SSA in the ALU architecture
involves a simpler modification compared to SIA. A
global enable control signal is introduced to govern
whether the ALU performs computation during a given
clock cycle. If enable is deasserted, the ALU remains
idle, preserving its previous output state without
performing any operation. This gating mechanism is
implemented via a conditional wrapper around the
execution unit, which checks enable before initiating
the operation based on Op, A, and B. A reset path is
also included to explicitly clear the result and flags
when required, preventing residual toggling. This
approach eliminates unnecessary computation cycles,
minimizing internal switching activity and thereby
reducing dynamic power. Since the design does not
require input comparison or history tracking, the
resource overhead is minimal, as supported by the
resource data in Section III.D.

Step 1
Check the value of Op to determine the

ALU operation.

Step 2 If Op = “0000” (Addition):

Step 3
 Extend A and B with a leading 0 to

form 9-bit values.

Step 4 Compute A + B.

Step 5
 Store lower 8 bits of the result in

temp_result.

Step 6
 Store the 9th bit (carry-out) in

carry_out_temp.

Step 7 Else if Op = “0001” (Subtraction):

Step 8
 Extend A and B with a leading 0 to

form 9-bit values.

Step 9 Compute A – B.

Step 10
 Store lower 8 bits of the result in

temp_result.

Step 11
 Store the 9th bit (borrow/carry-out)

in carry_out_temp.

Step 12 Else:

Step 13
 Do nothing, keep temp_result and

carry_out_temp unchanged.

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679 e-ISSN: 2656-8632

Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
 670

2. Configuration and Tuning Parameters for SSA
Implementation
In the hardware abstraction of the Squirrel Search
Algorithm (SSA), the conditional execution behavior is
modeled through a global enable signal. This signal is
asserted externally or internally based on whether the
system requires ALU computation, emulating the
squirrel's energy-aware response to environmental
triggers. The SSA implementation does not involve
iterative search, dynamic movement modeling, or
weight-based decisions. Instead, it uses a gated
execution mechanism with simple control logic that
wraps around the ALU datapath. The control logic was
configured to bypass computation when enable is low,
effectively eliminating dynamic power consumption
during idle cycles. This approach avoids traditional
metaheuristic hyperparameters and offers a
deterministic control model optimized for resource-
constrained digital systems. The optimization process
guided by SSA primarily targets power minimization,
while ensuring that timing slack and hardware resource
usage remain within acceptable bounds.

C. Integration into FPGA Design Flow

The SSA and SIA algorithms were integrated into the
FPGA design flow using Xilinx Vivado 2023.1, targeting
an AMD Spartan-7 (xc7s6csga225) FPGA operating at
100 MHz. The process began with designing a
conventional 8-bit ALU in VHDL, followed by functional
simulation, synthesis, and implementation to establish
baseline values for power, timing, and resource
utilization. Subsequently, SSA and SIA were applied
sequentially to the ALU design. Each algorithm
generated optimized control parameters, which were
incorporated through VHDL generics and conditional
logic without altering the functional behavior. These

modified versions were tested using the same
simulation, synthesis, and implementation steps as the
baseline.
 Custom XDC constraints were used to support low-
power features such as clock gating and timing control.
Power analysis was performed using Vivado’s in-built
power analyzer after implementation. This consistent,
tool-supported flow allowed direct comparison of
conventional, SSA-optimized, and SIA-optimized
designs. The approach is portable to other toolchains
by adapting constraints and configuration logic,
supporting practical adoption in diverse FPGA
environments.

III. Results

A. Power Analysis

Power consumption was measured for three ALU
configurations:

• Baseline (Unoptimized ALU)

• SSA-Optimized ALU

• SIA-Optimized ALU

The Table 2. and Fig. 4. presents the power reduction
results of an ALU design before and after applying
optimization techniques using the Swarm Intelligence
Algorithm and the Squirrel Search Algorithm. Before
optimization, the total on-chip power consumption was
24 mW, with dynamic power at 6 mW and static power
at 18 mW. After applying the Swarm Intelligence
Algorithm, dynamic power reduced to 4 mW, leading to
a total on-chip power consumption of 22 mW. Further
optimization using the Squirrel Search Algorithm

Table 2. Power Analysis (in mW) of conventional 8-Bit ALU design before optimization and after
optimization

ALU Design
Clocks
(mW)

Signals
(mW)

Logic
(mW)

I/O (mW)
Dynamic

Power (mW)
Static Power

(mW)

Total
On-chip
Power
(mW)

Before
optimization

0.48

0.3 0.24

4.98

6 18 24

After Swarm
Intelligence
Algorithm

0.56

0.32 0.24

2.88

4 18 22

After Squirrel
Search

Algorithm

0.4

0.22 0.18

1.2

2 18 20

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679 e-ISSN: 2656-8632

Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
 671

resulted in a more significant reduction, with dynamic
power dropping to 2 mW and total on-chip power
decreasing to 20 mW. This indicates that the Squirrel
Search Algorithm achieved superior power efficiency
compared to the Swarm Intelligence Algorithm, making
it a more effective technique for reducing ALU power
consumption.

