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Abstract Brain tissue segmentation (BTISS) from magnetic resonance imaging (MRI) is a critical process 

in neuroimaging, aiding in the analysis of brain morphology and facilitating accurate diagnosis and 

treatment of neurological disorders. A major challenge in BTISS is intensity inhomogeneity, which arises 

from variations in the magnetic field during image acquisition. This results in non-uniform intensities within 

the same tissue class, particularly affecting white matter (WM) segmentation. To address this problem, we 

propose an efficient deep learning-based framework, BTISS-WNET, for accurate segmentation of brain 

tissues. The main contribution of this work is the integration of a spatio-temporal segmentation strategy 

with advanced pre-processing and feature extraction to overcome intensity inconsistency and improve 

tissue differentiation. The process begins with skull stripping to eliminate non-brain tissues, followed by 

Empirical Wavelet Transform (EWT) for noise reduction and edge enhancement. Data augmentation 

techniques, including random rotation and flipping, are applied to improve model generalization. The 

preprocessed images are fed into Res-GoogleNet (RGNet) to extract deep semantic features. Finally, a 

Spatio-Temporal WNet is used for precise WM segmentation, leveraging spatial and temporal 

dependencies for improved boundary delineation. The proposed BTISS-WNET model achieves a 

segmentation accuracy of 99.32% for white matter. It also demonstrates improved accuracy of 1.76%, 

18.23%, and 16.02% over DDSeg, BISON, and HMRF-WOA, respectively. In conclusion, BTISS-WNET 

provides a robust and high-accuracy framework for WM segmentation in MRI images, with promising 

applications in clinical neuroimaging. Future work will focus on validating the model using real clinical 

datasets and extending it to multi-tissue and multi-modal MRI segmentation. 

 
Keywords MRI Images; Brain Tissue Segmentation; Empirical wavelet transformer; Res-GoogleNet; Deep 
learning. 

I. Introduction 

Brain Tissue Segmentation (BTISS) is a prominent 
research area in medical image processing, focused on 
accurately categorizing and defining tumor regions in 
brain MRI. [1]. Tissue is extracted from a brain image 
by separating it into disjoint regions that share common 
characteristics, such as homogeneity in intensity and 
texture [2]. There are five general categories of brain 
BTISS methods: manual, region-based, clustering-
based, thresholding-based, and feature extraction and 
classification-based [3]. BTISS methods are also 
affected by several factors, like location, size, texture, 
shape, and unclear tissue boundary, which are inherent 
to the modalities used to acquire images [4]. WM lesion 
quantification is required for medication therapy 
evaluation in multiple sclerosis. A qualified 
multidisciplinary medical board is involved in the 

decision-making process [5]. Deep learning (DL)-
based automatic segmentation techniques offer 
notable benefits over conventional techniques in terms 
of processing efficiency and accuracy [6]. By precisely 
identifying brain regions of interest and distinguishing 
them from healthy brain tissue, the DL techniques 
enable more precise quantitative analysis [7], [8]. 

Additionally, DL-based techniques have made 
significant progress in segmenting brain tissue, 
including that of fetuses, newborns, and adults [9]. 
Despite brain MRI's intricacy and intensity fluctuations, 
BTISS still faces numerous difficulties [10], [11]. 
However, because of the intricate architecture and 
intensity fluctuations in brain MRI, tissue segmentation 
is difficult to achieve.  Accurate segmentation using 
MRI is still a difficult undertaking to diagnose and treat 
patients more successfully [12]. At the moment, there 
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is insufficient training data required for precise 
segmentation, which could result in the segmentation 
model's poor generalizability [13], [14]. Furthermore, 
the intricacy and variety of brain tissue structures 
present numerous challenges for automatic 
segmentation [15]. To overcome this, a novel BTISS-
WNET is proposed for BTISS using MRI images. The 
proposed BTISS-WNET introduces a novel hybrid 
segmentation framework that integrates three core 
components: EWT for pre-processing, RGNet for 
feature extraction, and Spatio-temporal WNet for 
segmentation. The integration of EWT, RGNet, and 
Spatio-temporal WNet establishes a new standard in 
MRI BTISS by addressing key limitations in noise 
suppression, multi-scale feature extraction, and spatio-
temporal continuity. This hybrid architecture not only 
surpasses traditional segmentation methods in terms of 
accuracy but also enhances structural preservation, 
especially in challenging WM regions. The key 
contributions of this work are summarized as, 

1. Initially, the skull is removed from the brain MRI 
images by skull stripping, and EWT pre-processes 
the images to enhance the image and reduce noise. 

2. The augmented MRI images are input to the RGNet, 
a hybrid network that combines ResNet and 
GoogleNet architectures for efficient feature 
extraction.  

3. These features are fed into the Spatio-temporal 
WNet model to segment the WM in the brain MRI, 
leveraging temporal data and spatial attention 
mechanisms for enhanced accuracy and precision 
in segmentation. 

4. The performance of the proposed model was 
measured by some specific metrics like specificity 
(SP), F1 score (F1), precision (PR), recall (RE), 
accuracy (AC), Jaccard index (JI), and dice score 
(DI). 

