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Abstract The development of autonomous vehicles (AVs) has revolutionized the transportation industry, 

promising to boost mobility, lessen traffic, and increase safety on roads. However, the complexity of the 

driving environment and the requirement for real-time processing of vast amounts of sensor data present 

serious difficulties for AV systems. Various computer vision approaches, such as object detection, lane 

detection, and traffic sign recognition, have been investigated by researchers in order to overcome these 

issues. This research presents an integrated approach to autonomous vehicle perception, combining real-

time object detection, semantic segmentation, and classification within a unified deep learning 

architecture. Our approach leverages the strengths of existing frameworks, including MultiNet’s real-time 

semantic reasoning capabilities, the fast-encoding methods of PointPillars to identify objects from point 

clouds, as well as the reliable one-stage monocular 3D object detection system. The offered model tries to 

improve computational efficiency and accuracy by utilizing a shared encoder and task-specific decoders 

that perform classification, detection, and segmentation concurrently. The architecture is evaluated against 

challenging datasets, illustrating outstanding achievements in terms of speed and accuracy, suitable for 

real-time applications in autonomous driving. This integration promises significant advancements in the 

perception systems of autonomous vehicles a providing in-depth knowledge of the vehicle’s environment 

through efficient concepts of deep learning techniques. In our model, we used Yolov8, MultiNet, and during 

training got accuracy 93.5%, precision 92.7 %, recall 82.1% and mAP 72.9%. 
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I. Introduction 

Driving was challenging in the early modern era due to 
vehicles being predominantly larger and heavier 
motorized bicycles. Technological advancements have 
enhanced the efficiency and enjoyment of driving [1]. 
The frequency of accidents has risen due to the 
growing number of vehicle buyers. Technological 
breakthroughs have transformed conventional 
automobiles into fully operational, intelligent machines, 
enhancing the convenience of travel. The progress in 
automation and the prospects provided by advanced 
technology form the foundation for intelligent cars. 
These advanced automobiles are increasingly sought 
after as we prioritize safety and enhance daily 
convenience. These cars incorporate functionalities 
like as environmental sensing, internet connectivity, 
adherence to traffic regulations, autonomous 
navigation, rapid decision-making, pedestrian and 

passenger safety assurance, and parking capabilities 
[2]. These machines are referred to as autonomous 
vehicles. They are presently considered the pinnacle in 
the advancement of intelligent automobiles. The 
primary motivations for the research and development 
of autonomous vehicles include the necessity for 
enhanced driving safety, a growing population resulting 
in a higher number of vehicles on the road, expanding 
infrastructure, the convenience of relying on machines 
for driving tasks, and the demand for resource 
optimization and effective time management. The 
increasing population has exerted significant stress on 
our roadways, infrastructure, open spaces, gasoline 
stations, and resources. 
   The development of deep learning and artificial 
intelligence (AI) will have a significant impact on how 
autonomous cars develop in the future. The 
progression of self-driving cars is profoundly 
transforming the transportation sector, offering 
enhancements in mobility and traffic safety. These 
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technologies empower vehicles to comprehend and 
operate their environments intelligently, making 
decisions in real time, which is essential for safe and 
efficient operation. At the core of this technological 
revolution is deep learning, a sophisticated branch of 
AI that extracts meaningful patterns found in enormous 
volumes of data, enabling machines to perform 
complex recognition tasks with high accuracy [3]. 
Object detection is essential for identifying vehicles, 
pedestrians, and road signs, which is critical for 
collision avoidance and traffic management [4]. Deep 
learning algorithms enhance the accuracy of these  
detections, enabling autonomous vehicles to respond 
appropriately to dynamic traffic conditions [3]. The rapid 
advancement of deep learning facilitates feature 
extraction from images instead of relying on manually 
created feature extractors, enhancing performance and 
streamlining the training process of object detection 
models. 
   PointPillars specializes in efficiently processing point 
cloud data, which is crucial for 3D object detection in 
autonomous vehicles. By transforming point clouds into 
a structured pillar representation and employing a fast 
neural network, PointPillars enables rapid and precise 
detection of objects around the vehicle, thus enhancing 
situational awareness. This capability is vital in 
complex driving environments, where understanding 
the and accurate location and nature of surrounding 
objects can be the difference between a safe journey 
and a potential accident. However, contrary to the fully 
convolutional one-stage object detection system 
simplifies the traditional detection pipeline by 
eliminating the need for separate region proposal 
generation. This method lowers the computing load 
while simultaneously accelerating the detection 
procedure, allowing the process to fulfill the stringent 
real-time requirements of autonomous navigation. By 
integrating these advanced architectures into a unified 
framework, the proposed model optimizes the 
application of computational resources, achieving a 
high level of efficiency and speed. This is critical for 
autonomous vehicles, which must process and react to 
dynamic environmental stimuli promptly and 
accurately. The unified framework ensures that the 
vehicle’s perception system is both robust and 
adaptable, capable of handling various driving 
scenarios and conditions. The practical implementation 
of this unified architecture promises significant 
improvements in the workplace of autonomous 
vehicles. It opens the door for more advanced and 
dependable autonomous driving solutions in addition to 
improving the cars' comprehension of and interaction 
with their surroundings. Further incorporation of 
sophisticated deep learning models is anticipated as 
the technology develops further, which will 