B. Functional Simulation Results

The Table 3. and Fig. 5. illustrate the power reduction
effectiveness of the Swarm Intelligence Algorithm and
the Squirrel Search Algorithm in optimizing ALU
design. Initially, before optimization, the dynamic power
consumption was 6 mW, while the total on-chip power
was 24 mW. After applying the Swarm Intelligence
Algorithm, dynamic power reduced to 4 mW, achieving
a 33.33% reduction, while the total on-chip power
dropped to 22 mW, reflecting an 8.33% reduction. The
Squirrel Search Algorithm provided even greater
efficiency, reducing dynamic power to 2 mW (66.66%
reduction) and lowering total on-chip power to 20 mW,
marking a 16.66% reduction. These results highlight

that while both optimization techniques improve power
efficiency, the Squirrel Search Algorithm outperforms

Fig. 4. a) Power dissipation of ALU before optimization b) Power dissipation of ALU after applying
Swarm Intelligence Algorithm c) Power dissipation of ALU design after applying Squirrel Search
Algorithm d) Power dissipation comparison across each design

Table 3. Percentage Reduction of Dynamic Power and Total On-chip Power of ALU Design before and
after optimization

ALU Design
Dynamic
Power (mW)

% Reduction in
Dynamic Power

Static
Power
(mW)

Total On-chip
Power (mW)

% Reduction in
Total On-chip
Power

Before
optimization

6 --- 18 24 ---

After
application of
Swarm
Intelligence

4 33.33 18 22 8.33

After
application of
Squirrel
Search
Algorithm

2 66.66 18 20 16.66

Fig. 5. Comparison of Percentage Reduction in
Power Consumption of ALU Design with
impact of SIA and SSA.

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679 e-ISSN: 2656-8632

Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
 672

the Swarm Intelligence Algorithm in minimizing
dynamic and total on-chip power consumption.

 The functional simulation results shown in Fig. 6.
provide a comprehensive validation of the ALU's

correct functionality following power optimization
through the Swarm Intelligence Algorithm (SIA) and the
Squirrel Search Algorithm (SSA). The waveform
depicts a series of test vectors applied to the ALU
inputs, A[7:0], B[7:0], and the operation selector
Op[3:0], across multiple clock cycles. As seen in the
figure, A holds a constant value of 0F, while B changes
sequentially from 01 to 07, and Op increments from 0
to 7, representing various arithmetic and logic
operations such as addition, subtraction, bitwise AND,
OR, and shifts.
 The corresponding output signal Result[7:0]
accurately reflects the expected outcome of each
operation. For instance, when Op = 0, the ALU might
be performing addition, producing a valid result (10) for
inputs A = 0F and B = 01. Similarly, in later cycles,
results like 00, 0C, and F0 appear, aligning with
expected logic outputs for the given operations and
operands. These consistent results indicate that the
core computational logic of the ALU is unaffected by
the applied optimization algorithms.
 In addition to correct result generation, the simulation
also shows appropriate transitions in the CarryOut and
Zero flags. These status flags are crucial for indicating
arithmetic overflow and zero results, respectively. For
example, a high CarryOut bit in certain addition
operations and the Zero flag being asserted when the
result is 00 serve as further proof that the control logic
remains intact and fully functional.

 Most importantly, this functional validation confirms
that despite the significant reductions in dynamic and
total on-chip power consumption, as outlined in the
earlier power analysis figures, the optimized ALU

design maintains full operational integrity. The
waveform effectively demonstrates that the ALU
continues to produce correct outputs under varied input
conditions, thereby ensuring that power optimization
does not compromise computational correctness,
which is a critical requirement in low-power, high-
performance digital systems.

C. Timing Analysis

The timing analysis results for the ALU design,
following the application of the Squirrel Search
Algorithm (SSA) and the Swarm Intelligence Algorithm
(SIA), are presented in the Table 4. and visually
illustrated in the accompanying Fig. 7. chart. These
metrics provide not only a snapshot of the design's
timing performance, but also offer valuable insight into
the resilience and stability of the optimized circuits
under worst-case operating conditions. In FPGA-based
systems, achieving timing closure is a critical
milestone, especially when targeting higher operating
frequencies or integrating complex logic. The ability of
an optimization algorithm to maintain or improve timing

margins while reducing power consumption is a strong
indicator of its practical viability. Among the evaluated
metrics, the Worst Negative Slack (WNS) stands out as
a key parameter that quantifies how close the design is
to violating setup timing requirements. The SSA-
optimized design shows a WNS of 8.740 ns, a
noticeable improvement over the 6.531 ns observed

Fig. 6. Functional Simulation Result of conventional 8-Bit ALU design before and after application of SIA
and SSA indicating unchanged design functionality

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679 e-ISSN: 2656-8632

Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
 673

with the SIA-optimized version. This larger positive

slack margin not only reflects better timing closure but
also indicates greater immunity to timing variations due
to PVT (Process, Voltage, and Temperature)
fluctuations, which are especially critical in mission-
critical or high-performance designs. Both optimization
approaches achieve a Total Negative Slack (TNS) of
0.000 ns, confirming that there are no setup violations
and that the design meets its timing requirements
across all paths at the given clock constraint.