The structure of the paper is planned as follows: 
section 2 defines the literature survey, section 3 
explains the proposed BTISS-WNET, section 4 
includes the final results, and section 5 defines the 
ablation study. Section 6 shows the discussion part. 
Lastly, the conclusion enfolds in section 7. 

 

II. Literature Review 

Recently, a number of DL-based techniques for BTISS 
have been made available to help radiologists do more 
precise diagnostic evaluations.  Some of the most 
current studies are compiled in this area. 

In 2020, Yamanakkanavar, N. et al. [16] suggested 
a M-net architecture for BTISS automatically. The 
encoder and decoder modules employ dilated 
convolutional kernels of varying sizes to capture 
semantic information from the MRI. The suggested M-
net offers improved fine detail retention while 
overcoming the shortcomings of traditional techniques. 

The suggested M-net has a high computational 
complexity due to the use of multiple dilated 
convolutional kernels. The BTISS-based medical 
decision support approach was proposed by 
Veluchamy, M. et al. in 2021 [17]. The modified brain 
MRI was then segmented using a personalized fuzzy 
c-means clustering technique.  The results of the 
experiments show that this suggested model handles 
the inhomogeneity of intensity and noise well. The 
BTISS-based approach relies on manual parameter 
tuning, which may affect segmentation consistency 
across diverse datasets. Clerigues, A., et al. [18] 
proposed a 3D patch-based DL architecture for BTISS 
in 2023. The multi-task U-Net design, end-to-end 
inpainting, and system segmentation reduce WM 
lesions.  Effective WM lesion reduction is achieved by 
the multi-task U-Net with the end-to-end inpainting and 
segmentation procedure. The model performance may 
degrade when applied to datasets with low contrast 
between lesions and surrounding tissue. A multi-scale 
Highlighting Foregrounds U-Net was proposed in 2021 
for the BTISS by Park, G., et al. [19]. U-Net aims to 
expand the identification of WMH pixels with partial 
volume effects. Among the 39 techniques presented in 
the WMH Segmentation, the suggested approach has 
the dice similarity index (DI) and F1-score. The 
proposed multi-scale Highlighting Foregrounds U-Net 
reduced accuracy in segmenting small or low-contrast 
WMH regions due to reliance on intensity variations. 

The M-SegNet architecture presented by 
Yamanakkanavar, N et al. [20] for BTISS received 
worldwide attention in 2021. During decoding, global 
attention integrates local features with their global 
dependencies to collect rich contextual information. 
The proposed model outperforms traditional 
techniques in experimental data, with an average DI of 
0.96. The M-SegNet model is the integration of global 
attention, which may increase computational 
complexity, making real-time processing challenging. 
Rieu et al. (2021) suggested a semi-supervised method 
for BTISS [21]. The reference labels acquired using 
FreeSurfer segmentation on T1w MRI were compared 
with the outcomes of the proposed technique. The 
proposed BTISS can be evaluated by comparing the 
outcomes of the suggested method with the DI. The 
proposed reliance on FreeSurfer-generated labels 
introduces bias due to potential inaccuracies in its 
automated segmentation. An optimum support vector 
machine for classifying and segmenting MRI brain 
tumors was proposed by Kollem, S., et al. in 2024 [22]. 
The contourlet transform utilizes a dual filter consisting 
of a Laplacian pyramid and a directional filter bank to 
generate a sparse representation of smooth contours. 
The extracted bands are segmented utilizing Possibility 
Fuzzy C-Means and clustering method. The method 
struggles with accurately segmenting tumors in images 
with low contrast levels. 
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In 2024, Kollem, S., et al. introduced an optimal support 
vector machine designed to classify and segment MRI 
brain tumors [23]. The suggested approach is capable 
of managing noise, PVE, and IIH.  The Firefly method 
(FA) and a chaotic map are used in conjunction with a 
spatially modified FCM method called CEFAFCM to 
initialize the firefly population.  Brain MRIs obtained 
from the BrainWeb database are used to test the 
algorithm. The method relies heavily on the quality of 
initialization, which may impact performance in 
complex tumor regions. 

From this literature, the existing techniques exhibit 
several limitations on BTISS using different ML and DL 
models. A major challenge in BTS is intensity 
inhomogeneity in MRI images. This occurs due to 
variations in the magnetic field during image 
acquisition, leading to non-uniform intensity across the 
same tissue type. To overcome these problems, a 
novel BTISS-WNET is proposed for WM segmentation. 

III. Proposed BTISS-WNET 

In this paper, a novel BTISS-WNET is suggested for 
BTISS. The MRI is fed into skull stripping to remove 

skull regions, and EWT is used for pre-processing to 
expand image quality and noise reduction. The 
augmented MRI images of the brain are fed into RGNet 
for extracting the fine features. The proposed method 
uses Spatio-temporal WNet for segmenting the WM in 
brain MRI images. The proposed methodology is 
displayed in Fig. 1. 

