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Abstract Brain tissue segmentation (BTISS) from magnetic resonance imaging (MRI) is a critical process
in neuroimaging, aiding in the analysis of brain morphology and facilitating accurate diagnosis and
treatment of neurological disorders. A major challenge in BTISS is intensity inhomogeneity, which arises
from variations in the magnetic field during image acquisition. This results in non-uniform intensities within
the same tissue class, particularly affecting white matter (WM) segmentation. To address this problem, we
propose an efficient deep learning-based framework, BTISS-WNET, for accurate segmentation of brain
tissues. The main contribution of this work is the integration of a spatio-temporal segmentation strategy
with advanced pre-processing and feature extraction to overcome intensity inconsistency and improve
tissue differentiation. The process begins with skull stripping to eliminate non-brain tissues, followed by
Empirical Wavelet Transform (EWT) for noise reduction and edge enhancement. Data augmentation
techniques, including random rotation and flipping, are applied to improve model generalization. The
preprocessed images are fed into Res-GoogleNet (RGNet) to extract deep semantic features. Finally, a
Spatio-Temporal WNet is used for precise WM segmentation, leveraging spatial and temporal
dependencies for improved boundary delineation. The proposed BTISS-WNET model achieves a
segmentation accuracy of 99.32% for white matter. It also demonstrates improved accuracy of 1.76%,
18.23%, and 16.02% over DDSeg, BISON, and HMRF-WOA, respectively. In conclusion, BTISS-WNET
provides a robust and high-accuracy framework for WM segmentation in MRI images, with promising
applications in clinical neuroimaging. Future work will focus on validating the model using real clinical
datasets and extending it to multi-tissue and multi-modal MRI segmentation.

Keywords MRI Images; Brain Tissue Segmentation; Empirical wavelet transformer; Res-GoogleNet; Deep
learning.

. Introduction

Brain Tissue Segmentation (BTISS) is a prominent
research area in medical image processing, focused on

decision-making process [5]. Deep learning (DL)-
based automatic segmentation techniques offer
notable benefits over conventional techniques in terms

accurately categorizing and defining tumor regions in
brain MRI. [1]. Tissue is extracted from a brain image
by separating it into disjoint regions that share common
characteristics, such as homogeneity in intensity and
texture [2]. There are five general categories of brain
BTISS methods: manual, region-based, clustering-
based, thresholding-based, and feature extraction and
classification-based [3]. BTISS methods are also
affected by several factors, like location, size, texture,
shape, and unclear tissue boundary, which are inherent
to the modalities used to acquire images [4]. WM lesion
quantification is required for medication therapy
evaluation in multiple sclerosis. A qualified
multidisciplinary medical board is involved in the

of processing efficiency and accuracy [6]. By precisely
identifying brain regions of interest and distinguishing
them from healthy brain tissue, the DL techniques
enable more precise quantitative analysis [7], [8].

Additionally, DL-based techniques have made
significant progress in segmenting brain tissue,
including that of fetuses, newborns, and adults [9].
Despite brain MRI's intricacy and intensity fluctuations,
BTISS still faces numerous difficulties [10], [11].
However, because of the intricate architecture and
intensity fluctuations in brain MRI, tissue segmentation
is difficult to achieve. Accurate segmentation using
MRI is still a difficult undertaking to diagnose and treat
patients more successfully [12]. At the moment, there
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is insufficient training data required for precise
segmentation, which could result in the segmentation
model's poor generalizability [13], [14]. Furthermore,
the intricacy and variety of brain tissue structures
present numerous challenges for automatic
segmentation [15]. To overcome this, a novel BTISS-
WNET is proposed for BTISS using MRI images. The
proposed BTISS-WNET introduces a novel hybrid
segmentation framework that integrates three core
components: EWT for pre-processing, RGNet for
feature extraction, and Spatio-temporal WNet for
segmentation. The integration of EWT, RGNet, and
Spatio-temporal WNet establishes a new standard in
MRI BTISS by addressing key limitations in noise
suppression, multi-scale feature extraction, and spatio-
temporal continuity. This hybrid architecture not only
surpasses traditional segmentation methods in terms of
accuracy but also enhances structural preservation,
especially in challenging WM regions. The key
contributions of this work are summarized as,

1. Initially, the skull is removed from the brain MRI
images by skull stripping, and EWT pre-processes
the images to enhance the image and reduce noise.