In terms of hold analysis, the Worst Hold Slack (WHS)
is also more favorable under SSA, measuring 0.395 ns
versus 0.250 ns for SIA. This indicates that SSA better
handles short-path conditions, which can be a common
challenge in pipelined or deeply parallel architectures.
The Total Hold Slack (THS) is 0.000 ns for both,
showing that no hold-time violations are present in
either design. Together, these results confirm that both
SSA and SIA maintain timing correctness, but SSA
delivers more comfortable timing margins, making the
design more robust against dynamic timing
uncertainties such as crosstalk, temperature drift, or
slight clock jitter.
 These findings are particularly significant when
considered alongside the earlier power analysis, which

demonstrated SSA's superior energy-saving
capabilities. The combination of enhanced timing
reliability and reduced power consumption makes SSA
a compelling optimization approach for FPGA designs
where performance, power efficiency, and operational
reliability must be carefully balanced. This dual benefit
is especially valuable in applications such as
biomedical devices, portable health monitors,
implantable systems, and real-time diagnostic
platforms, where low power consumption is critical to
prolong battery life, and deterministic performance is
essential for ensuring accurate, timely processing of
physiological signals. By achieving both energy
efficiency and timing robustness, SSA-optimized
designs are well-suited for modern biomedical
applications that demand compact, low-power, yet
high-performance computing at the edge.

D. Resource Utilization Analysis

To evaluate the hardware efficiency of the ALU
implementations after applying the Squirrel Search
Algorithm (SSA) and the Swarm Intelligence Algorithm
(SIA), the FPGA resource utilization was analyzed in
terms of Look-Up Tables (LUTs), Flip-Flops (FFs),
Digital Signal Processing (DSP) slices, and Block
RAMs (BRAMs). These resources are critical indicators
of how efficiently the design maps onto the FPGA
fabric. The detailed results are summarized in Table 5.
and visualized in Fig. 8., which compares the resource
usage across the unoptimized ALU, the SIA-optimized
version, and the SSA-optimized design.
 From the analysis, the SSA-optimized ALU
demonstrates notable hardware efficiency by retaining
the same number of LUTs (42) as the unoptimized
version. This indicates that the SSA method achieves
power and timing improvements without increasing the
logic complexity of the design, making it ideal for
resource-constrained applications. In contrast, the SIA-

Table 4. WNS and WHS details of ALU design
with SSA and SIA optimization

Metric
SSA
Optimization

SIA
Optimization

Worst Negative
Slack (WNS)

8.740 ns 6.531 ns

Total Negative
Slack (TNS)

0.000 ns 0.000 ns

Worst Hold
Slack (WHS)

0.395 ns 0.250 ns

Total Hold Slack
(THS)

0.000 ns 0.000 ns

Fig. 8. FPGA Resource Utilization for
conventional 8-Bit ALU, SIA and SSA optimized
design

Fig. 7. Comparison Worst Negative Slack and
Worst Hold Slack of ALU design for both SIA and
SSA

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679 e-ISSN: 2656-8632

Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
 674

optimized ALU consumes 50 LUTs, suggesting
additional logic overhead, most likely due to the
inclusion of comparison modules or internal buffers
used to track or store past values during the
optimization process.

 A significant difference is observed in Flip-Flop (FF)
usage. While both the unoptimized and SSA-optimized
ALUs utilize only 9 FFs, the SIA-optimized ALU spikes
to 29 FFs. This increase can be attributed to the internal
state retention mechanisms in the SIA approach, where
prior inputs or intermediate states may be stored to
influence current decisions. In comparison, SSA
maintains a minimalist FF footprint by reducing
unnecessary transitions and avoiding additional state-
holding logic, thereby preserving energy and reducing
switching activity. In terms of DSP slice usage, all three
designs fall within a narrow range, with the unoptimized
and SIA-optimized ALUs both using 32 DSP slices, and
the SSA-optimized version slightly increasing to 33.
 This minor increment in SSA may stem from the use
of additional control or conditional execution logic
required for dynamic power optimization. However, the
increase is minimal and does not substantially impact
the overall resource footprint, especially when weighed
against SSA's power and timing benefits.
 Finally, the Block RAM (BRAM) usage remains
consistent across all three ALU versions, with 1 BRAM
utilized. This consistency confirms that neither
optimization strategy imposes extra memory demands
or alters the data storage architecture of the ALU
design. Maintaining a fixed BRAM count is particularly
important in FPGAs with limited on-chip memory
capacity.

IV. Discussion

This study provides a detailed and practical evaluation
of two bio-inspired optimization techniques, Squirrel
Search Algorithm (SSA) and Swarm Intelligence
Algorithm (SIA), when applied to an 8-bit ALU
implemented on an FPGA platform. The primary goal

was to assess the impact of these techniques on
dynamic power reduction, timing performance, and
hardware resource efficiency, offering a benchmark for
integrating swarm-based methods into real-world low-
power digital circuit design.

The findings clearly demonstrate that both SSA and
SIA significantly improve energy efficiency and timing
performance in FPGA-based 8-bit ALUs. SSA achieved
a 66.66% reduction in dynamic power, lowering
consumption from 6 mW to 2 mW, with no increase in
hardware resources. This gain stems from its
conditional execution strategy, which triggers
computation only when new input data is detected,
minimizing unnecessary transitions and switching
activity. In contrast, SIA delivered a 33.33% power
reduction, dropping from 6 mW to 4 mW, by leveraging
input-tracking mechanisms to suppress redundant
processing. However, this benefit came with increased
hardware usage: 50 LUTs and 29 FFs compared to 42
LUTs and 9 FFs for both SSA and the baseline. The
resource overhead in SIA results from added logic for
storing and comparing input states.