continuously improve the capabilities and efficiency of 
autonomous vehicles [5]. 
   In this article, we provide a novel approach to 
autonomous vehicle perception using YOLOv8, a 
state-of-the-art real-time object detection algorithm, in 
conjunction with MultiNet++, a robust and efficient 
multi-task learning framework. Our system, dubbed 
"AV-YOLOv8-MultiNet++," utilizes the advantages of 
both YOLOv8 and MultiNet++ to achieve exceptional 
performance in object detection, lane detection, and 
traffic sign recognition. One of the main novelties of this 
architecture is the combination of 2D picture features 
and 3D Light Detection and Ranging (LIDAR) point 
cloud data. We propose an architecture that integrates 
YOLOv8 with MultiNet++ to enable simultaneous 
object detection, lane detection, and traffic sign 
recognition [6]. We demonstrate the effectiveness of 
our approach on a comprehensive data set of driving 
scenarios, achieving state-of-the-art performance in 
object detection (95.5% AP) and lane detection (94.5% 
AP). We evaluate the robustness of our system in 
different types of weather, lighting scenarios, and road 
types, showcasing its capability to generalize well 
across diverse environments. The key Contributions of 
this study follows: 
1. We propose a novel architecture that integrates 

YOLOv8 with MultiNet++ to enable simultaneous 

object detection, lane detection, and traffic sign 

recognition. 

2. We demonstrate the effectiveness of our 

approach on a comprehensive dataset of driving 

scenarios, achieving state-of-the-art performance 

in object detection and lane detection. 

3. We evaluate the robustness of our system in 
various weather conditions, lighting scenarios, 
and road types, showcasing its ability to 
generalize well across diverse environments. 

II. Related Work 

Autonomous cars often use a variety of sensors (such 
as cameras, LIDARs, and radars) to achieve reliable 
and precise scene comprehension. These sensors can 
be fused to take advantage of their complementary 
qualities [7]. By focusing on enhancing detection 
accuracy, real-time processing, environmental 
resilience, fusion of sensors, and utilizing AI 
developments, future investigation and advancement 
activities will continue in order to increase the 
capabilities of autonomous cars [8]. A challenging 
computer vision topic, object recognition has received 
a lot of attention recently. Multiple uses, such as object 
tracking, image captioning, and segmentation, for 
example, healthcare, etc., primarily use object 
detection [9]. The main problems with 3D object 
detection and localization include high false positive 
rates, lengthy computation times, and lower Quality of 
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Service (QoS). Therefore, we tend to propose the HDL-
MODT approach as a solution to that problem. The 
KITTI dataset is used in the proposed work to train and 
evaluate the classifiers [10], [11]. Recognition of 
objects and semantic segmentation findings can be 
obtained rapidly using this novel mixed network. The 
technique combines an extra feature fusion network 
with an encoder-decoder mechanism [12] 
   Mujadded et al. [13] presented light on agricultural 
breakthroughs. The survey examines the revolutionary 
potential of several YOLO versions, ranging from 
YOLOv1 to the cutting-edge YOLOv10. Bu et al. [14] 
proposed a detailed introduction of a vehicle multi-
object tracking technique based on DeepSORT and 
enhanced YOLOv5s. The accuracy of vehicle detection 
under various occlusion levels and the rate at which it 
happens, complicated information may be processed, 
was enhanced. Guo et al. [15] provided a thorough 
evaluation of the visual multi-object tracking techniques 
utilized in autonomous driving scenarios. Three 
categories comprise the algorithms themselves based 
on their different structural configurations: transformer-
based tracking, Joint Detection and Tracking (JDT), 
and Track-Before-Detect (TBD). Rahee et al. [16] 
indicated detecting objects and barriers around the 
vehicle in a variety of contexts is how computer vision 
systems that operate autonomous vehicles are 
evaluated. Improving a self-driving car's capacity to 
discriminate between environmental components in 
challenging situations is a significant task for computer 
vision. Wang et al. [17] proposed a YOLOv4-based 
technique for one-stage detection of objects that 
improves detection precision and enables real-time 
functioning. The algorithm's backbone doubles the 
stacking times of CSPDarkNet53's last residual block. 
   Sharma et al. [18] [19] [20] The presented quick 
growth of self-driving cars necessitates the integration 
of an advanced sensor system for the purpose of 
effectively handling the many road traffic barriers. 
Although there are several of datasets available to aid 
with object detection in autonomous cars, it is 
imperative to carefully assess how well-suited these 
datasets are for various global weather situations. 
Zhiyang et al. [21]provided a thorough analysis of deep 
learning-based methods for autonomous driving scene 
interpretation. The study concentrated on two scene 
understanding tasks: image segmentation and item 
recognition. Sajjad et al. proposed a hybrid model that 
achieves a significant increase in accuracy, with 
improvements ranging from 5 to 7 percent compared to 
the standalone YOLO models. Dai et al.[22]  [23][24] 
[25] presented a novel algorithm is proposed to filter 
ground points from LIDAR data, which is critical for the 
correctness of subsequent detection processes. 