2. The augmented MRI images are input to the RGNet,
a hybrid network that combines ResNet and
GoogleNet architectures for efficient feature
extraction.

3. These features are fed into the Spatio-temporal
WNet model to segment the WM in the brain MR,
leveraging temporal data and spatial attention
mechanisms for enhanced accuracy and precision
in segmentation.

4. The performance of the proposed model was
measured by some specific metrics like specificity
(SP), F1 score (F1), precision (PR), recall (RE),
accuracy (AC), Jaccard index (JI), and dice score
(D).

The structure of the paper is planned as follows:
section 2 defines the literature survey, section 3
explains the proposed BTISS-WNET, section 4
includes the final results, and section 5 defines the
ablation study. Section 6 shows the discussion part.
Lastly, the conclusion enfolds in section 7.

Il. Literature Review

Recently, a number of DL-based techniques for BTISS
have been made available to help radiologists do more
precise diagnostic evaluations. Some of the most
current studies are compiled in this area.

In 2020, Yamanakkanavar, N. et al. [16] suggested
a M-net architecture for BTISS automatically. The
encoder and decoder modules employ dilated
convolutional kernels of varying sizes to capture
semantic information from the MRI. The suggested M-
net offers improved fine detail retention while
overcoming the shortcomings of traditional techniques.

The suggested M-net has a high computational
complexity due to the use of multiple dilated
convolutional kernels. The BTISS-based medical
decision support approach was proposed by
Veluchamy, M. et al. in 2021 [17]. The modified brain
MRI was then segmented using a personalized fuzzy
c-means clustering technique. The results of the
experiments show that this suggested model handles
the inhomogeneity of intensity and noise well. The
BTISS-based approach relies on manual parameter
tuning, which may affect segmentation consistency
across diverse datasets. Clerigues, A., et al. [18]
proposed a 3D patch-based DL architecture for BTISS
in 2023. The multi-task U-Net design, end-to-end
inpainting, and system segmentation reduce WM
lesions. Effective WM lesion reduction is achieved by
the multi-task U-Net with the end-to-end inpainting and
segmentation procedure. The model performance may
degrade when applied to datasets with low contrast
between lesions and surrounding tissue. A multi-scale
Highlighting Foregrounds U-Net was proposed in 2021
for the BTISS by Park, G., et al. [19]. U-Net aims to
expand the identification of WMH pixels with partial
volume effects. Among the 39 techniques presented in
the WMH Segmentation, the suggested approach has
the dice similarity index (DI) and F1-score. The
proposed multi-scale Highlighting Foregrounds U-Net
reduced accuracy in segmenting small or low-contrast
WMH regions due to reliance on intensity variations.

The M-SegNet architecture presented by
Yamanakkanavar, N et al. [20] for BTISS received
worldwide attention in 2021. During decoding, global
attention integrates local features with their global
dependencies to collect rich contextual information.
The proposed model outperforms traditional
techniques in experimental data, with an average DI of
0.96. The M-SegNet model is the integration of global
attention, which may increase computational
complexity, making real-time processing challenging.
Rieu et al. (2021) suggested a semi-supervised method
for BTISS [21]. The reference labels acquired using
FreeSurfer segmentation on T1w MRI were compared
with the outcomes of the proposed technique. The
proposed BTISS can be evaluated by comparing the
outcomes of the suggested method with the DI. The
proposed reliance on FreeSurfer-generated labels
introduces bias due to potential inaccuracies in its
automated segmentation. An optimum support vector
machine for classifying and segmenting MRI brain
tumors was proposed by Kollem, S., et al. in 2024 [22].
The contourlet transform utilizes a dual filter consisting
of a Laplacian pyramid and a directional filter bank to
generate a sparse representation of smooth contours.
The extracted bands are segmented utilizing Possibility
Fuzzy C-Means and clustering method. The method
struggles with accurately segmenting tumors in images
with low contrast levels.
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Fig. 1. Proposed BTISS-WNET methodology

In 2024, Kollem, S., et al. introduced an optimal support
vector machine designed to classify and segment MRI
brain tumors [23]. The suggested approach is capable
of managing noise, PVE, and IIH. The Firefly method
(FA) and a chaotic map are used in conjunction with a
spatially modified FCM method called CEFAFCM to
initialize the firefly population. Brain MRIs obtained
from the BrainWeb database are used to test the
algorithm. The method relies heavily on the quality of
initialization, which may impact performance in
complex tumor regions.

