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Abstract Accurate prediction of construction costs plays a pivotal role in ensuring successful project 

delivery, influencing budget formulation, resource allocation, and financial risk management. However, 

traditional estimation methods often struggle to handle complex, nonlinear relationships inherent in 

construction datasets. This study proposes a process innovation by systematically evaluating six machine 

learning (ML) models, i.e., Ridge Regression, Lasso Regression, Elastic Net, K-Nearest Neighbors (KNN), 

XGBoost, and CatBoost, on a standardized RSMeans dataset comprising 4,477 real-world construction data 

points. The primary aim is to benchmark the predictive performance, generalizability, and stability of both 

linear and ensemble models in construction cost forecasting. Each model is subjected to rigorous 

hyperparameter tuning using grid search with 5-fold cross-validation. Performance is assessed using R² 

(coefficient of determination), RMSE (root mean squared error), and MBE (mean bias error), while 

confidence intervals are computed to quantify predictive uncertainty. Results indicate that linear models 

achieve modest accuracy (R² ≈ 0.83), but struggle to model nonlinear interactions. In contrast, ensemble-

based models significantly outperform , i.e., XGBoost and CatBoost achieve R² values of 0.988 and 0.987, 

respectively, RMSE values below 0.5, and near-zero MBE. Moreover, confidence interval visualization and 

feature importance analysis provide transparency and interpretability, enhancing the models practical 

applicability. Unlike prior studies that compare models in isolation, this work introduces a unified, 

interpretable framework and highlights the trade-offs between accuracy, overfitting, and deployment 

readiness. The findings have real-world implications for contractors, project managers, and cost engineers 

seeking reliable, data-driven decision support systems. In summary, this study  present a scalable and 

robust ML-based framework that  facilitate process innovation in construction cost estimation, paving the 

way for more intelligent, efficient, and risk-aware construction project management. 

Keywords Construction Cost; Prediction; Machine Learning; Regression. 

 

I. Introduction 

The success of a construction project highly depends 
on precise cost estimation. It not only helps effectively 
control the project budget but also provides reliable 
data to support decision-making [1]. The construction 
of the main stadium for the 2008 Beijing Olympic 
Games, known as Bird's Nest, exemplifies the critical 
role of precise cost estimation. The leading design 
teams from China and abroad collaborated to optimize 
the design, where the project costs are subdivided into 

specific categories such as steel structure, façade, and 
interior decoration. Each sub-project was allocated with 
detailed cost budgets, and throughout the project’s 
execution, the project management software was used 
to monitor and analyze cost in real time to ensure they 
remained under control [2]. In  contrast, the 2012 
London Olympics serveas a cautionary example of the 
consequences of having poor cost estimation. Despite 
the extensive experience of London in hosting the 
Olympics, the scale and complexity of the 2012 
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Games, particularly in venue construction, 
encountered significant challenges. The project 
inaccurately estimated the costs required to preserve 
and renovate the historic buildings, resulting in 
repeated revisions of the construction plans [3]. These 
two extreme examples show that the accurate 
forecasting of construction costs is crucial to ensure 
project success.   

Despite the importance of accurately estimating 
construction costs in project management, it is  often 
challenging to attain high precision due to the wide 
range of complex and interrelated factors influencing 
the overall cost. Uncertainties in external factors, such 
as economic fluctuations, natural disasters, changes in 
government policies, and social  aspects, can directly 
impact construction costs [4]. In addition, the inherent 
complexity of construction projects, including complex 
construction methods, frequent design changes , and 
concealed works, can further increase the work volume 
and cost [5]. Inexperienced estimators who lack a deep 
understanding of the cost components and influencing 
factors, may also make mistakes due to  subjective 
judgements. Hence, accurately determining 
construction cost is a challenging task that demands 
the careful consideration of various factors [6]. 
Improving cost prediction accuracy is essential for 
successful project delivery, and it can be achieved 
through the advancement of prediction techniques and 
the strengthening of management studies. 

Some of the widely used traditional construction 
cost prediction approaches include the parametric 
method, the analogical method, the bill of quantities 
method, expert judgment method, and the empirical 
estimation method. The parametric method [7] typically 
involves developing a mathematical model based on a 
statistical relationship between historical data and 
costs,  which is then utilized to predict new project costs 
based on the current parameters. This simple approach 
is and practical for predicting construction costs for 
similar projects. Analogical method [8] compares the 
current project with those of similar historical projects, 
then adjusts the cost predictions based on their 
differences. This method can achieve relatively 
accurate cost estimation by considering specific project 
characteristics. The Bill of Quantities method [9] 
requires the preparation of a detailed bill based on 
design drawings, calculation of the cost of each 
component using market prices, and summarization of 
the total project cost. Expert judgment method [10] 
estimates the project costs by gathering experts’ 
insights from related fields, enabling the 
comprehensive consideration of uncertainties and 
yielding reliable predictions. Empirical estimation 
method [11] is suitable for rapid assessment because 
it can provide quick and simple estimation based on the 
experience of engineers. 