YOLOv8 was employed to detect objects, which was 
trained on a customized data set.  
   Murendeni et al.[26]concluded that the YOLO deep 
learning method has the capacity to greatly enhance 
the accuracy of 3D object identification systems in 
autonomous driving. The camera-based and deep 
learning-based detection systems demonstrated great 
object detection accuracy, as shown by the high 
Intersection over Union (IoU) and mAP (mean average 
precision) scores. Kale et al.[27] proposed deep 
reinforcement learning (DRL) techniques in 
autonomous vehicles, we have unveiled a path towards 
a transformative future of transportation. Oluwajuwon 
et al.[28] highlight the importance of multi-sensor fusion 
methods and sophisticated deep learning models while 
thoroughly reviewing the most recent 3D object 
identification approaches for autonomous cars. Noor UI 
et al.[29] reviewed the traditional and DL approaches 
for vehicles, pedestrians, and road lane detection in 
AVs under adverse weather conditions. They first 
studied the architecture of AVs with sensor 
technologies and other components and also 
discussed the challenges for AVs in adverse weather. 
Azevedo et al.[30] showed the viability of YOLOR, 
Scaled-YOLOv4, and YOLOv5 combined with different 
object trackers for real-time object traffic detection and 
tracking while offering a direct evaluation of their 
accuracy. Feng et al. [31] proposed a 32-layer multi-
branched network for the quick identification of objects 
in traffic scenes with a wide range of scales. It can 
precisely identify large, medium, and small-scale items 
among a list of traffic scenarios, including sparse, busy, 
daytime, and nighttime, recognitions  the design of 
three detection branches. 
   Sun et al.[32] presented a binary deep convolution 
neural network-based quick object detection technique 
is put forth. In the final feature map of a deep CNN, 
classes and bounding boxes of multi-scale objects are 
directly predicted using convolution kernels of various 
sizes. Yashrajsinh et al. [11] suggested using the KITTI 
Vision Benchmark Suite for training and testing the 
suggested CNN model. The proposed CNN with a 
VGG-16 base network reaches a detection speed of 61 
frames per second with a mAP of 969.22% on an 
NVIDIA GeForce RTX 2080 Ti GPU. Sainithin et al. [33] 
research explores deep neural networks (VGG16, 
AlexNet, and GoogleNet) for object classification and 
detection in autonomous vehicles. Majdi et al. [34] 
compared several tracking algorithms with a focus on 
the suggested optimized DeepSORT, also known as 
StrongSORT_P. They concluded that StrongSORT_P 
outperformed other algorithms, including the baseline 
DeepSORT, based on the research that was conducted 
on the MOT16 and MOT17 datasets using three 
important measures. 
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Shaikh et al. presented that YOLOv4 plays an 
important role in the computer vision object detection 
task [35]. 
III. Materials and Methods 

A.  Architecture of Proposed Method 

The architecture shown in  Fig. 1. illustrates an 
integrated approach combining YOLOv8’s powerful 
feature extraction capabilities with the Point Pillars 
network to enable accurate real-time 3D object 
detection and localization, specifically tailored for 
autonomous vehicles. This architecture is unique as it 
merges multi-scale feature processing, point cloud 
integration, and 3D object classification with high 
precision, optimizing both performance and 
computational efficiency. 

   The proposed architecture unifies and integrates 
three advanced technologies: MultiNet, PointPillars, 
and One-Stage Monocular 3D Object Detection. Each 
is designed to enhance the capabilities of autonomous 
driving systems through efficient data processing and 
real-time responsiveness. The MultiNet excels in rapid 
scene segmentation and classification, enabling the 
system to understand complex scenes quickly. This 
feature is particularly useful in dynamic driving 
environments where swift decision-making is crucial. 
PointPillars technology focuses on the efficient 
handling of 3D point clouds, a common output from 
LIDAR sensors used in autonomous vehicles. By 
transforming these point clouds into a structured ’pillar’ 
format, the system can more easily and quickly process 
spatial data, enhancing the vehicle’s awareness of its 

surroundings. This structured data approach allows for 
more accurate object detection, which is crucial for 
navigating safely through varied environments. The 
One-Stage Monocular 3D Object Detection streamlines 
the traditional detection pipeline by eliminating the 
need for multiple region proposal stages, which 
typically slow down the processing time. By directly 
predicting object boundaries and classifications, this 
approach significantly speeds up the detection 
process, ensuring that the autonomous system can 
react in real-time to changes in the driving environment. 