Table 6. Comparative Analysis of Overhead vs.
Power Savings

Metric
Unoptimized
ALU

SSA-
Optimized
ALU

SIA-
Optimized
ALU

Flip-Flops
(FFs)

9 9 29

LUTs 42 42 50

Dynamic
Power (mW)

6 2 4

Total On-Chip
Power (mW)

24 20 22

Dynamic
Power
Savings (%)

— 66.7% 33.3%

Resource
Overhead
(FF+LUT)

— 0
+28
(FF+LUT)

Timing analysis reinforces SSA’s advantage, showing
a Worst Negative Slack (WNS) of 8.740 ns, compared
to 6.531 ns for SIA. Both designs satisfied all
constraints, with zero Total Negative Slack (TNS) and
Total Hold Slack (THS), confirming that setup and hold
conditions were met across all timing paths. SSA’s
superior WNS suggests greater robustness under
process-voltage-temperature (PVT) variations, making
it more reliable for time-sensitive or constrained
applications. These results are quantitatively

Table 5. Resource Utilization details of ALU
design with and without optimization methods

Resource
Unoptimized
ALU

SIA-
Optimized
ALU

SSA-
Optimized
ALU

LUTs
Used

42 50 42

Flip-Flops
(FFs)

9 29 9

DSP
Slices

32 32 33

BRAMs 1 1 1

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679 e-ISSN: 2656-8632

Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
 675

summarized in Table 6., highlighting the trade-off
between power savings and resource overhead.
 The data confirms that SSA delivers the most efficient
power-to-resource trade-off, offering maximum
dynamic power savings with zero additional resource
cost, making it highly suitable for low-power, area-
constrained FPGA implementations. Meanwhile, SIA
incurs an overhead of 28 logic elements, including a
19.0% increase in LUTs and a 222.2% increase in FFs.
Despite this, the overall utilization remains negligible
relative to the FPGA’s available capacity of 3750 LUTs
and 7500 FFs. Thus, SIA remains a viable option in
systems where moderate energy savings, enhanced
input-state awareness, and fine-grained control are
desirable, and where area constraints are less critical.

These outcomes align with trends observed in
related research. A low-powered, self-testable ALU
design was presented in [1], focusing on energy-
efficient architecture and fault detection capabilities.
While the study in [1] emphasized power efficiency, it
did not explore optimization through swarm intelligence
or bio-inspired algorithms. Similarly, swarm-based
circuit optimization was discussed in [24], where
moderate improvements in area and energy efficiency
were reported. However, as with [1], the work in [24]
was limited to theoretical evaluation and lacked
practical implementation or post-synthesis hardware
validation. In contrast, the present study bridges this
gap by verifying SSA and SIA-based optimizations
through synthesis and simulation on an AMD Spartan-
7 FPGA (xc7s6csga225), thereby demonstrating their
real-world applicability.

While the results are promising, there are several
limitations to consider. The analysis was confined to an
8-bit ALU, and further validation is needed to
understand how these techniques scale with more
complex architectures, such as 16-bit or 32-bit ALUs or
digital signal processing blocks. The adaptive
principles behind SSA and SIA, conditional execution
and transition minimization, are conceptually scalable
to larger data paths, and thus hold promise for power
savings in wider architectures. Additionally, like many
bio-inspired algorithms, SSA and SIA may exhibit
sensitivity to initial parameter settings, which could
impact convergence speed and solution quality,
especially in larger or more complex architectures.
Future work will explore adaptive parameter tuning and
hybrid strategies to mitigate these challenges.
However, our current findings indicate that scaling may
introduce challenges including increased control logic
complexity, higher resource utilization, and more
demanding timing closure due to longer critical paths
and wider input-tracking mechanisms, especially
notable in the SIA implementation. To overcome these,
future work should explore hierarchical or pipelined
control schemes, and investigate hybrid SSA-SIA
models to balance power reduction with manageable