A. Dataset Description 
Brain MRI scans are sourced from the BrainWeb 

dataset. The popular synthetic MRI dataset BrainWeb 

provides controlled situations with different intensity 

non-uniformities and noise levels. Important features 

are RF inhomogeneity levels of 0%, 20%, and 40%, 

which simulate intensity non-uniformities, and noise 

levels of 0%, 1%, 3%, and 5%. A training set contains 

36 images from all noise levels and RF levels, a 

validation set encompasses 12 images, and a test set 

comprises 57 images. 

B. Empirical Wavelet Transformer 

An empirical wavelet transform [24] enables a signal to 
be adaptively extracted into different modes. 

 
Fig. 1. Proposed BTISS-WNET methodology 
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This method uses a succession of wavelet filters to 
extract all modes, assuming that each mode's Fourier 
spectrum has compact support. Based on Meyer's 

wavelets and Littlewood-Paley Eq. (1), Eq. (2) [24] 
defines the Fourier spectra of a scaling function.

 

In Eq. (1), 𝜔 denotes omega, 𝛽  represents the beta, 

𝛾 defines the gamma, 𝜑𝑛(𝜔) is the frequency response 

of the filter function for band index n at angular 
frequency ω, ω is the Angular frequency variable, 𝜔𝑛 is 

defined as the center frequency of the 𝑛𝑡ℎ filter, 𝛾 is the 

bandwidth parameter, 𝛽(. ) is a smooth transition 

function. In Eq. (2), 𝜓𝑛(𝜔) denotes the Frequency 

response of the 𝑛𝑡ℎ band-pass filter, 𝜔𝑛 , 𝜔𝑛+1 defines 

the Center frequencies of the 𝑛𝑡ℎ and 𝑛 + 1𝑡ℎ filters, 𝛾 

represents the Bandwidth smoothing parameter 
controlling the width of the transition band. 

 

 𝛽(𝜔) is defined as follows:𝛽(𝜔) = 𝜔4(35 − 84𝜔 +

70𝜔2 − 20𝜔3) and 𝛾 < 𝑚𝑖𝑛𝑛
(𝜔𝑛+1−𝜔𝑛)

(𝜔𝑛+1+𝜔𝑛)
 as a result, the 

scaling function's frequency support and wavelets' 
frequency support should be tight. It is possible to 

adaptively decompose a signal f(t) for analysis using 
the previously given equations.  where the scale 
function inner product determines the approximation 
coefficients, Wf (0, t), and the wavelet inner product 
determines the detail coefficients, Wf (n, t):

In Eq. (3) [24], 𝑓(𝑡) represents the original signal, 

𝜑1(𝜏 − 𝑡) denotes the kernel function centered at time 

t, and the (. )̅̅ ̅̅  denotes complex conjugation. 𝐹𝑇 (𝑓(𝜏)) 

denotes the Fourier Transform of the signal f. 𝜑1(𝜔)̅̅ ̅̅ ̅̅ ̅̅  

represents the complex conjugate of the Fourier 
Transform of the window 𝜑1 and IFT denotes the 

Inverse Fourier Transform. In Eq. (4) [24] 𝑊𝑓(𝑛, 𝑡) 

represents the wavelet coefficient at scale n and time 
shift t, 𝜓𝑛(𝜏 − 𝑡) represents the wavelet function at 

scale n shifted to be centered at time t, FT stands for 
the Fourier transform, and IFT for the inverse Fourier 

transform, × is the convolution operator and (. )̅̅ ̅̅  for the 

complex conjugate operator. 

C. Augmentation 

This study uses various augmentation methods to 
supplement the improved data. Enhancing the diversity 
of training dataset samples over data augmentation 
can improve the performance and output of DL 
methods. Affine image processing and image 
augmentation approaches are active to increase the 
size of the training database. The pre-processed 

images were exposed to various augmentation 
methods to increase generalization and avoid 
overfitting of the object detection model. Several image 

augmentation methods, such as multi-angle rotation, 
adding Gaussian noise, improving and reducing 
brightness, and horizontal and vertical mirroring, were 
used to increase the categorization AC. The 1200 
images that each class submitted are divided into 400 
testing images and 800 training each class images. to 
create a diversity of images for testing and training, an 
image augmentation technique called a factor of 10 
was utilized.  

D. Res-Googlenet 

The augmented MRI images of the brain are fed into 
RGNet for extracting the features from the images. Fig. 
2 displays the architecture of Res-GoogleNet. Res-
Googlenet is a hybrid model combining GoogleNet 
(Inception Modules) and ResNet (Residual Learning) 
[26] for enhanced feature extraction. In the hybrid 
model, the 177 levels were eliminated, and ten 
additional layers were created to take their place, 

𝜑𝑛(𝜔) = {

1                                           |𝜔| ≤ (1 − 𝛾)𝜔𝑛

cos[
𝜋

2
𝛽(

1

2𝛾𝜔𝑛
(|𝜔| − (1 − 𝛾)𝜔𝑛))]      (1 − 𝛾)𝜔𝑛 ≤ |𝜔| ≤ (1 + 𝛾)𝜔𝑛

0                                                                  𝑜𝑡ℎ𝑒𝑟𝑠

                                                               (1) 
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1                                                                           (1 + 𝛾)𝜔𝑛 ≤ |𝜔| ≤ (1 − 𝛾)𝜔𝑛+1
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2
𝛽(