From this literature, the existing techniques exhibit
several limitations on BTISS using different ML and DL
models. A major challenge in BTS is intensity
inhomogeneity in MRI images. This occurs due to
variations in the magnetic field during image
acquisition, leading to non-uniform intensity across the
same tissue type. To overcome these problems, a
novel BTISS-WNET is proposed for WM segmentation.

lll. Proposed BTISS-WNET

In this paper, a novel BTISS-WNET is suggested for
BTISS. The MRI is fed into skull stripping to remove

skull regions, and EWT is used for pre-processing to
expand image quality and noise reduction. The
augmented MRI images of the brain are fed into RGNet
for extracting the fine features. The proposed method
uses Spatio-temporal WNet for segmenting the WM in
brain MRI images. The proposed methodology is
displayed in Fig. 1.

A. Dataset Description

Brain MRI scans are sourced from the BrainWeb
dataset. The popular synthetic MRI dataset BrainWeb
provides controlled situations with different intensity
non-uniformities and noise levels. Important features
are RF inhomogeneity levels of 0%, 20%, and 40%,
which simulate intensity non-uniformities, and noise
levels of 0%, 1%, 3%, and 5%. A training set contains
36 images from all noise levels and RF levels, a
validation set encompasses 12 images, and a test set
comprises 57 images.

B. Empirical Wavelet Transformer

An empirical wavelet transform [24] enables a signal to
be adaptively extracted into different modes.
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This method uses a succession of wavelet filters to
extract all modes, assuming that each mode's Fourier
spectrum has compact support. Based on Meyer's

wavelets and Littlewood-Paley Eq. (1), Eq. (2) [24]
defines the Fourier spectra of a scaling function.

1 ol < (1 = P)wn
(@) = {cos[[ Bl (ol = (L =@ )] (1= Py < o] < A+ P)w, (1
0 others
(1 L+ P)wn < o] < (1= P)wns
cos[BG o — (ol = (L =Nwp))] 1 =Pwn < o] < 1+ P)wns

Yp(w) = R 1
sm[;ﬁ(m(lwl - (1 =y)wp))]

0

In Eq. (1), w denotes omega, § represents the beta,
y defines the gamma, ¢,,(w) is the frequency response
of the filter function for band index n at angular
frequency w, w is the Angular frequency variable, w,is

W (0,) = [f(t), @1 (z — t)dt = IFT (FT (f(2)) X 1 (w))

defined as the center frequency of the n*" filter, y is the
bandwidth parameter, B(.) is a smooth transition
function. In Eq. (2), ¥, (w) denotes the Frequency
response of the n* band-pass filter, w,, w,,,; defines
the Center frequencies of the n** and n + 1% filters, y
represents the Bandwidth smoothing parameter
controlling the width of the transition band.

In Eq. (3) [24], f(t) represents the original signal,
¢, (7 — t) denotes the kernel function centered at time
t, and the (.) denotes complex conjugation. FT (f(1))

Wr(n,t) = [f (), (t — t)dt = IFT (FT (f(7)) X ¢, (w))

denotes the Fourier Transform of the signal f. ¢, (w)
represents the complex conjugate of the Fourier
Transform of the window ¢, and IFT denotes the
Inverse Fourier Transform. In Eq. (4) [24] W;(n,t)
represents the wavelet coefficient at scale n and time
shift t, ¥, (t —t) represents the wavelet function at
scale n shifted to be centered at time t, FT stands for
the Fourier transform, and IFT for the inverse Fourier
transform, x is the convolution operator and (.) for the
complex conjugate operator.