hardware overhead, ensuring practical applicability to
complex digital designs.
 Moreover, power measurements were performed
using static testbenches; the effectiveness of SSA and
SIA under dynamically varying workloads, as
encountered in real-world applications, remains
unexplored. SIA also introduces additional design
complexity due to its reliance on input history tracking,
which may complicate timing closure in larger or high-
speed pipelines. Furthermore, the study lacks
hardware co-simulation or empirical power
measurement using physical instrumentation, which
would provide more comprehensive validation of power
claims under realistic operating conditions.
 While our study provides valuable insights into power
reduction through SSA and SIA optimization using
Vivado’s static power estimation tools, it is important to
acknowledge limitations in measurement accuracy.
The current power analysis relies primarily on post-
synthesis simulation data, which may not fully capture
dynamic power variations, transient switching effects,
or real-world environmental influences such as
temperature fluctuations and voltage noise. To
enhance the fidelity and applicability of power
measurements, future work should explore the
integration of real-time on-chip power monitoring
capabilities. This could involve utilizing FPGA-
embedded power sensors or Power Monitor IP cores
to collect live power consumption data under dynamic
operating conditions. Additionally, coupling these with
external measurement instruments or hardware-in-the-
loop testing setups would provide a more
comprehensive validation framework. Such
approaches would enable a deeper understanding of
the effectiveness of bio-inspired optimization
techniques in real-world scenarios, ensuring that power
savings translate accurately from simulation to practical
deployment.
 Despite these limitations, the implications of this work
are significant. SSA, in particular, stands out as a
practical solution for ultra-low-power, resource-efficient
digital systems, including wearable biomedical
monitors, portable diagnostics, and IoT edge-
computing platforms. These systems require both tight
timing constraints and low energy budgets, conditions
under which SSA demonstrates clear advantages.
Additionally, this research opens pathways for future
exploration into hybrid optimization models. For
example, combining SSA’s conditional execution with
SIA’s input transition detection could lead to a more
adaptive and fine-tuned optimization strategy. Such
hybrid approaches may prove especially useful in
scenarios requiring real-time responsiveness with
dynamically fluctuating workloads, including AI-based
edge devices and smart health monitoring systems.
These bio-inspired techniques not only extend
traditional low-power design methods but offer adaptive

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679 e-ISSN: 2656-8632

Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
 676

capabilities that static techniques like clock gating
cannot provide, making them well-suited for real-time,
data-driven digital systems.
 The current implementation of SSA and SIA
algorithms is based on static analysis, where the
optimization process is performed offline using
representative input scenarios. While this enables
effective design-time power minimization, the
algorithms do not adapt dynamically to variations in
input patterns, workload fluctuations, or environmental
conditions. In practical real-time systems, such
adaptability could enhance robustness and efficiency.
Future research can explore integrating real-time
monitoring and adaptive optimization strategies,
enabling SSA and SIA to respond dynamically to
operational changes.
 However, integrating SSA and SIA, or extending
them into more complex hybrid models, also introduces
potential challenges that must be carefully considered.
Combining multiple bio-inspired techniques increases
the design complexity, as each optimization layer adds
its own control logic and state management
requirements. For instance, simultaneously
implementing SSA’s enable-based conditional
execution and SIA’s input change detection may lead
to overlapping or redundant logic paths, complicating
RTL design and timing coordination. Additionally, these
hybrid methods may face convergence challenges,
especially when optimization goals compete or interact
nonlinearly, potentially requiring careful tuning of
parameters and heuristics to avoid suboptimal or
unstable behavior. The overhead introduced by
combined logic may also impact resource utilization
and timing closure, particularly in high-speed or
resource-constrained environments. As current FPGA
synthesis tools are primarily optimized for conventional
low-power techniques, integrating hybrid swarm-based
logic may demand custom synthesis constraints,
testbenches, and verification strategies to ensure
correct and efficient implementation. Future research
should therefore focus not only on demonstrating the
effectiveness of such models but also on developing
scalable and maintainable frameworks that balance
power savings with implementation feasibility.

V. Conclusion

The aim of this study was to design a power-efficient 8-
bit ALU by applying the Swarm Intelligence Algorithm
(SIA) and the Squirrel Search Algorithm (SSA) for
optimization. The goal was to reduce power dissipation
while maintaining performance in terms of resource
utilization and timing. The main findings of the study
showed a significant reduction in power dissipation with
the application of both optimization algorithms. The
Swarm Intelligence Algorithm (SIA) reduced dynamic
power dissipation to 4 mW and the total on-chip power

dissipation to 22 mW, while the Squirrel Search
Algorithm (SSA) achieved even better results with
dynamic power at 2 mW and total on-chip power at 20
mW. These results demonstrate a notable
improvement in power efficiency compared to the
unoptimized ALU, which had a dynamic power
dissipation of 6 mW and total on-chip power of 24 mW.

 In terms of resource utilization, the SSA-optimized
ALU required fewer LUTs and flip-flops (42 LUTs and 9
flip-flops) compared to the SIA-optimized ALU (50
LUTs and 29 flip-flops). Despite this, the SIA-optimized
ALU exhibited better timing performance, as indicated
by a smaller Worst Hold Slack (WHS) value of 0.250
ns, compared to 0.395 ns for the SSA-optimized ALU.
Both optimization methods resulted in Total Negative
Slack (TNS) and Total Hold Slack (THS) values of
0.000 ns, indicating no timing violations.

 Overall, both optimization methods successfully
reduced power dissipation, improved timing, and
utilized resources effectively, with the SSA optimization
providing the best overall results in terms of power
efficiency. Future research can focus on developing
hybrid models that combine SSA and SIA, leveraging
the strengths of both techniques to achieve enhanced
power efficiency while optimizing resource utilization.
By integrating the conditional execution strategy of
SSA with the redundant computation minimization of
SIA, a more balanced and efficient power optimization
framework can be established. Additionally, further
investigations can explore the scalability of SSA and
SIA in larger ALU architectures, such as 16-bit or 32-
bit designs, to evaluate performance trade-offs,
computational efficiency, and power savings in more
complex digital systems. Another promising direction
involves AI-assisted adaptive optimization, where
machine learning techniques can be integrated with
swarm intelligence algorithms to enable dynamic, real-
time power management. This would allow FPGA-
based ALUs to intelligently adjust power consumption
based on workload variations, leading to more energy-
efficient and adaptive computing architectures.