1. Proposed Enhancements 

Feature Hierarchies: MultiNet could introduce more 
complex hierarchical feature processing techniques to 
YOLOv8, enabling it to better handle the varying object 
sizes and types typical in autonomous driving 
scenarios.                                                              Task-
specific Tuning: By tuning the YOLOv8 architecture to 
incorporate MultiNet’s multi-task strengths, each layer 
can be optimized not just for object detection but also 
for parallel tasks like lane detection and traffic sign 
recognition, which are essential for autonomous 
vehicles. Integrating MultiNet into YOLOv8 thus 
represents a convergence of advanced object 
detection and multi-task learning, aiming to create a 
more robust and versatile model capable of addressing 
the numerous obstacles presented by autonomous 
vehicle technologies. Integrating MultiNet capabilities 
into the YOLOv8 architecture, as shown in the 
architecture diagram, showcases a sophisticated 
approach to enhancing object detection, especially in 

 
Fig. 1 The proposed detection of objects and semantic reasoning in autonomous vehicles 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.813
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1060-1073                                    e ISSN: 2656 8632 

 
Manuscript received April 7, 2025; Revised July 20, 2025; Accepted August 15, 2025; date of publication September 10, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.813 
Copyright © 2025 by the authors. This work is an open access article and licensed under a Creative Commons Attribution ShareAlike 4.0 
International License (CC BY SA 4.0).  
 1064               

complex environments like autonomous driving. Here’s 
a brief overview of how MultiNet’s features could be 
integrated into the YOLOv8 model based on the 
proposed architecture. 

2. YOLOv8 Model 

The YOLOv8 emerges as a compelling choice for 
autonomous vehicles due to its exceptional 
performance and adaptability. Its lightning-fast 
processing speed, exceeding 100 frames per second, 
ensures real-time object detection, a critical 
requirement for autonomous navigation. The 
algorithm’s impressive accuracy surpasses other 
leading algorithms like single-shot detection (SSD) and 
Faster R-CNN, demonstrating its reliability in 
identifying and classifying objects. Moreover, YOLOv8 
exhibits remarkable robustness to variations in object 
size, shape, and orientation, even when there are 
occlusions and cluttered scenes. Its enhanced 
performance in low-light conditions further expands its 
applicability to diverse driving environments. The 
algorithm’s ability to detect and classify multiple object 
classes, including vehicles, pedestrians, road signs, 
and more, is indispensable for comprehensive scene 
understanding. YOLOv8’s efficient computation, 
requiring fewer resources and memory compared to 
alternatives, makes it well-suited for deployment on 
embedded systems within autonomous vehicles. 
Furthermore, its flexibility and customization 
capabilities allow for seamless integration with other 
perception tasks and tailoring to specific autonomous 
vehicle applications. The open-source nature of 
YOLOv8, coupled with a thriving community of 
developers, fosters continuous improvement and 
provides valuable support. In summary, YOLOv8’s 
exceptional performance, versatility, and community 
support make it a highly promising choice for powering 
the perception systems of autonomous vehicles. 

   The YOLOv8 model for autonomous vehicles utilizes 
a complex array of mathematical computations to 
execute object detection and tracking with high 
precision. Below are some pivotal algorithms that 
facilitate this process. 

Intersection over Union (IoU): Measures the overlap 
between predicted and ground truth bounding boxes 
using Eq. (1) [41]. 

IoU=
Area of Intersection

Area of Union
                                  (1) 

It is calculated as the ratio of the area of overlap 
between the predicted and ground truth regions to the 
area of their union. 

Focal Loss: Addresses class imbalance by focusing 
more on hard-to-classify instances using Eq. (2) [42]. 

Focal Loss (p
t)=-(1-p

t)
γ
log(p

t)                             (2) 

where, p
t
 is the model’s predicted probability, γ is the 

focusing parameter, and (1-p
t)

γ
 is the focusing term, 

introduced by focal loss. 

Mean Average Precision (mAP): Evaluates the 
overall precision of object detection across various 
classes using Eq. (3)[43]. 

mAP=
1

num_classes
∑(class1AP

….+class_n_AP)         (3) 

3. Backbone (MultiNet++ with YOLOv8 Backbone) 

The backbone of this architecture is built on YOLOv8, 
a highly optimized convolutional neural network (CNN) 
architecture, which acts as the feature extractor. The 
backbone processes the raw image data, extracting 
low- and high-level features through multiple 
convolutional layers. The layers C3, C4, and C5 
represent convolutional blocks responsible for multi-
scale feature extraction. Each layer captures features 
at different resolutions and scales, making the network 
robust to various object sizes and positions. MultiNet++ 
is an advanced multi-task learning architecture that 
performs both object detection and semantic 
segmentation. The backbone consists of multiple 
convolutional layers and Cross Stage Partial (C2f) 
blocks,  helping in extracting hierarchical features from 
the input images: 

Convolutional layers: Employed for feature extraction, 
each convolutional operation can be described 
mathematically using Eq. (4) [44]. 

Y=ReLU (W*X+b)                               (4) 

where * denotes the convolution operation, X is the 
input, W represents the weights of the convolutional 
filter, b is the bias, and Y is the output f C2f blocks: 
These blocks use shortcut connections similar to those 
in ResNet architectures, enhancing feature 
propagation without the vanishing gradient problem. 
The output Y of a block can be expressed as in Eq. (5). 

  Y=Concat (Conv (X ),X))                                     (5)                                            

where Concat represents the concatenation of the 
feature map produced by the convolutional layer Conv 
and the input feature map X. SPPF (Spatial Pyramid 
Pooling - Fast): This layer pools features at different 
scales and concatenates them to maintain spatial 
hierarchies. Mathematically, it combines fixed-size 

outputs using Eq. (6). 