1

2𝛾𝜔𝑛+1
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sin[
𝜋

2
𝛽(

1

2𝛾𝜔𝑛
(|𝜔| − (1 − 𝛾)𝜔𝑛+1))]         (1 + 𝛾)𝜔𝑛 ≤ |𝜔| ≤ (1 + 𝛾)𝜔𝑛+1 
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𝑊𝑓(𝑛, 𝑡) = [𝑓(𝑡),𝜓𝑛(𝜏 − 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝜏 = 𝐼𝐹𝑇 (𝐹𝑇 (𝑓(𝜏)) × 𝜑𝑛(𝜔)̅̅ ̅̅ ̅̅ ̅̅ )                                                                                       (4) 
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bringing the total number of layers to 182. The idea of 
conception modules was first presented by the CNN 
architecture.  1x1, 3x3, 5x5 convolutions, and 3x3 max 
pooling are among the processes included in the 
Inception modules. Reducing the data input size for the 
next layer is the primary goal of pooling. Two popular 
techniques are Maximum Pooling and Average 
Pooling. The filters in the pooling layer are selected 
using NxN dimensions. A 1x1 convolution reduces the 
number of output volume channels. Consequently, the 
architecture was able to outperform other deep CNN 
models with fewer parameters in terms of 
computational efficiency. An entirely densely linked 
layer sits parallel to two conv layers in the Dense-
Inception [25] structure, an adaptation of the Inception 
architecture. While the fully dense connection 
guarantees the completeness of the feature 
information, we decrease its depth to decrease the 
number of parameters. The Inception module 
concatenates the results of several convolutions (1x1, 

3x3, 5x5) and pooling operations that are carried out 
concurrently in Eq. (5) [26]:  

This notation indicates that a pooling layer and 
several conv layers are applied to the input 𝑥 at the 

same time. Then, along the channel dimension, the 
outputs are concatenated. 𝑀𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑥) defines the 

max pooling operation that reduces the spatial 
dimensions while keeping dominant features. ⊕ 

Denotes channel-wise concatenation of the parallel 
outputs, combining multi-scale information into a 
unified feature representation. This multi-branch 
structure enables ResGoogleNet to capture features of 
varying spatial resolutions. Utilizing the Inception 
module as the residual function ℱ in a residual block is 

the fundamental principle of ResGoogleNet. ResNet 

[27] introduces skip connections, allowing gradients to 
flow through the network more effectively. For a given 
input x, the residual block is defined as Eq. (6) [27]:  

ℱ𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑥) = 𝑥 + ℱ(𝑥,𝑊𝑖)                                                  (6) 

Here, x is the feature map, ℱ(𝑥,𝑊𝑖) is the residual 

mapping, which is the output of the conv layers and 𝑊𝑖 

is the weights of the conv filters. The residual 
connection bypasses the conv path, ensuring stable 
gradient propagation during backpropagation. In 
ResGoogleNet, the inception is embedded within a 
residual block [28], so the overall mapping is, 

𝑦 = 𝑥 +ℱ𝑖𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛(𝑥)                                                 (7) 

In Eq. (7) [28], y is the output of the ResGoogleNet 
block and ℱ𝑖𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛(𝑥) is the output from the inception 

module. When stacking multiple layers, the final output 
after n layers of ResGoogleNet becomes: 

𝑦⌊𝑛⌋ = 𝑥 + ∑ ℱ𝑖𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛
⌊𝑖⌋ (𝑥)𝑛

𝑖=1                                          (8) 

In Eq. (8) [28], cumulative representation captures 

hierarchical features, enhancing boundary detection 
and tissue differentiation in MRI segmentation. where, 

𝑦⌊𝑛⌋ denotes the final cumulative output, x represents 

the original input feature map, ∑ ℱ𝑖𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛
⌊𝑖⌋ (𝑥)𝑛

𝑖=1                                          

defines the summation of outputs from multiple 
Inception modules, each applied to the same input x, 

ℱ𝑖𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛
⌊𝑖⌋

denotes output of the 𝑖𝑡ℎ Inception block. Res-

Googlenet serves as the feature extraction backbone, 
generating detailed spatial features before 
segmentation by the Spatio-temporal WNet. 

E. Spatio Temporal WNet 

In this section, the Spatio-Temporal WNet is used to 
segment the WM from the extracted MRI images. 

 
Fig. 2. Architecture diagram of Res-GoogleNet 

 

 

 

 

 

ℱ𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛(𝑥) = [𝐶𝑜𝑛𝑣1×1(𝑥) ⊕  𝐶𝑜𝑛𝑣3×3(𝑥)⊕ 𝐶𝑜𝑛𝑣5×5(𝑥)⊕  𝑀𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑥)]                                                    (5) 
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A spatiotemporal [29] model includes spatial and 
temporal properties as well as data collected across 
space and time. In the W-Net architecture, a CNN and 

transformer-based backbone network is used, similar 
to the U-Net architecture for segmenting WM. Fig. 3 
shows the Spatio-Temporal WNet architecture.