C. Augmentation

This study uses various augmentation methods to
supplement the improved data. Enhancing the diversity
of training dataset samples over data augmentation
can improve the performance and output of DL
methods. Affine image processing and image
augmentation approaches are active to increase the
size of the training database. The pre-processed

()

A+, < o] < (A +y)wp

others

B(w) is defined as follows:B(w) = w*(35 — 84w +
70w? — 200%) and y < min, L2190 45 g result, the

(wnt1+wn)
scaling function's frequency support and wavelets'
frequency support should be tight. It is possible to

)

adaptively decompose a signal f(t) for analysis using
the previously given equations. where the scale
function inner product determines the approximation
coefficients, Ws (0, t), and the wavelet inner product
determines the detail coefficients, Ws (n, t):

images were exposed to various augmentation
methods to increase generalization and avoid
overfitting of the object detection model. Several image

(4)

augmentation methods, such as multi-angle rotation,
adding Gaussian noise, improving and reducing
brightness, and horizontal and vertical mirroring, were
used to increase the categorization AC. The 1200
images that each class submitted are divided into 400
testing images and 800 training each class images. to
create a diversity of images for testing and training, an
image augmentation technique called a factor of 10
was utilized.

D. Res-Googlenet

The augmented MRI images of the brain are fed into
RGNet for extracting the features from the images. Fig.
2 displays the architecture of Res-GoogleNet. Res-
Googlenet is a hybrid model combining GoogleNet
(Inception Modules) and ResNet (Residual Learning)
[26] for enhanced feature extraction. In the hybrid
model, the 177 levels were eliminated, and ten
additional layers were created to take their place,
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bringing the total number of layers to 182. The idea of
conception modules was first presented by the CNN
architecture. 1x1, 3x3, 5x5 convolutions, and 3x3 max
pooling are among the processes included in the
Inception modules. Reducing the data input size for the
next layer is the primary goal of pooling. Two popular
techniques are Maximum Pooling and Average
Pooling. The filters in the pooling layer are selected
using NxN dimensions. A 1x1 convolution reduces the
number of output volume channels. Consequently, the
architecture was able to outperform other deep CNN
models with fewer parameters in terms of
computational efficiency. An entirely densely linked
layer sits parallel to two conv layers in the Dense-
Inception [25] structure, an adaptation of the Inception
architecture. While the fully dense connection
guarantees the completeness of the feature
information, we decrease its depth to decrease the
number of parameters. The Inception module
concatenates the results of several convolutions (1x1,

[27] introduces skip connections, allowing gradients to
flow through the network more effectively. For a given
input x, the residual block is defined as Eq. (6) [27]:
:Fresidual (X) =x+ T(x, VVI.) (6)

Here, x is the feature map, F(x, W;) is the residual
mapping, which is the output of the conv layers and W;
is the weights of the conv filters. The residual
connection bypasses the conv path, ensuring stable
gradient propagation during backpropagation. In
ResGoogleNet, the inception is embedded within a
residual block [28], so the overall mapping is,

y=x+ :Finception(x) (7)
In Eq. (7) [28], y is the output of the ResGoogleNet

block and Finception (x) is the output from the inception

module. When stacking multiple layers, the final output

after n layers of ResGoogleNet becomes:

yM=x+ Y=t *{Figieption (x) (8)
In Eq. (8) [28], cumulative representation captures
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Fig. 2. Architecture diagram of Res-GoogleNet

3x3, 5x5) and pooling operations that are carried out
concurrently in Eq. (5) [26]:

This notation indicates that a pooling layer and
several conv layers are applied to the input x at the

Tlnception (x) = [Convyy1(x) D Convsys(x) @ Convsys(x) @ Maxpooling(x)]

same time. Then, along the channel dimension, the
outputs are concatenated. Maxpooling (x) defines the
max pooling operation that reduces the spatial
dimensions while keeping dominant features. @
Denotes channel-wise concatenation of the parallel
outputs, combining multi-scale information into a
unified feature representation. This multi-branch
structure enables ResGoogleNet to capture features of
varying spatial resolutions. Utilizing the Inception
module as the residual function F in a residual block is
the fundamental principle of ResGoogleNet. ResNet

hierarchical features, enhancing boundary detection
and tissue differentiation in MRI segmentation. where,
y!™ denotes the final cumulative output, x represents

®)

the original input feature map, izlﬁgiepdon(x)
defines the summation of outputs from multiple
Inception modules, each applied to the same input x,
Fl denotes output of the it* Inception block. Res-

inception
Googlenet serves as the feature extraction backbone,
generating  detailed spatial features  before

segmentation by the Spatio-temporal WNet.
E. Spatio Temporal WNet

In this section, the Spatio-Temporal WNet is used to
segment the WM from the extracted MRI images.
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A spatiotemporal [29] model includes spatial and
temporal properties as well as data collected across
space and time. In the W-Net architecture, a CNN and

transformer-based backbone network is used, similar
to the U-Net architecture for segmenting WM. Fig. 3
shows the Spatio-Temporal WNet architecture.
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Fig. 3. Architecture diagram of Spatio temporal WNet