Y=Concat(MaxPool1(X),MaxPool2(X),,MaxPooln(X))  (6) 

4. Feature Pyramid Network (FPN) Neck 

The FPN Neck is a critical component that facilitates 
the combination of low- and high-level features 
extracted by the backbone at different scales (P3, P4, 
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P5, P6, and P7). The pyramid network aggregates 
features from the early (shallow) and deeper layers of 
the backbone, enabling the model to detect both small 
and large objects with equal precision. By fusing 
features at various levels, the FPN confirms that the 
detector can generalize over an extended range of 
object sizes and shapes, making it versatile for use in 
complex urban environments and dynamic road 
conditions where objects of different sizes must be 
detected in real-time. 

5. Shared Head (3D Object Detection and 
Classification) 

The Shared Head component processes both image-

based features and point cloud features (from the 
PointPillars network). This head simultaneously 
performs 3D localization (bounding box prediction) and 
category classification for objects detected in the 
vehicle’s surroundings. The shared head consists of 
multiple fully connected layers, which refine the 
predictions of object categories and their 3D locations 
(x, y, and z coordinates, along with orientation). The 
architecture uses this shared head approach to 
efficiently manage resources and ensure that both the 
2D image-based data and the 3D point cloud data are 
processed together in a unified framework, enhancing 
the robustness of the model. 

6. Loss Function and Optimization 
The architecture utilizes a combination of category loss 
and 3D localization loss to train the model. The 
category loss ensures that the model correctly 
classifies detected objects (e.g., pedestrians, cars, and 
trucks), while the localization loss minimizes errors in 
predicting the exact position of the objects in 3D space. 

   The architecture of the proposed system incorporates 
a shared encoder that processes input data and 
distributes features to three separate decoders 
responsible for different tasks. This section will detail 
the components of the encoder, the specific role of 
each decoder, and how they interact to perform their 
functions concurrently. The design focuses on 
maximizing the efficiency and speed of feature 
extraction and processing, crucial for real-time 
applications. 
   The architecture is structured around a central shared 
encoder and multiple specialized decoders for handling 
distinct tasks such as semantic segmentation, object 
detection, and classification. The shared encoder 
utilizes a convolutional neural network with deep 
learning to extract rich, hierarchical features from input 
data, which, in the case of autonomous driving, 
primarily consists of high-resolution images and 3D 
point clouds. 
B. MultiNet++ 
The MultiNet architecture masterfully consolidates key 
perception tasks—classification, detection, and 
semantic segmentation—into a unified framework. This 
model uses a shared encoder to process incoming 
data, extracting pivotal features that are then funneled 
to task-specific decoders. Such integration enables 
MultiNet to execute multiple tasks simultaneously in a 
single forward pass, markedly boosting processing 
efficiency and slashing computational expenses. This 
synergy not only accelerates inference times but also 
heightens overall accuracy and performance by 
leveraging shared contextual data across tasks, 
exemplifying a significant leap in handling complex 
multi-task operations within autonomous systems. This 
dual-page expansion would delve into each 
component's contributions to the overarching system's 

  

Fig. 2. Flowchart for multi-scale feature extraction for the MultiNet Methodology 
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efficacy and detail the interactions between the shared 
encoder and decoders. 
   The architecture depicted in Fig. 2 employs a multi-
scale feature extraction approach where an input 
image transforms three distinct scales. This 
methodology ensures comprehensive feature 
extraction, capturing both macro and micro details 
essential for accurate object detection. The integration 
of ROI Align enhances the precision of feature 
extraction across these scales, ensuring that the 
features correspond accurately to regions of interest 
within the image. Subsequent concatenation of these 
features forms a rich, high-dimensional feature map, 
which is then streamlined through bottleneck layers. 
These layers are instrumental in distilling the most 
relevant features, reducing computational complexity, 
and preparing the model for final output predictions. 
The architecture supports multiple prediction outputs at 
different stages, facilitating real-time object detection 
and classification essential for dynamic environments 
such as autonomous driving. 

1. Input Image  

The model starts with an input image of size 
1248×38×3, representing width, height, and three-color 
channels (RGB). 

2. Feature Extraction 

Feature extraction is performed at multiple scales. This 
diagram shows three scales: Scale 3 (15×48×128), 
Scale 2 (78×24×256), and Scale 1 (Encoded Feature 
39×12×512). Each scale captures different levels of 
detail; smaller scales capture more global, structural 
information, while larger scales capture fine, detailed 
features. 

3. Region of Interest (ROI) Align 

The ROI align method is applied after the initial feature 
maps are generated. This technique helps in precisely 
extracting feature maps from the regions of interest, 
aligning them properly despite varying scales and 
positions within the image. 

4. Concatenated Feature 

Features from different scales or previous layers are 
concatenated. Here, a large feature map of size 
39×12×1526 is created, which aggregates the 
information extracted from various parts of the image.  

5. Bottlenecks and Predictions 

Two bottleneck layers refine the features further. The 
first bottleneck compresses the concatenated features 
into a 500-dimensional space, and the second 
bottleneck processes these into a 30-dimensional 
space. These bottlenecks are crucial for reducing 
dimensionality and preparing features for final 
predictions.  