A W-Net consists of 18 modules with two 3x3 conv 
layers and a ReLU non-linearity layer. The total number 
of conv layers is 46. The decoder unit, which produces 
the reconstructed image, comprises the remaining nine 
modules, whereas the first nine modules compose the 
encoder unit, which provides the image segmentations. 
Extracts spatial features from each MRI slice illustrated 
in Eq. (9) [30]: 

𝐹𝑎 = 𝑐𝑜𝑛𝑣2𝐷(𝐼𝑡 ,𝑊𝑠) + 𝑏𝑠                                           (9) 

Here, 𝐹𝑎  denotes the spatial feature map, 𝐼𝑡 is the 

MRI at time t, 𝑊𝑠 is the spatial convolution weights and 

𝑏𝑠 is the bias term. Processes temporal dependencies 

between consecutive slices are illustrated in Eq. (10) 
[30]: 

𝐹𝑡 = 𝐶𝑜𝑛𝑣1𝐷(𝐹𝑠 ,𝑊𝑡) + 𝑏𝑡                                             (10) 

Where,𝐹𝑡  represents temporal feature 
representation, 𝐹𝑠 are spatial features, 𝑊𝑡 is the 

temporal convolution weights and 𝑏𝑡is a bias term. The 

W-Net structure applies U-Net-style downsampling and 
upsampling, as illustrated in Eq. (11), Eq. (12) [30]: 

𝑍𝑒 = 𝐷𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒(𝜎(𝐶𝑜𝑛𝑣2𝐷(𝐹𝑡)))                          (11) 

where, 𝑍𝑒 denotes encoded feature representation, 
𝐹𝑡represents the temporal feature map, 𝜎 define the 

activation function. 

𝑍𝑑 = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝜎(𝐶𝑜𝑛𝑣2𝐷(𝑍𝑒)))                             (12) 

where, 𝑍𝑑  defines the decoded feature map, 𝑍𝑒  is 

encoded features, 𝐶𝑜𝑛𝑣2𝐷(𝑍𝑒) is refines the 

compressed feature map with another convolution 
operation. The W-Net uses two main loss functions like 
reconstruction and soft-n-cut-loss in Eq. (13), Eq. (14), 
Eq. (15) [30]. 

𝑀𝑠𝑜𝑓𝑡−𝑁𝑐𝑢𝑡(𝑊,𝑁) = ∑
𝑐𝑢𝑡 (𝐸𝑛,𝑊−𝐸𝑛)

𝑎𝑠𝑠𝑜(𝐸𝑛,𝑊)
𝑁
𝑛=1                               (13) 

= 𝑁 − ∑
𝑎𝑠𝑠𝑜𝑐(𝐸𝑛,𝐸𝑛)

𝑎𝑠𝑠𝑜𝑐 (𝐸𝑛,𝑊)
𝑁
𝑛=1                                                (14) 

𝑀𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟 = ||𝑌 − 𝑉𝐷𝑒𝑐(𝑉𝐸𝑛𝑐(𝑌, 𝑈𝐸𝑛𝑐),𝑈𝐸𝑛𝑐||2
2               (15) 

Here, 𝑀𝑠𝑜𝑓𝑡−𝑁𝑐𝑢𝑡(𝑊,𝑁) represents the soft 

normalized cut loss for a graph with weight matrix W 

and N, 𝐸𝑛defines the 𝑛𝑡ℎ segment of the data. 
𝑐𝑢𝑡 (𝐸𝑛,𝑊 − 𝐸𝑛) represents the sum of edge weights 

between segment 𝐸𝑛 and the rest of the graph and 

𝑎𝑠𝑠𝑜(𝐸𝑛,𝑊) defines total association 𝐸𝑛 with 

W. 𝑎𝑠𝑠𝑜𝑐(𝐸𝑛, 𝐸𝑛) shows the total intra-cluster similarity. 

𝑀𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟 defines reconstruction loss, Y represents the 

original input, 𝑉𝐸𝑛𝑐 represents the encoder function, 

and 𝑈𝐸𝑛𝑐 represents the decoder function. 

In WNet, different types of graph nodes may require 
distinct feature vectors, which cannot always be 
represented by a fixed length. To address this, nodes 
are grouped into clusters based on feature length, and 
Spatial Graph Convolutional Networks (GCN) are 

 

      Fig. 3. Architecture diagram of Spatio temporal WNet 
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applied to convert these variable-length features to a 
uniform representation. This allows for consistent 
learning and segmentation of WM structures across 
MRI sequences. 

 

IV. Result  

This section evaluates performance in terms of several 
evaluation criteria and analyzes the assessment 

outcomes of the osteoporosis detection. This 
osteoporosis detection and classification is found using 
the Python programming language and libraries (Sci-
Kit-Learn, TensorFlow, Keras, Numpy, HDF5, etc.) on 
an Intel Core i7 processor running Windows with 16 GB 
of RAM.