A W-Net consists of 18 modules with two 3x3 conv
layers and a ReLU non-linearity layer. The total number
of conv layers is 46. The decoder unit, which produces
the reconstructed image, comprises the remaining nine
modules, whereas the first nine modules compose the
encoder unit, which provides the image segmentations.
Extracts spatial features from each MR slice illustrated
in Eq. (9) [30]:

E, = conv2D (I, W;) + by (9)

Here, F, denotes the spatial feature map, I, is the
MRI at time t, I is the spatial convolution weights and
b, is the bias term. Processes temporal dependencies
between consecutive slices are illustrated in Eq. (10)
[30]:

F, = ConvlD(E, W;) + b, (10)

Where, F; represents temporal feature

representation, F, are spatial features, W, is the
temporal convolution weights and b;is a bias term. The
W-Net structure applies U-Net-style downsampling and
upsampling, as illustrated in Eq. (11), Eq. (12) [30]:
Z, = Downsample(a(Conv2D(F,))) (11)
where, Z, denotes encoded feature representation,
F;represents the temporal feature map, o define the
activation function.

Zy = Upsample(o(Conv2D(Z,))) (12)

where, Z, defines the decoded feature map, Z,is
encoded features, Conv2D(Z,)is refines the
compressed feature map with another convolution
operation. The W-Net uses two main loss functions like
reconstruction and soft-n-cut-loss in Eq. (13), Eq. (14),
Eq. (15) [30].

cut (En,W—Ep)

Msoft—Ncut(W' N) = g:l asso(EnpW) (13)
_ _ YN assoc(En,En)

=N—Xn assoc (En,W) (14)
Mreconstr = ”Y - VDec (VEnc (Y, UEnc)' UEncl |% (1 5)

Here, Mopt—ncue(W,N) represents the soft
normalized cut loss for a graph with weight matrix W
and N, E,defines the n'"segment of the data.
cut (E,,W — E,) represents the sum of edge weights
between segment E, and the rest of the graph and
asso(E,,W) defines total association E, with
W. assoc(E,, E,) shows the total intra-cluster similarity.
M, .constr defines reconstruction loss, Y represents the
original input, Vg,. represents the encoder function,
and U, represents the decoder function.

In WNet, different types of graph nodes may require
distinct feature vectors, which cannot always be
represented by a fixed length. To address this, nodes
are grouped into clusters based on feature length, and
Spatial Graph Convolutional Networks (GCN) are
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applied to convert these variable-length features to a
uniform representation. This allows for consistent
learning and segmentation of WM structures across
MRI sequences.

IV. Result

This section evaluates performance in terms of several
evaluation criteria and analyzes the assessment

(a) (b) ()

outcomes of the osteoporosis detection. This

osteoporosis detection and classification is found using
the Python programming language and libraries (Sci-
Kit-Learn, TensorFlow, Keras, Numpy, HDF5, etc.) on
an Intel Core i7 processor running Windows with 16 GB
of RAM.

(d) (e) (f)

Fig. 4. Experimental result of the proposed BTISS-WNET input MRI image a), skull stripping b), pre-
processing c), data augmentation d), feature extraction e) and segmentation f)

A. Performance Analysis

Evaluation measures were employed to verify the
efficacy and characteristics of the proposed approach.
True Negative (True™), False Positive (False™), True
Positive (True*) and False Negative (False™) are the
four basic metrics used to assess performance. They
are illustrated as Eq. (16), Eq. (18), Eq. (19), Eq. (21),
Eq. (22) [31], and Eq (17) and Eq. (20) [32].

] _ Tneg
Specificity = o (16)
Precision = —2% (17)
TpostFpos
Recall = —2% (18)
TpostFneg

Tpos+T;
Accuracy = —B= 9 (19)
Total no.of samples
Precision+Recall
F1score = 2(——7—) (20)
Precision+Recall
. 2T,
Dice score = ——F* (21
Fpos+2Tpos+Fneg
. T
Jaccard index = —2"— (22)
TpostFnegtFpos

where T,., and T,,, specifies true negatives and true
positives of the sample images, F,., and F,,; specifies
false negatives and false positives of the sample
images.