References

[1] M. Nagharjun and V. Ravi, “Low Powered Self-
Testable ALU,” IOP Conf Ser Mater Sci Eng, vol.
1012, no. 1, p. 12048, Jan. 2021, doi:
10.1088/1757-899x/1012/1/012048.

[2] Y. Swami, “Design Guidelines for Low Power
Embedded Systems using Low Power
Electronics,” WSEAS TRANSACTIONS ON
ELECTRONICS, vol. 14, pp. 65–70, Nov. 2023,
doi: 10.37394/232017.2023.14.8.

[3] R. Cheour, S. Khriji, D. El Houssaini, M. Baklouti,
M. Abid, and O. Kanoun, “Recent Trends of
FPGA Used for Low-Power Wireless Sensor
Network,” IEEE Aerospace and Electronic

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679 e-ISSN: 2656-8632

Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
 677

Systems Magazine, vol. 34, no. 10, pp. 28–38,
Oct. 2019, doi: 10.1109/maes.2019.2901134.

[4] S. Tamimi, Z. Ebrahimi, B. Khaleghi, and H.
Asadi, “An Efficient SRAM-Based Reconfigurable
Architecture for Embedded Processors,” IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 3,
pp. 466–479, Mar. 2019, doi:
10.1109/tcad.2018.2812118.

[5] A. Razzaq, S. R. Sani, and A. G. Ye, “Designing
efficient FPGA tiles for power-constrained ultra-
low-power applications,” Integration, vol. 78, pp.
124–134, May 2021, doi:
10.1016/j.vlsi.2021.02.004.

[6] A. Shrivastava et al., “VLSI Implementation of
Green Computing Control Unit on Zynq FPGA for
Green Communication,” Wirel Commun Mob
Comput, vol. 2021, no. 1, Jan. 2021, doi:
10.1155/2021/4655400.

[7] D. Haripriya, K. Kumar, A. Shrivastava, H. M. R.
Al-Khafaji, V. Moyal, and S. K. Singh, “Energy-
Efficient UART Design on FPGA Using Dynamic
Voltage Scaling for Green Communication in
Industrial Sector,” Wirel Commun Mob Comput,
vol. 2022, pp. 1–9, May 2022, doi:
10.1155/2022/4336647.

[8] M. A. M. El-Bendary and F. Amer, “Based on FS-
GDI Approach with 65 nm Technology: Low
Power ALU Design,” International Journal of
Electronics, vol. 110, no. 5, pp. 915–933, May
2022, doi: 10.1080/00207217.2022.2068195.

[9] U. Penchalaiah and V. G. S. Kumar, “Design and
Implementation of Low Power and Area Efficient
Architecture for High Performance ALU,” Parallel
Process Lett, vol. 32, no. 01n02, Oct. 2021, doi:
10.1142/s0129626421500171.

[10] N. K. Kabra and Z. M. Patel, “Low-Power and
High-Speed Configurable Arithmetic and Logic
Unit,” in Innovations in Electronics and
Communication Engineering, Springer
Singapore, 2019, pp. 355–363. doi: 10.1007/978-
981-13-3765-9_37.

[11] S. Thakral and D. Bansal, “High functionality
reversible arithmetic logic unit,” International
Journal of Electrical and Computer Engineering
(IJECE), vol. 10, no. 3, p. 2329, Jun. 2020, doi:
10.11591/ijece.v10i3.pp2329-2335.

[12] M. Vahabi, P. Lyakhov, A. N. Bahar, A. Otsuki,
and K. A. Wahid, “Novel Reversible Comparator
Design in Quantum Dot-Cellular Automata with
Power Dissipation Analysis,” Applied Sciences,
vol. 12, no. 15, p. 7846, Aug. 2022, doi:
10.3390/app12157846.

[13] B. Safaiezadeh, E. Mahdipour, M. Haghparast, S.
Sayedsalehi, and M. Hosseinzadeh, “Novel
design and simulation of reversible ALU in
quantum dot cellular automata,” J Supercomput,

vol. 78, no. 1, pp. 868–882, Jun. 2021, doi:
10.1007/s11227-021-03860-y.

[14] R. Roy, S. Sarkar, and S. Dhar, “Design and
testing of a reversible ALU by quantum cells
automata electro-spin technology,” J
Supercomput, vol. 77, no. 12, pp. 13601–13628,
Apr. 2021, doi: 10.1007/s11227-021-03767-8.

[15] D. Rebecca Florance, B. Prabhakar, and M. K.
Mishra, “Design and Implementation of ALU
Using Graphene Nanoribbon Field‐Effect

Transistor and Fin Field‐Effect Transistor,” J

Nanomater, vol. 2022, no. 1, Jan. 2022, doi:
10.1155/2022/3487853.

[16] R. R. Kulkarni and S. Y. Kulkarni, “Power
Optimization of a 32-Bit ALU Using Distributed
Clock Gating Technique,” in Advances in
Electrical and Computer Technologies, Springer
Singapore, 2020, pp. 831–841. doi: 10.1007/978-
981-15-5558-9_71.