A. Performance Analysis 

Evaluation measures were employed to verify the 
efficacy and characteristics of the proposed approach. 
True Negative (𝑇𝑟𝑢𝑒−), False Positive (𝐹𝑎𝑙𝑠𝑒+), True 

Positive (𝑇𝑟𝑢𝑒+) and False Negative (𝐹𝑎𝑙𝑠𝑒−) are the 

four basic metrics used to assess performance. They 
are illustrated as Eq. (16), Eq. (18), Eq. (19), Eq. (21), 
Eq. (22) [31], and Eq (17) and Eq. (20) [32].  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑛𝑒𝑔

𝑇𝑛𝑒𝑔+𝐹𝑝𝑜𝑠
                                                            (16) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑝𝑜𝑠
                                                                (17) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑛𝑒𝑔
                                                                     (18) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                                              (19) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2(
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
)                                              (20) 

𝐷𝑖𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑝𝑜𝑠

𝐹𝑝𝑜𝑠+2𝑇𝑝𝑜𝑠+𝐹𝑛𝑒𝑔
                                             (21) 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑖𝑛𝑑𝑒𝑥  =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑛𝑒𝑔+𝐹𝑝𝑜𝑠
                                         (22) 

where 𝑇𝑛𝑒𝑔 and 𝑇𝑝𝑜𝑠 specifies true negatives and true 

positives of the sample images, 𝐹𝑛𝑒𝑔  and 𝐹𝑝𝑜𝑠  specifies 

false negatives and false positives of the sample 
images. 

Fig. 5(a) displays the accuracy graph used in the 
proposed system's training and testing. Compared to 

      

      

   
 

  

      

      

(a) (b) (c) (d) (e) (f) 

Fig. 4. Experimental result of the proposed BTISS-WNET input MRI image a), skull stripping b), pre-
processing c), data augmentation d), feature extraction e) and segmentation f) 
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the training phase, the proposed method obtains 
greater accuracy during testing. As a result, the 
proposed framework operates more effectively. Fig. 5 
(b) displays the loss graph for training and testing. 
Testing experiences a lower loss rate than training, 
which naturally raises accuracy. 

B. Comparative Analysis 

In this section, the experimental results of the 
suggested BTISS-WNET focusing on a comparison of 
its performance with other segmentation methods.

Table 1 illustrates the comparison of various 
segmentation algorithms with the Spatio-temporal 
WNet based on DI and JI metrics. The proposed 
Spatio-temporal WNet increases the overall DI by 
7.49%, 5.59%, 3.67%, and 0.74% for Graphcut [33], 

SegNet [34], U-Net [35], and V-Net [36], respectively.  

According to the Table.1, Spatio-temporal WNet has 
the highest DI (98.54) and JI (97.82) scores among 
Graphcut, SegNet, U-Net, and V-Net algorithms. From 
this analysis, the proposed Spatio-temporal WNet 
indicates the best segmentation performance. Fig. 6 
compares different methods for BTISS in MRI images. 
The image presents a comparative analysis of brain 
MRI segmentation methods: Graphcut [33], U-Net [35], 
V-Net [36], and the proposed Spatio-temporal WNet. 
Each row corresponds to a different MRI image, while 
each column represents segmentation results from a 
different method. A qualitative assessment of the 
segmentation result highlights the efficacy of the 
proposed BTISS-WNET in comparison with Graphcut, 

U-Net, and V-Net. The BTISS-WNET consistently 
delivers clearer and more anatomically accurate WM 
boundaries, while Graphcut results appear fragmented 
and incomplete. U-Net often blurs tissue edges, and V-
Net introduces minor artifacts despite better 
localization. In contrast, BTISS-WNET effectively 
preserves fine structural details and handles intensity 
inhomogeneity with greater robustness. The visual 
clarity and consistency of BTISS-WNET outputs 
highlight its superior generalization and clinical 
reliability for BTISS. The performance of existing 
methods was assessed with the proposed framework 
to establish that the suggested strategy produces more 
effective outcomes. The F1, SP, and AC are used to 
evaluate performance. The accuracy rate obtained by 
the proposed framework is more efficient than the 
existing models. A comparative analysis has been 
performed between the proposed framework and the 
four existing methods, such as RegNet [35], ResNet 
[36], MobileNet [37], and GoogleNet [38].     