Fig. 5(a) displays the accuracy graph used in the
proposed system's training and testing. Compared to
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the training phase, the proposed method obtains
greater accuracy during testing. As a result, the
proposed framework operates more effectively. Fig. 5
(b) displays the loss graph for training and testing.
Testing experiences a lower loss rate than training,
which naturally raises accuracy.

B. Comparative Analysis

In this section,

the experimental

results of the

suggested BTISS-WNET focusing on a comparison of
its performance with other segmentation methods.
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Fig. 5. Performance of the proposed method BTISS-WNET (a) Accuracy and (b) loss graph

Table.1. Comparison of Segmentation approaches

Methods DI Ji
Graphcut [33] 91.67 92.80
SegNet [34] 93.32 91.25
U-Net [35] 95.05 94.36
V-Net [36] 97.81 96.41
Spatio temporal WNet 98.54 97.82

Table 1 illustrates the comparison of various
segmentation algorithms with the Spatio-temporal
WNet based on DI and JI metrics. The proposed
Spatio-temporal WNet increases the overall DI by
7.49%, 5.59%, 3.67%, and 0.74% for Graphcut [33],
SegNet [34], U-Net [35], and V-Net [36], respectively.
According to the Table.1, Spatio-temporal WNet has
the highest DI (98.54) and JI (97.82) scores among
Graphcut, SegNet, U-Net, and V-Net algorithms. From
this analysis, the proposed Spatio-temporal WNet
indicates the best segmentation performance. Fig. 6
compares different methods for BTISS in MRI images.
The image presents a comparative analysis of brain
MRI segmentation methods: Graphcut [33], U-Net [35],
V-Net [36], and the proposed Spatio-temporal WNet.
Each row corresponds to a different MRI image, while
each column represents segmentation results from a
different method. A qualitative assessment of the
segmentation result highlights the efficacy of the
proposed BTISS-WNET in comparison with Graphcut,

U-Net, and V-Net. The BTISS-WNET consistently
delivers clearer and more anatomically accurate WM
boundaries, while Graphcut results appear fragmented
and incomplete. U-Net often blurs tissue edges, and V-
Net introduces minor artifacts despite better
localization. In contrast, BTISS-WNET effectively
preserves fine structural details and handles intensity
inhomogeneity with greater robustness. The visual
clarity and consistency of BTISS-WNET outputs
highlight its superior generalization and clinical
reliability for BTISS. The performance of existing
methods was assessed with the proposed framework
to establish that the suggested strategy produces more
effective outcomes. The F1, SP, and AC are used to
evaluate performance. The accuracy rate obtained by
the proposed framework is more efficient than the
existing models. A comparative analysis has been
performed between the proposed framework and the
four existing methods, such as RegNet [35], ResNet
[36], MobileNet [37], and GoogleNet [38].
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(a) (b)

(d) (e)
Fig. 6. Visualization results of different segmentation techniques input image (a), Graphcut (b), U-Net
(c), V-Net (d) and spatio temporal WNet (ours) (e)

Table. 2. Comparison of existing techniques and proposed technique

Techniques AC SP PR RE F1 P -value
RegNet [37] 93.65 91.04 95.23 92.2 90.55 0.056
ResNet [38] 97.18 94.78 91.4 95.53  91.32 0.072
MobileNet [39] 94.41 96.2 91.45 95.28 94.22 0.063
GoogleNet [40] 98.04 92.86 95.57 90.51 93.72 0.070
Proposed RGNet 99.32  97.49 92.87 93.3 96.1 0.051

Table 2 performance compared to the proposed
BTISS-WNET approach and existing techniques such
as RegNet [37], ResNet [38], MobileNet [39], and
GoogleNet [40]. The proposed RGNet maintains a
99.32% high accuracy range. RGNet achieves an
accuracy rate that is more efficient than that of existing
approaches. The proposed RGNet improves its
accuracy by 6.05%, 2.20%, 5.20% and 1.30% better
than RegNet [37], ResNet [38], MobileNet [39], and
GoogleNet [40], respectively. The reported p-values
from paired t-tests are all below 0.051, indicating that
the performance improvements of BTISS-WNET are
statistically significant. Fig. 7 shows the assessment of
the existing network with the suggested network. Table
3 presents a performance comparison of various DL
architectures, RegNet, ResNet, MobileNet, GoogleNet,
and the proposed RGNet, using MSE and RMSE as
evaluation metrics. Among the models, the proposed
RGNet achieves the lowest Mean Squared Error (MSE)
(0.14) and Root Mean Squared Error (RMSE) (0.23),
demonstrating superior AC and minimal prediction
error. These results clearly establish the effectiveness