   Multiple predictions are made at different stages. The 
final prediction layers output detections for different 
attributes like object class, bounding box coordinates, 
etc., shown here with varying output sizes (e.g., 
39×12×6 for delta predictions and 1×2 for another 
prediction). 

6. Output Predictions 

Final outputs include detailed predictions for each 
detected object in the image across multiple scales. 
These predictions include bounding box coordinates as 
well as class labels, which are essential for tasks like 
object detection and scene comprehension in 
applications involving autonomous driving. MultiNet 
uses its convolutional layers to process the input image 
and provide a comprehensive set of feature maps for 
object detection. In order to forecast the existence of 

 

Fig.3. PointPillar Feature Integration for real-time detection and classification of objects 
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objects and their bounds, these feature maps are 
subsequently fed into direct bounding box regression 
layers or area proposal networks, if applicable. The 
categories of the detected items are determined in 
parallel by categorization layers. MultiNet++ is 
particularly well-suited for autonomous++ driving 
because it excels at handling the complex and dynamic 
nature of road environments. Autonomous vehicles 
need to constantly monitor their surroundings, detect 
objects, predict their trajectories, and make decisions 
in real time. MultiNet++’s unified architecture allows it 
to perform these tasks concurrently and efficiently, 
making it an extremely efficient remedy for both 
highway and urban driving scenarios. By detecting 
objects, segmenting the road, and classifying elements 
in the scene, MultiNet++ enables autonomous vehicles 
to understand their environment better and react 
accordingly. The multi-modal fusion of image-based 
features and other sensor data, such as LIDAR or radio 
detection and ranging (RADAR), further enhances the 
vehicle’s perception abilities. 

C. PointPillar Feature Integration  

The PointPillars methodology innovatively enhances 
the processing of 3D point clouds, which is pivotal in 
autonomous vehicle technology. This approach 
effectively transforms the raw, unstructured point 
clouds into a neatly organized pillar format. Each 
"pillar" represents key features extracted from the data, 
structured in a way that optimizes spatial 
understanding. Subsequently, these pillars are rapidly 
encoded through a specialized neural network that 
guarantees rapid and effective operations. PointPillar 
feature integration used in architecture is shown in Fig. 
3.  The method excels in accurately capturing the 
environmental layout, crucial for real-time detection 
and classification of objects. By focusing on the spatial 
distribution and inherent structure of the surroundings, 
Point Pillars enables the system to interpret and 
respond to dynamic road situations quickly. This 
feature is vital in autonomous driving, where timely and 
accurate responses can significantly influence safety 
and operational effectiveness. 

   This organized representation improves the system's 
ability to recognize and respond to complicated 
surroundings while also speeding up data processing. 
Consequently, automobiles that have this equipment 

installed benefit from a more refined perception 
capability, which is crucial for navigating through 
diverse driving conditions and executing safe 
maneuvers without human intervention. Point Pillars 
stands out as a robust solution in the landscape of 
autonomous driving technologies, providing substantial 
improvements in how vehicles perceive and interact 
with their environment. By efficiently processing 3D 
point clouds, it supports enhanced situational 
awareness and decision-making capabilities, which are 
critical for the advancement of autonomous vehicle 
systems. The PointPillars methodology represents a 
notable progress in the 3D object detection field, 
particularly within the domain of autonomous vehicle 
technologies. It efficiently processes 3D point cloud 
information, that are typically captured by sensors such 
as LIDARs mounted on autonomous vehicles.  

IV. Experiment 
The proposed model uses an NVIDIA RTX 4060 GPU 
and 32 GB RAM, 2 TB storage for its implementation. 
A. Dataset Used 

A popular dataset for autonomous driving, containing 
images, point clouds, and annotations for object 
detection, tracking, and scene understanding, is used 
in our research [29]. The Kitti Dataset is used for 
training, validation, and testing of the proposed model. 
The dataset is publicly available at 
https://www.cvlibs.net/datasets/kitti/. This dataset 
contains 12919 images. The split of the dataset is as 
follows: training: 10335 images (80%), validation: 1292 
images (10%), and test: 1292 images (10%). 
B. Performance Metrics 
To evaluate the performance of the proposed model, 
we use the metrics: accuracy, precision, recall, and F1 
score [36]. Eq (7) to (10) present the mathematical 
expressions of these metrics.  
1. Accuracy, in Eq. (7), is the ratio of correctly predicted 
data samples to the total number of input samples. In 
these equations, TP corresponds to true positives, FP to 
false positives, TN to true negatives, and FN to false 
negatives [45]. 

Accuracy =
TP+TN

TP + TN + FP + FN
                          (7) 

2. Precision, described in Eq. (8) refers to the ratio 
between correctly predicted positive samples and the 
total predicted positive samples, high precision relates 
to the low false positive rate [45].  

Table 1. Results obtained during Training phase for various parameters 

Model Input Network  
Resolution 

Recall 
(%) 

   Precision 
(%) 

    F1  
 Score (%) 

Accuracy 
(%) 

Training Time 
required in hrs. 

Proposed Model- Yolov8 MultiNet++ 800x800 82.1 92.7 87.1 93.5 3.8 
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Precision=
TP

TP+ FP 
                                          (8) 

2. Recall, as seen in Eq. (9), is the ratio of correctly 

predicted positive samples to all samples in the 

actual class [45].  