Table.1. Comparison of Segmentation approaches 

Methods DI JI 

Graphcut [33] 91.67 92.80 

SegNet [34] 93.32 91.25 

U-Net [35] 95.05 94.36 

V-Net [36] 97.81 96.41 

Spatio temporal WNet 98.54 97.82 

 

 

 

 

 

 

 

(a)                                                              (b) 
Fig. 5. Performance of the proposed method BTISS-WNET (a) Accuracy and (b) loss graph 
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 Table 2 performance compared to the proposed 
BTISS-WNET approach and existing techniques such 
as RegNet [37], ResNet [38], MobileNet [39], and 
GoogleNet [40]. The proposed RGNet maintains a 
99.32% high accuracy range. RGNet achieves an 
accuracy rate that is more efficient than that of existing 
approaches.  The proposed RGNet improves its 
accuracy by 6.05%, 2.20%, 5.20% and 1.30% better 
than RegNet [37], ResNet [38], MobileNet [39], and 
GoogleNet [40], respectively. The reported p-values 
from paired t-tests are all below 0.051, indicating that 
the performance improvements of BTISS-WNET are 
statistically significant. Fig. 7 shows the assessment of 
the existing network with the suggested network. Table 
3 presents a performance comparison of various DL 
architectures, RegNet, ResNet, MobileNet, GoogleNet, 
and the proposed RGNet, using MSE and RMSE as 
evaluation metrics. Among the models, the proposed 
RGNet achieves the lowest Mean Squared Error (MSE) 
(0.14) and Root Mean Squared Error (RMSE) (0.23), 
demonstrating superior AC and minimal prediction 
error. These results clearly establish the effectiveness 

of the proposed RGNet in enhancing prediction AC 
over conventional architectures. Table 4 demonstrates 
the impact of data augmentation on the performance of 
a DL model, comparing two key metrics: AC and F1. 
With augmentation, the model attained an AC of 
99.32% and an F1 of 96.10% reflecting improved 
prediction reliability and balanced RE and PR. In 
contrast, without augmentation, the accuracy dropped 
to 98.12% and the F1 score fell to 90.23% indicating 
weaker generalization and class prediction. This 
highlights that augmentation significantly enhances the 
model's performance and robustness. An ablation 
study was conducted to evaluate each module in the 
BTISS-WNET framework by selectively removing key 
modules: EWT for pre-processing, the RGNet for 
feature extraction, and the Spatio-temporal WNet for 
segmentation. The impact on segmentation 
performance was measured using PR, RE, and AC 
metrics. Table 5 presents a comparative analysis of the 
proposed BTISS-WNET model under different ablation 
scenarios to assess the contribution of each 

     

     

     

     

(a) (b) (c) (d) (e) 
Fig. 6. Visualization results of different segmentation techniques input image (a), Graphcut (b), U-Net 
(c), V-Net (d) and spatio temporal WNet (ours) (e) 

  

Table. 2. Comparison of existing techniques and proposed technique 

Techniques AC SP PR RE F1  P -value 

RegNet [37] 93.65 91.04 95.23 92.2 90.55 0.056 

ResNet [38] 97.18 94.78 91.4 95.53 91.32 0.072 

MobileNet [39] 94.41 96.2 91.45 95.28 94.22 0.063 

GoogleNet [40] 98.04 92.86 95.57 90.51 93.72 0.070 

Proposed RGNet 99.32 97.49 92.87 93.3 96.1 0.051 
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component, like EWT, RGNet, and Spatio-temporal 
WNet, toward overall performance. The  metrics   used 

for evaluation include PR, RE, and AC. The full model 
configuration with all three components (EWT + RGNet 
+ WNet) achieves the highest scores across all metrics, 
confirming the synergistic benefit of integrating pre-
processing, feature extraction, and segmentation 
modules. 

 

V. Discussion 

The proposed BTISS-WNET model significantly 
advances BTISS, particularly in WM regions. The 
integration of EWT for pre-processing enhanced 
contrast and minimized noise, which improved tissue 
differentiation. The novel RGNet architecture, 
combining the strengths of ResNet [26] and GoogleNet 
[27], achieved a 6.05%, 2.20%, 5.20%, and 1.30% 
accuracy improvement over RegNet, ResNet, 
MobileNet, and GoogleNet, respectively. Furthermore, 

the spatial-temporal WNet enabled the model to 
capture dynamic structural variations in MRI slices, 
resulting in a segmentation accuracy of 99.32%. This 
outperformed previous architectures such as DDSeg 
[41], BISON [42], and HMRF-WOA [43] by 1.76%, 
18.23%, and 16.02%, respectively. Superior DI of 

98.54% and JI of 97.82% scores in WM segmentation 
further validate the model’s robustness. In Table 2, the 
reported p-values from paired t-tests are below 0.051, 
indicating that the performance improvements of 
BTISS-WNET are statistically significant. The spatio-
temporal learning allowed precise boundary 
identification while reducing false positives, illustrating 
BTISS-WNET for clinical interpretation. Table 6 relates 
the AC of the proposed BTISS-WNET with existing 
methods such as DDSeg [41], BISON [42], and HMRF-
WOA [43], respectively. The proposed BTISS-WNET 
model achieves an overall accuracy of 1.76%, 18.23% 
and 16.02% compared to the existing methods, such 
as DDSeg, BISON, and HMRF-WOA. The BTISS-
WNET achieves a balanced trade-off with 6.2 million 
parameters and an average inference time of 12.7 ms. 
This study validates that the proposed method 
maintains practical computational effectiveness and is 
suitable for real-time applications. This improvement 
highlights the superior performance of BTISS-WNET in 

terms of classification AC. The results indicate that 
BTISS-WNET is more reliable and effective than the 
other models, making it a better choice for segmenting 
the WM cases with a high accuracy rate. Despite its 
strong performance, the proposed BTISS-WNET 
model has certain limitations.   