of the proposed RGNet in enhancing prediction AC
over conventional architectures. Table 4 demonstrates
the impact of data augmentation on the performance of
a DL model, comparing two key metrics: AC and F1.
With augmentation, the model attained an AC of
99.32% and an F1 of 96.10% reflecting improved
prediction reliability and balanced RE and PR. In
contrast, without augmentation, the accuracy dropped
to 98.12% and the F1 score fell to 90.23% indicating
weaker generalization and class prediction. This
highlights that augmentation significantly enhances the
model's performance and robustness. An ablation
study was conducted to evaluate each module in the
BTISS-WNET framework by selectively removing key
modules: EWT for pre-processing, the RGNet for
feature extraction, and the Spatio-temporal WNet for
segmentation. The impact on segmentation
performance was measured using PR, RE, and AC
metrics. Table 5 presents a comparative analysis of the
proposed BTISS-WNET model under different ablation
scenarios to assess the contribution of each

Manuscript received Marc 8, 2025; Revised August 20, 2025; Accepted September 1, 2025; date of publication December 4, 2025

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.808

Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.808
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 1-15

e-ISSN: 2656-8632

100
98
96
94
92
90
88
86

Performance rate

Accuracy Specificity

Precision

Recall F1 score

Parameter

RegNet [37] ResNet [38]

MobileNet [39]

GoogleNet [40] Proposed RGNet

Fig. 7. Comparison of existing DL network with RGNet

component, like EWT, RGNet, and Spatio-temporal
WNet, toward overall performance. The metrics used

for evaluation include PR, RE, and AC. The full model
configuration with all three components (EWT + RGNet
+ WNet) achieves the highest scores across all metrics,
confirming the synergistic benefit of integrating pre-
processing, feature extraction, and segmentation
modules.

V. Discussion

The proposed BTISS-WNET model significantly
advances BTISS, particularly in WM regions. The
integration of EWT for pre-processing enhanced
contrast and minimized noise, which improved tissue
differentiation. The novel RGNet architecture,
combining the strengths of ResNet [26] and GoogleNet
[27], achieved a 6.05%, 2.20%, 5.20%, and 1.30%
accuracy improvement over RegNet, ResNet,
MobileNet, and GoogleNet, respectively. Furthermore,

98.54% and JI of 97.82% scores in WM segmentation
further validate the model’s robustness. In Table 2, the
reported p-values from paired t-tests are below 0.051,
indicating that the performance improvements of
BTISS-WNET are statistically significant. The spatio-
temporal learning allowed precise boundary
identification while reducing false positives, illustrating
BTISS-WNET for clinical interpretation. Table 6 relates
the AC of the proposed BTISS-WNET with existing
methods such as DDSeg [41], BISON [42], and HMRF-
WOA [43], respectively. The proposed BTISS-WNET
model achieves an overall accuracy of 1.76%, 18.23%
and 16.02% compared to the existing methods, such
as DDSeg, BISON, and HMRF-WOA. The BTISS-
WNET achieves a balanced trade-off with 6.2 million
parameters and an average inference time of 12.7 ms.
This study validates that the proposed method
maintains practical computational effectiveness and is
suitable for real-time applications. This improvement
highlights the superior performance of BTISS-WNET in

Table. 3. Comparison of error rate with existing techniques and proposed technique

Methods

RegNet [37]

ResNet [38]

MobileNet [39]

GoogleNet [40]

Proposed RGNet

MSE RMSE
0.45 0.56
0.53 0.87
0.36 0.34
0.20 0.41
0.14 0.23

the spatial-temporal WNet enabled the model to
capture dynamic structural variations in MRI slices,
resulting in a segmentation accuracy of 99.32%. This
outperformed previous architectures such as DDSeg
[41], BISON [42], and HMRF-WOA [43] by 1.76%,
18.23%, and 16.02%, respectively. Superior DI of

terms of classification AC. The results indicate that
BTISS-WNET is more reliable and effective than the
other models, making it a better choice for segmenting
the WM cases with a high accuracy rate. Despite its
strong performance, the proposed BTISS-WNET
model has certain limitations.
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Table. 4. Performance comparison of the BTISS-WNET model with and without augmentation