Despite the popularity of these conventional 
methods in the past, they tend to encounter several 
limitations with the increasing complexity in the 
construction industry. First, these methods are heavily 
reliant on historical data, and they tend to suffer from 
significant reductions in prediction accuracy if the 
historical data is lacking or the project types differ 
substantially. Second, these methods are exposed to 
the risk of human error as they require extensive 
human intervention for data processing and model 
development. Moreover, these traditional prediction 
methods are less adaptable to the changes of the 
evolving construction industry, with the continuous 
emergence of new materials and techniques. Finally, 
these conventional methods tend to struggle in 
accurately capturing the actual costs for large and 
complex projects, leading to their questionable 
reliability in the forecasts. 

The rise of Industry 4.0, characterized by the 
integration of technologies like IoT, Big Data, Robotics 
and Automation, 5G Communication, and Artificial 
Intelligence, is reshaping multiple facets of modern 
society. Among these technologies, Machine Learning, 
a core component of AI, is increasingly being utilized in 
both daily life improvements and sophisticated 
scientific advancements. In daily life, major e-
commerce platforms, music services, and video 
streaming sites leverage ML to recommend products, 
music, and videos based on users’ historical behavior 
and preferences, thereby improving the user 
experience [12]. In healthcare, ML aids in more 
accurate disease diagnosis, tumor detection through 
medical image analysis, and the development of 
personalized treatment plans based on patients’ 
genomic and medical history data [13]. In agriculture, 
ML empowers autonomous agricultural robots to 
perform tasks such as sowing, fertilizing, and weeding 
with precision [14]. Moreover, ML is also being utilized 
in other sectors such as automation and non-
destructive testing. 

The rapid advancement of ML technology has also 
revitalized the construction industry. Increasingly, 
scholars are exploring the applications of ML in 
architectural design, construction, management, and 
other related areas, with the potential enhance both 
efficiency and quality significantly. ML can offer 
promising prospect for construction section by assisting 
the engineers in: (a) structural design optimization [15] 
via identification of optimal solutions to meet 
performance requirements, (b) structural health 
monitoring [16] via early detection of structural damage 
to prevent the catastrophic failures and (c) predicting 
the remaining useful life of structure to inform 
maintenance and reinforcement strategies [17]. Apart 
from these critical roles in structural analysis, ML also 
has a profound impact on building materials as well, 
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where it can be used to accurately predict mechanical 
properties (e.g., strength and elastic modulus) by 
analyzing material composition and preparation 
processes [18]. Additionallu, ML can be helpful in the 
creation of advanced construction materials by 
predicting the longevity of these materials and 
evaluating their characteristics under different 
environmental scenarios. In the context of material 
recycling, the integration of ML with image processing 
can facilitate the accurate sorting of construction waste, 
thus fostering industrial sustainability [19]. 

Given the promising data processing capability, ML 
showcases its broad applications in construction cost 
prediction. By harnessing and analyzing the extensive 
historical construction project data, ML can be used to 
construct more accurate prediction models for project 
cost control. Numerous ML algorithms, such as Linear 
Regression, Decision Trees, Random Forests, and 
Neural Networks, have been employed to tackle the 
cost prediction problems of different complexity levels. 
The Random Forest [20] excels at handling high-
dimensional and noisy data, while Neural Networks [21] 
are effective in modeling complex nonlinear 
relationships. By selecting suitable models, 
researchers can achieve more accurate construction 
cost predictions, thereby providing robust support for 
informed project decision-making. Despite increasing 
attention to ML in construction cost estimation, current 
studies remain fragmented in scope. Most research 
either focuses on a narrow subset of algorithms or fails 
to apply consistent benchmarking across models. 
Moreover, few studies leverage both linear and 
ensemble methods within a unified evaluation pipeline 
using standardized industry datasets. Advanced 
algorithms such as Neural Networks [22] and XGBoost 
[23], though well-established in other domains, are 
rarely investigated in the context of construction cost 
forecasting. This gap highlights the need for a robust 
comparative framework to evaluate the predictive 
performance, generalization, and uncertainty 
estimation of multiple ML models under controlled 
experimental conditions. 