Table. 3. Comparison of error rate with existing techniques and proposed technique 

Methods MSE RMSE 

RegNet [37] 0.45 0.56 

ResNet [38] 0.53 0.87 

MobileNet [39] 0.36 0.34 

GoogleNet [40] 0.20 0.41 

Proposed RGNet 0.14 0.23 

 

 

 

 

 

Fig. 7. Comparison of existing DL network with RGNet 
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 First, its dependency on high-quality pre-processing 
may restrict robustness when applied to low-quality or 
artifact-prone MRI scans frequently encountered in 
clinical practice. Second, the spatio-temporal WNet 
introduces computational complexity, which may 
hinder real-time deployment in low-resource 
environments. These constraints suggest that while the 
model demonstrates high accuracy under controlled 
conditions, its translation to routine clinical workflows 
requires further optimization and external validation. 
Furthermore, the model has been tested only on the 
BrainWeb dataset, which may limit generalizability to 
diverse clinical datasets. Future work should therefore 
focus on validating the framework across multi-center, 
multi-modal MRI data to enhance its applicability in 
broader healthcare settings. In addition, explainable AI 
techniques could be incorporated to improve 
transparency and build clinical trust in automated 
segmentation outcomes. Finally, exploring lightweight 
architectures or model compression strategies may 
help reduce computational demands and facilitate 
wider adoption. The implications of this study are 
significant for both research and clinical practice. The 
proposed BTISS-WNET framework, integrating 
empirical wavelet-based preprocessing, hybrid Res-
GoogleNet feature extraction, and spatio-temporal 
segmentation, demonstrates that deep learning models 
can achieve highly accurate and robust white matter 
segmentation in MRI scans. Accurate tissue 
segmentation not only enhances diagnostic reliability 

but also supports downstream tasks such as disease 
monitoring, treatment planning, and prognosis 
evaluation in neurological disorders [44]. Recent 
surveys have emphasized that deep learning–based 
segmentation methods can reduce manual effort, 
improve reproducibility, and accelerate neuroimaging 
workflows in both research and clinical environments 
[45], [46]. Moreover, this model’s relatively low 
parameter count and fast inference time suggest 
potential applicability in real-time or resource-limited 
healthcare settings, aligning with the growing demand 
for AI-assisted radiology [47]. By providing consistent 
and high-precision segmentation, BTISS-WNET could 
be integrated into large-scale brain MRI studies, clinical 
decision support systems, and longitudinal monitoring 
of patients with multiple sclerosis, Alzheimer’s disease, 
and traumatic brain injury [48], [49]. 

 

VI. Conclusion 

This research proposed a novel BTISS-WNET for 
BTISS using MRI images. The brain MRI images are 
fed into skull stripping to remove skull regions, and 
EWT is used for pre-processing to expand the image 
quality and noise reduction. The augmented MRI 
images are fed into RGNet to extract the features.The 
proposed method uses Spatio-temporal WNet for 
segmenting the WM in MRI images. The proposed 
RGNet improves its accuracy by 6.05%, 2.20%, 5.20% 
and 1.30% better than RegNet, ResNet, MobileNet, 
and   GoogleNet.  As  a  result  of the experiment,  the  

Table. 6. Comparison of existing methods versus proposed BTISS-WNET 

Authors Approaches AC Parameters (Millions) Inference Time (ms) 

Zhang, F., et al., [41] (2021) DDSeg 97.6% 10.5 15.3 

Dadar, M. et al., [42] (2021) BISON 84% 8.4 18.5 

Daoudi, A. et al., [43] (2024) HMRFWOA 85.6% 7.8 13.9 

Proposed BTISSWNET 99.32% 6.2 12.7 

 

 

 

 

 

 

 

 

 

Table. 4. Performance comparison of the BTISS-WNET model with and without augmentation 

Metrics With augmentation  Without augmentation 

AC 99.32% 98.12% 

F1  96.10% 90.23% 

 
Table 5. Ablation Study of BTISS-WNET Components on Segmentation Performance 

Metrics Without EWT with 
RGNet and WNet 

Without RGNet with 
EWT and WNet 

Without WNet with 
RGNet and EWT 

With EWT+RGNet 
+WNet 

PR  90.12% 91.53% 89.04% 92.87% 

RE 87.05% 90.18% 91.75% 93.30% 

AC  90.43% 97.75% 95.28% 99.32% 
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the proposed method performed 99.32% more 
accurately than existing methods for segmenting the 
WM. The proposed BTISS-WNET model achieves an 
overall accuracy of 1.76%, 18.23% and 16.02% 
compared to the existing methods such as DDSeg, 
BISON, and HMRF-WOA. Future work will focus on 
validating the model using real clinical datasets and 
extending it for multi-tissue and multi-modal MRI 
segmentation. 
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