[17] T. Sharma and L. Kumre, “Energy-Efficient
Ternary Arithmetic Logic Unit Design in CNTFET
Technology,” Circuits Syst Signal Process, vol.
39, no. 7, pp. 3265–3288, Dec. 2019, doi:
10.1007/s00034-019-01318-4.

[18] C. Jose, T. D. Subash, and S. P. Thomas, “FPGA
Implementation Of Dynamic Power, Area
Optimized Reversible ALU For Various DSP
Applications,” Mater Today Proc, vol. 24, pp.
2044–2053, 2020, doi:
10.1016/j.matpr.2020.03.635.

[19] K. B. Maji, R. Kar, D. Mandal, and S. P. Ghoshal,
“Optimal design of low power high gain and high
speed CMOS circuits using fish swarm
optimization algorithm,” International Journal of
Machine Learning and Cybernetics, vol. 9, no. 5,
pp. 771–786, Oct. 2016, doi: 10.1007/s13042-
016-0606-z.

[20] T. Zheng and W. Luo, “An Improved Squirrel
Search Algorithm for Optimization,” Complexity,
vol. 2019, no. 1, Jan. 2019, doi:
10.1155/2019/6291968.

[21] M. Jain, V. Singh, and A. Rani, “A novel nature-
inspired algorithm for optimization: Squirrel
search algorithm,” Swarm Evol Comput, vol. 44,
pp. 148–175, Feb. 2019, doi:
10.1016/j.swevo.2018.02.013.

[22] M. A. Bakar, “Understanding of Collective
Decision-Making in Natural Swarms System,
Applications and Challenges,” ASEAN Journal of
Science and Engineering, vol. 1, no. 3, pp. 161–
170, Aug. 2021, doi: 10.17509/ajse.v1i3.39637.

[23] A. D. Boursianis et al., “Emerging Swarm
Intelligence Algorithms and Their Applications in
Antenna Design: The GWO, WOA, and SSA
Optimizers,” Applied Sciences, vol. 11, no. 18, p.
8330, Sep. 2021, doi: 10.3390/app11188330.

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679 e-ISSN: 2656-8632

Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
 678

[24] Q. Wu, H. Liu, and X. Yan, “An improved design
optimisation algorithm based on swarm
intelligence,” International Journal of Computing
Science and Mathematics, vol. 5, no. 1, p. 27,
2014, doi: 10.1504/ijcsm.2014.059382.

[25] Nallathambi, “A PARTICLE SWARM
OPTIMIZATION APPROACH FOR LOW
POWER VERY LARGE SCALE INTEGRATION
ROUTING,” J Math Stat, vol. 10, no. 1, pp. 58–
64, Jan. 2014, doi: 10.3844/jmssp.2014.58.64.

[26] P. Kaushal, M. Khurana, and K. R. Ramkumar, “A
Systematic Review of Swarm Intelligence
Algorithms to Perform Routing for VANETs
Communication,” ECS Trans, vol. 107, no. 1, pp.
5027–5035, Apr. 2022, doi:
10.1149/10701.5027ecst.

[27] T. A. Khan and S. H. Ling, “A survey of the state-
of-the-art swarm intelligence techniques and their
application to an inverse design problem,” J
Comput Electron, vol. 19, no. 4, pp. 1606–1628,
Aug. 2020, doi: 10.1007/s10825-020-01567-6.

[28] X. Zhang, K. Zhao, L. Wang, Y. Wang, and Y. Niu,
“An Improved Squirrel Search Algorithm With
Reproductive Behavior,” IEEE Access, vol. 8, pp.
101118–101132, 2020, doi:
10.1109/access.2020.2998324.

[29] S. Asaithambi and M. Rajappa, “Swarm
intelligence-based approach for optimal design of
CMOS differential amplifier and comparator
circuit using a hybrid salp swarm algorithm,”
Review of Scientific Instruments, vol. 89, no. 5,
May 2018, doi: 10.1063/1.5020999.

[30] R. A. Thakker, M. S. Baghini, and M. B. Patil,
“Automatic Design of Low-Power Low-Voltage
Analog Circuits Using Particle Swarm
Optimization with Re-Initialization,” J Low Power
Electron, vol. 5, no. 3, pp. 291–302, Oct. 2009,
doi: 10.1166/jolpe.2009.1030.

[31] H. A. R. Akkar and H. S. Khairy, “Design of a Field
Programmable Gate Array for Swarm Intelligent
Controller Based on a Portable Robotic System:
Review Study,” Journal of Cases on Information
Technology, vol. 23, no. 2, pp. 65–75, Apr. 2021,
doi: 10.4018/jcit.20210401.oa6.

[32] R. Vinay and M. P. R. Prasad, “Latency and
Power Improvement of Hardware Sequences
Using Collapse and Evolve Approach: Nature-
Inspired Methodology,” in Proceedings of First
International Conference on Computational
Electronics for Wireless Communications,
Springer Nature Singapore, 2022, pp. 291–302.
doi: 10.1007/978-981-16-6246-1_25.

[33] Y. Wang and T. Du, “An Improved Squirrel
Search Algorithm for Global Function
Optimization,” Algorithms, vol. 12, no. 4, p. 80,
Apr. 2019, doi: 10.3390/a12040080.