To address this gap, this study formulates the 
hypothesis that ensemble learning models (e.g., 
XGBoost and CatBoost) can significantly outperform 
traditional linear and non-parametric models in 
predicting construction costs, particularly in modeling 
nonlinear interactions and managing categorical 
variables. This hypothesis is empirically tested using a 
standardized RSMeans dataset containing 4,477 
samples, covering diverse structural assemblies and 
cost variables. The main contributions of this study are 
threefold:  

1. The implementation of six machine learning models, 

i.e., Ridge Regression, Lasso Regression, Elastic 

Net, K-Nearest Neighbor (KNN) Regression, 

XGBoost and CatBoost, under a consistent training-

validation-testing protocol.  

2. The integration of confidence interval analysis to 

quantify predictive uncertainty, an aspect often 

neglected in prior studies. 

3. The introduction of a process innovation in cost 

modeling by developing a scalable and robust 

framework that bridges predictive accuracy with 

practical deployment feasibility. 

The organization of this paper is as follows: Section 2 
reviews related work. Section 3 details the 
methodologies of the six ML models employed. Section 
4 describes the data sources, the model training 
process, performance evaluation metrics, and 
discusses the results. Section 5 concludes with a 
summary of findings and potential avenues for future 
research. 

 

II. Literature Review 

As computer and information technologies continue to 
evolve rapidly, machine learning has emerged as a 
highly effective method for prediction and classification, 
enabling the discovery of underlying patterns in vast 
amounts of data. A growing number of studies are 
leveraging machine learning techniques to improve the  
accuracy of construction cost forecasting. Hai [22] 
employed Multivariate Linear Analysis to develop a 
regression model estimating 16 factors  that impact 
construction costs. Using SPSS for weighted statistical 
analysis, four common factors were identified, revealing 
a maximum budget deviation rate of 4.80%, which falls 
within the acceptable threshold of 10%. In a study by 
Harrison et al. [23], XGBoost was applied to historical 
construction project data from Ghana, spanning the year 
of 2016 to 2018. The model demonstrated strong 
predictive capabilities, achieving RMSE, MSE, MAE, 
and Mean Absolute Percentage Error (MAPE) values of 
0.202, 0.041, 0.069, and 0.306, respectively. Their 
innovative approach provided insights into key variables, 
enhancing the design of predictive models for cost 
overruns and improving cost estimation practices in the 
construction industry. Lowe et al. [24] developed Linear 
Regression (LR) models using 286 datasets from the UK 
to predict construction costs. Among the six models 
examined, a total of 41 candidate predictors were 
considered, with five factors—gross internal floor area 
(GIFA), building function, project duration, mechanical 
systems, and foundation work—repeatedly identified as 
primary cost influencers. The findings also indicated that 
conventional cost estimation techniques generally yield 
an MAPE close to 25%. 

Jafarzadeh [25] collected real data from 183 confined 
masonry (CM) school buildings in Iran and employed 
Stepwise Regression to develop parametric models, 
with cross-validation used to test their predictive 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.799
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 624-645                                                e-ISSN: 2656-8632 

 
Manuscript received March 8, 2025; Accepted May 10, 2025; date of publication May 20, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.799 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 627               

performance. Four variables were identified as the best 
predictors of changes in retrofit net construction cost 
(RNCC), i.e., mortar quality, roof and floor diaphragm 
type, seismic weight index, and gross floor area. This 
study emphasized the importance of the glass floor area 
in RNCC prediction for CM buildings. It recommended 
the use of a double-log cost area model during the early 
design phase of seismic retrofits. Using comprehensive 
data from 93 construction projects in Australia, Skitmore 
and Ng [26] developed multiple predictive models aimed  
to estimate actual construction durations and costs. 
These models were built using Forward Cross-Validated 
Regression analysis, incorporating variables such as 
contract amount, duration, project type, contractual 
arrangements, client sector, and contractor selection. A 
range of regression approaches, including conventional 
regression and cross-validation methods, were 
employed, with the cross-validation model ultimately 
chosen due to the lowest deleted residual sum of 
squares. The sensitivity analysis indicated that 
estimation errors for construction duration declined with 
more extended contract periods, whereas the accuracy 
of cost predictions remained stable regardless of project 
size. 