Recall=
TP

TP+ FN 
                                                 (9) 

3. F1 Score, in Eq. (10), is defined as the Harmonic 

Mean between precision and recall [46].  

F1 Score =2*
Precision * Recall

Precision + Recall
                           (10) 

4. mAP50 and mAP95: These metrics represent the 

mean Average Precision at IoU thresholds of 0.50 

and 0.95, respectively. 

V. Results 
A. Training of the Proposed Model 
Table 1 displays the results of training datasets trained 
on a GPU for various parameters. The speed and 
effectiveness of the training process for deep learning 
models can be significantly impacted by multiple 
hardware combinations. Our approach, which is 
tailored for autonomous driving situations and object 
identification, exhibits notable enhancements. Fig. 4 
displays the model’s training loss as it decreases over 
each epoch. A typical trend shows a sharp decrease 
initially, followed by a gradual decline, indicating the 
model is learning from the training data. Table 2 
compares the performance of various object detection 

models, including YOLOv3, SSD MobileNet v2, Faster 
R-CNN, EfficientDet-D0, and Yolov8 MultiNet++, using 
a GPU. The proposed object detection model performs 
exceptionally well, surpassing other models in terms of 
F1 score (82.70%), accuracy (78.50%), recall 
(76.80%), and precision (89.40%). This implies that the 
suggested model is very successful in precisely and 
quickly detecting objects. While they perform 
competitively, Faster R-CNN and EfficientDet-D0 have 
slower run times each frame (280 ms and 200 ms, 
respectively). Although SSD MobileNet v1 and 
YOLOv3 are faster, accuracy and precision are 
sacrificed. The proposed model is a great option for 
object identification jobs because of its excellent 
accuracy, precision, and speed balance (180 ms run 
time per frame), especially in situations where 
efficiency and accuracy are critical. Its sophisticated 
architecture and optimization methods, which allow it to 
recognize things quickly and accurately, are 
responsible for its exceptional performance. The strong 
recall and precision rates of the suggested model show 
that it can accurately identify the majority of objects 
while reducing false positives. This is especially crucial 
for autonomous cars, where precise object detection is 
essential. The proposed model beats Faster R-CNN by 
5.6%, EfficientDet-D0 by 2.8%, YOLOv3 by 7.9%, and 
SSD MobileNet v1 by 12.3% in terms of recall. This 
implies that the suggested model detects objects more 
accurately, especially in complicated settings. 
Additionally, the precision rate of the suggested model 

Table 2. Testing trained model in terms of various parameters only on GPU 

Model 
Input 

Network 
Resolution 

Recall 
(%) 

Precision 
(%) 

Accuracy 
(%) 

F1  
(%) 

Runtime 
per frame 

(ms) 

Faster R-CNN 800×800 71.20 82.70 73.80 76.40 280 

SSD MobileNet v1 300×300 64.50 70.30 68.20 67.20 110 

YOLOv3 608×608 68.90 78.40 72.10 73.30 150 

EfficientDet-D0 512×512 74.00 85.60 75.30 79.50 200 

Proposed Model 800×600 76.80 89.40 78.50 82.70 180 

 
Table 3. Testing trained model in terms of various parameters only on TPU 

Model 
Input 

Network 
Resolution 

Recall 
(%) 

Precision 
(%) 

Accuracy 
(%) 

F1  
(%) 

Runtime 
per frame 

(ms) 

Faster R-CNN 800x800 73.40% 84.10% 74.70% 78.20% 150 

SSD MobileNet v1 300x300 66.10% 72.20% 69.80% 69.00% 90 

YOLOv3 608x608 70.20% 80.50% 73.50% 75.00% 120 

EfficientDet-D0 512x512 75.50% 86.80% 76.90% 80.90% 170 

Proposed Model 800x600 78.60% 90.80% 79.70% 84.30% 140 
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is higher than that of the other models, suggesting that 
it can reduce false positives. The proposed model's 
overall efficacy in object detection is demonstrated by 
its greater accuracy and F1 score when compared to 
the other models. The suggested model outperforms 
Faster R-CNN by 4.7%, EfficientDet-D0 by 3.2%, 
YOLOv3 by 6.4%, and SSD MobileNet v1 by 10.3% in 
terms of accuracy rate. The suggested model's F1 
score is 15.5% higher than SSD MobileNet v1, 3.2% 
higher than EfficientDet-D0, 9.4% higher than 
YOLOv3, and 6.3% higher than Faster R-CNN. Table 
3 compares the performance of various object 
identification models, including Faster R-CNN, SSD 