[34] M. P. S. and L. V., “Nature-Inspired Algorithms for
Energy Management Systems: A Review,”
International Journal of Swarm Intelligence
Research, vol. 14, no. 1, pp. 1–16, Mar. 2023,
doi: 10.4018/ijsir.319310.

[35] K. P. R. Krishna and R. Thirumuru, “Enhanced
QOS energy-efficient routing algorithm using
deep belief neural network in hybrid falcon-
improved ACO nature-inspired optimization in
wireless sensor networks,” Neural Network
World, vol. 33, no. 3, pp. 113–141, 2023, doi:
10.14311/nnw.2023.33.008.

[36] V. R. Pasupuleti and Ch. Balaswamy, “Efficient
Cluster Head Selection and Optimized Routing in
Wireless Sensor Networks Using Bio-inspired
Earthworm Optimization Algorithm,” Journal of
Advanced Research in Dynamical and Control
Systems, vol. 11, no. 12-SPECIAL ISSUE, pp.
372–382, Dec. 2019, doi:
10.5373/jardcs/v11sp12/20193233.

[37] R. Yadav, I. Sreedevi, and D. Gupta, “Bio-
Inspired Hybrid Optimization Algorithms for
Energy Efficient Wireless Sensor Networks: A
Comprehensive Review,” Electronics (Basel),
vol. 11, no. 10, p. 1545, May 2022, doi:
10.3390/electronics11101545.

[38] S. Saxena and D. Mehta, “An Adaptive Fuzzy-
Based Clustering and Bio-Inspired Energy
Efficient Hierarchical Routing Protocol for
Wireless Sensor Networks,” Wirel Pers Commun,
vol. 120, no. 4, pp. 2887–2906, May 2021, doi:
10.1007/s11277-021-08590-1.

[39] R. D. Joshi and S. Banu, “Bio-inspired wireless
sensor networks - a protocol for an enhanced
hybrid energy optimization routing,” Indonesian
Journal of Electrical Engineering and Computer
Science, vol. 35, no. 3, p. 1808, Sep. 2024, doi:
10.11591/ijeecs.v35.i3.pp1808-1816.

[40] A. R. Nair and S. Kirthiga, “Nature Inspired
Approach Toward Elimination of Nonlinearities in
SWIPT Enabled Energy Harvesting Networks,”
IEEE Access, vol. 10, pp. 100837–100856, 2022,
doi: 10.1109/access.2022.3208157.

[41] N. Pandey, O. P. Verma, and A. Kumar, “Nature
Inspired Power Optimization in smartphones,”
Swarm Evol Comput, vol. 44, pp. 470–479, Feb.
2019, doi: 10.1016/j.swevo.2018.06.006.

Acknowledgment
We would like to thank Gujarat Technological University

for the support that helped us carry out this work. The

environment provided by the university played an

important role in this research.

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 663-679 e-ISSN: 2656-8632

Manuscript received March 10, 2025; Revised May 12, 2025; Accepted May 20, 2025; date of publication May 28, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.822
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
 679

Author Biography

 Ashish Pasaya is currently a research
scholar at Gujarat Technological
University, Ahmedabad, India. He
received his Bachelor of Engineering
(B.E.) degree in Electronics and
Communication Engineering from

Sardar Patel University, Anand, Gujarat, India, in 2010.
He later obtained his Master of Engineering (M.E.)
degree in the same discipline from Gujarat
Technological University in 2012. He is a Senior
Member of the IEEE, actively contributing to the
academic and research community. His primary
research interests include electronics, low-power VLSI
design, and embedded systems. He is passionate
about innovation in energy-efficient technologies and
continues to engage in scholarly research and
development activities.

Dr. Sarman Hadia is currently serving
as an Associate Professor at Gujarat
Technological University – School of
Engineering and Technology, since
November 2019. He earned his
Bachelor of Engineering degree in 1997
from Bhavnagar University, India. Later,

he completed his Master of Engineering in
Communication System Engineering in 2008 from
Gujarat University. He further pursued his academic
career by obtaining a PhD in Electronics and
Communication Engineering from CHARUSAT
University, India. With a strong academic background,
his research interests lie in the areas of Electronics,
wireless communication, and sensor networks. He is
actively involved in teaching, research, and academic
development.

 Dr. Kiritkumar Bhatt is currently
serving as Professor and Principal at the
Engineering College of Tuwa, Godhra,
Gujarat, India. He earned his B.E., M.E.,
and Ph.D. degrees in Electronics
Engineering from The M. S. University of

Baroda. With over 27 years of experience in academia,
he has held various leadership roles and contributed
significantly to research and education. His core
research areas include embedded systems, VLSI
design, and low-power designs. He has successfully
guided six research scholars, with three already
awarded Ph.D. degrees. Dr. Bhatt has published more
than 60 technical papers in reputed national and
international journals and conferences. His book titled
Sand to Solar Module is being published. He has
received numerous awards and recognitions from
organizations around the world. A well-recognized
global speaker, he is associated with several national

and international bodies as a resource person and
continues to inspire through his talks and contributions.

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.822
https://creativecommons.org/licenses/by-sa/4.0/

	II. Materials and Methods
	III. Results
	V. Conclusion