Metrics With augmentation Without augmentation
AC 99.32% 98.12%
F1 96.10% 90.23%

Table 5. Ablation Study of BTISS-WNET Components on Segmentation Performance

Metrics ~ Without EWT with ~ Without RGNet with ~ Without WNet with With EWT+RGNet
RGNet and WNet EWT and WNet RGNet and EWT +WNet
PR 90.12% 91.53% 89.04% 92.87%
RE 87.05% 90.18% 91.75% 93.30%
AC 90.43% 97.75% 95.28% 99.32%

Table. 6. Comparison of existing methods versus proposed BTISS-WNET

Authors Approaches AC Parameters (Millions) Inference Time (ms)
Zhang, F., et al., [41] (2021) DDSeg 97.6% 10.5 15.3
Dadar, M. et al., [42] (2021) BISON 84% 8.4 18.5
Daoudi, A. et al., [43] (2024) HMRFWOA  85.6% 7.8 13.9
Proposed BTISSWNET 99.32% 6.2 12.7

First, its dependency on high-quality pre-processing
may restrict robustness when applied to low-quality or
artifact-prone MRI scans frequently encountered in
clinical practice. Second, the spatio-temporal WNet
introduces computational complexity, which may
hinder real-time deployment in low-resource
environments. These constraints suggest that while the
model demonstrates high accuracy under controlled
conditions, its translation to routine clinical workflows
requires further optimization and external validation.
Furthermore, the model has been tested only on the
BrainWeb dataset, which may limit generalizability to
diverse clinical datasets. Future work should therefore
focus on validating the framework across multi-center,
multi-modal MRI data to enhance its applicability in
broader healthcare settings. In addition, explainable Al
techniques could be incorporated to improve
transparency and build clinical trust in automated
segmentation outcomes. Finally, exploring lightweight
architectures or model compression strategies may
help reduce computational demands and facilitate
wider adoption. The implications of this study are
significant for both research and clinical practice. The
proposed BTISS-WNET framework, integrating
empirical wavelet-based preprocessing, hybrid Res-
GoogleNet feature extraction, and spatio-temporal
segmentation, demonstrates that deep learning models
can achieve highly accurate and robust white matter
segmentation in MRI scans. Accurate tissue
segmentation not only enhances diagnostic reliability

but also supports downstream tasks such as disease
monitoring, treatment planning, and prognosis
evaluation in neurological disorders [44]. Recent
surveys have emphasized that deep learning—based
segmentation methods can reduce manual effort,
improve reproducibility, and accelerate neuroimaging
workflows in both research and clinical environments
[45], [46]. Moreover, this model’s relatively low
parameter count and fast inference time suggest
potential applicability in real-time or resource-limited
healthcare settings, aligning with the growing demand
for Al-assisted radiology [47]. By providing consistent
and high-precision segmentation, BTISS-WNET could
be integrated into large-scale brain MRI studies, clinical
decision support systems, and longitudinal monitoring
of patients with multiple sclerosis, Alzheimer’s disease,
and traumatic brain injury [48], [49].

VI. Conclusion

This research proposed a novel BTISS-WNET for
BTISS using MRI images. The brain MRI images are
fed into skull stripping to remove skull regions, and
EWT is used for pre-processing to expand the image
quality and noise reduction. The augmented MRI
images are fed into RGNet to extract the features.The
proposed method uses Spatio-temporal WNet for
segmenting the WM in MRI images. The proposed
RGNet improves its accuracy by 6.05%, 2.20%, 5.20%
and 1.30% better than RegNet, ResNet, MobileNet,
and GoogleNet. As a result of the experiment, the
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the proposed method performed 99.32% more
accurately than existing methods for segmenting the
WM. The proposed BTISS-WNET model achieves an
overall accuracy of 1.76%, 18.23% and 16.02%
compared to the existing methods such as DDSeg,
BISON, and HMRF-WOA. Future work will focus on
validating the model using real clinical datasets and
extending it for multi-tissue and multi-modal MRI
segmentation.
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