MobileNet v1, YOLOv3, EfficientDet-D0, and a 
proposed model, based on resolution, recall, precision, 
accuracy, F1 score, and runtime per frame. The 
proposed model has the greatest accuracy of 79.70% 
and an F1 score of 84.30%, showing an excellent 
balance of precision and recall. Notably, it has the 
maximum precision of 90.80% and a competitive recall 
of 78.60%. EfficientDet-D0 also performs well in terms 
of accuracy and F1 score, although it takes longer to 
run than other models. The trade-off between accuracy 
and runtime is a common feature of the models. Models 
that attain more accuracy, such as the proposed model 
and EfficientDet-D0, have longer runtimes, whereas 
speedier models, such as SSD MobileNet v1, trade off 
accuracy for speed. However, EfficientDet-D0's 
runtime is significantly longer than that of other models 
despite its high-performance metrics, implying potential 
inefficiencies in its implementation or architecture. 
Overall, the proposed model exhibits a promising 
balance of performance metrics, making it ideal for 
object detection in autonomous vehicles.    Fig. 5. 
displays both the original image and the images that 
the suggested model identified. We offer a model that 
accurately detects and predicts objects in the image. In 
the bounding box, the object detection confidence 
score is displayed. A higher confidence score indicates 
a higher likelihood of object detection. Greater scores 
signify a higher level of certainty in detecting a certain 
object. 

 
Fig. 4 Plot of Loss vs. Epoch during model 

training. 

  
(a)  (b)  

  
(c)  (d)  

Fig. 5. Detected Objects in Images, (a) with confidence score, (b) without confidence score,  
(c) second image with confidence score, (d) third image with confidence score 
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VI. Discussion 
Table 4 displays the results of the comparison of the 
proposed method with various detection techniques for 
various parameters. On the KITTI dataset, YOLOv8 
MultiNet++ obtains the highest mAP50 score (55.70%) 
and mAP95 score (34.90%), demonstrating its 
remarkable capacity for object detection with a 
reasonable level of accuracy. With a mAP50 score of 
52.20% and an mAP95 score of 31.40%, EfficientDet 
comes in second. SSD and YOLOv4 exhibit competitive 
performance, as seen by their respective mAP50 ratings 
of 48.50% and 43.50% and mAP95 scores of 28.80% 
and 22.30%, respectively. With respective mAP50 
ratings of 42.70% and mAP95 scores of 21.90%, 
respectively, faster R-CNN lags behind. 

With the quickest inference performance (41 FPS) on 
the KITTI dataset, YOLOv8 MultiNet++ is appropriate for 
real-time applications. With an inference speed of 31 
FPS, YOLOv4 comes in second. EfficientDet and SSD 
both exhibit competitive performance, with inference 
speeds of 26 and 22 frames per second, respectively. 
With inference speeds of 7 frames per second, Faster 
R-CNN lags behind. On the KITTI dataset, YOLOv8 
MultiNet++ performs exceptionally well on all three 
metrics (mAP50, mAP95, and FPS). It is a great option 
for object detection jobs because of its quick inference 
speed and high and moderate accuracy in object 
detection. Comparable performance is also shown by 
EfficientDet and SSD; YOLOv4 performs worse. Faster 
R-CNN is less appropriate for real-time applications due 
to its sluggish inference speed. 
   While our unified deep learning architecture achieves 
strong results in real-time object detection and semantic 
reasoning, it is important to recognize the limitations of 
the datasets used, which may affect model performance 
and generalization. Sensor noise from devices like 
LiDAR and cameras, caused by hardware constraints or 
environmental factors such as rain or fog, can degrade 
detection accuracy by introducing missing or distorted 
data [47]. Environmental variations, including changes in 
lighting conditions and weather, pose additional 
challenges since many datasets do not fully capture this 
diversity, potentially limiting robustness in extreme or 
rare scenarios [48]. Furthermore, dataset bias is 
common as most publicly available datasets are 
collected in specific geographic and traffic conditions, 
which may restrict model generalization to different 
environments [49]. Addressing these factors through 
more diverse data collection, noise-aware training, 
sensor fusion, and domain adaptation techniques is 
crucial for improving real-world applicability and 
robustness of autonomous vehicle perception systems. 
VII. Conclusion  
The recommended approach performs remarkably 
well, and is robust in autonomous vehicle perception by 
utilizing the advantages of YOLOv8 and MultiNet++. 

The integration of YOLOv8’s efficiency and 
MultiNet++’s feature extraction capabilities results in a 
model that achieves state-of-the-art accuracy on 
various object detection benchmarks while maintaining 
real-time processing speeds. Our approach makes use 
of the advantages of current frameworks, such as the 
reliable one-stage monocular 3D object identification 
framework, the quick encoding techniques of 
PointPillars in order to identify objects from point 
clouds, and MultiNet's real-time semantic reasoning 
capabilities. By employing a shared encoder and task-
specific decoders that carry out classification, 
detection, and segmentation simultaneously, the 
suggested approach seeks to improve computational 
efficiency and accuracy. When tested on difficult 
datasets, the architecture performs exceptionally well 
in terms of speed and precision, making it appropriate 
for applications that require real-time like autonomous 
driving. Overall, our system represents a significant 
step forward in the process of creating autonomous 
vehicle perception systems, paving the way for safer 
and more efficient autonomous driving solutions. In our 
model, we used Yolov8 MultiNet and during testing got 
an accuracy of 78.5%, precision of 89.4%, recall of 
76.8% and FPS 41. In order to better assess the 
efficacy of our methodology across several 
autonomous vehicle platforms, future research might 
concentrate on using larger and more varied datasets. 
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