Drawing on data from approximately 300 
construction projects, Emsley et al. [27] constructed cost 
estimation models based on Neural Networks (NN), 
using LR as a baseline for performance comparison. 
Their findings highlight the key strength of the NN 
method—its capability to capture complex nonlinear 
relationships within the dataset. The best NN model 
achieved an MAPE of 16.6%. This performance 
compares favorably with conventional estimates, which 
range from 20.8% to 27.9%. Shahandashti and Ashuri 
[28] conducted an extensive literature review to identify 
16 potential predictors for the National Highway 
Construction Cost Index (NHCCI), including variables 
such as consumer price index, new housing starts and 
crude oil prices. Using Granger causality and unit root 
analyses, they found that the average hourly wage in the 
construction sector and crude oil prices served as 
significant leading indicators. A Vector Error Correction 
(VEC) model was then formulated based on 
cointegration test findings, providing a suitable 
multivariate framework for NHCCI forecasting. The VEC 
model, which incorporated crude oil price and NHCCI 
data, successfully passed diagnostic evaluations and 
outperformed a univariate model in prediction accuracy, 
as demonstrated by its lower MAPE and MSE in out-of-
sample tests. Petruseva et al. [29] implemented both 
Support Vector Machine (SVM) and LR models, utilizing 
Bromilow’s cost and time relationship model along with 
DTREG predictive modeling software. Their 
comparative analysis revealed that SVM significantly 
outperformed LR in prediction accuracy. Huang and 
Hsieh [30] proposed an innovative approach grounded 

in the Cross-Industry Standard Process for Data Mining 
(CRISP-DM), introducing a hybrid model that integrates 
Random Forest (RF) with LR to improve the precision of 
labor cost predictions in the BIM-based construction 
phase. Drawing on data from 19 finalized BIM projects, 
their comparative study showed that this combined 
methodology significantly reduce the uncertainty 
associated with estimating BIM labor costs. 

Kim et al. [31] utilized a hybrid approach that 
integrates NN with Genetic Algorithm (GA) to predict 
early-stage construction costs for residential buildings 
developed in Seoul, South Korea, between 1997 and 
2000. The research assessed three distinct models: the 
first tuned the backpropagation network’s parameters 
via a trial-and-error process; the second optimized these 
parameters using a genetic algorithm; and the third 
applied a genetic algorithm specifically to train the NN 
weights. Findings revealed that the second model 
outperformed the others in accurately estimating the 
preliminary costs of residential construction projects. 
Cheng et al. [32] proposed a hybrid intelligent framework 
named ELSVM to capture variations in construction 
pricing as represented by the Construction Cost Index 
(CCI). This system combines the capabilities of Least 
Squares Support Vector Machine (LS-SVM) and 
Differential Evolution (DE). In the model, LS-SVM was 
responsible for establishing the functional relationship 
between the CCI and its influencing variables, while DE 
was employed to fine-tune the LS-SVM parameters. The 
model was trained using a dataset comprising 122 
historical records. Results from the experiments 
demonstrated that ELSVM successfully modeled CCI 
dynamics, achieving a mean absolute percentage error 
(MAPE) of under 1%, indicating high predictive accuracy. 
Alshboul et al. [33] collected, preprocessed, analyzed, 
and evaluated the latest datasets from 3,578 green 
projects in North America, utilizing two advanced ML 
techniques (e.g., LightGBM and XGBoost) to identify key 
parameters influencing cost estimation for sustainable 
buildings. Their analyses suggest that public and private 
investments in sustainable buildings are likely to result in 
reduced costs.  

Zhang et al. [34] sought to design a parameter-driven 
cost prediction method for state highway administrations 
(SHA) to predict project costs before execution, enabling 
preemptive measures against cost escalation. While 
ordinary least squares (OLS) regression is a prevalent 
method in cost estimation, it has notable limitations. This 
study expanded the variable set to include previously 
unused economic factors,  that are generally considered 
influential in determining highway construction costs. 
The findings indicated that the criterion-based LASSO 
regression model surpassed OLS in terms of prediction 
accuracy. Shehadeh et al. [35] introduced a set of ML 
models, i.e., Modified Decision Tree (MDT), LightGBM, 
and XGBoost, to estimate the residual value of 
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construction equipment. The performance of these 
models was assessed using four key evaluation criteria: 
MAE, MSE, MAPE, and R². This study highlighted the 
capacity of ML to enhance automation within the 
construction industry. Simić et al. [36] constructed cost 
prediction methods utilizing Neural Networks, XGBoost 
and Multiple Regression Analysis. Their findings 
suggest that satisfactory prediction accuracy can be 
attained using a limited number of cost drivers, 
specifically three from the owner's viewpoint and five 
from the contractor's. Expanding the number of input 
variables does not always enhance model precision. 
The survey results also revealed differing priorities: 
owners have more concern over environmental impacts, 
whereas contractors focused on fluctuations in resource 
prices, particularly in light of recent increases driven by 
the Russia-Ukraine conflict and the COVID-19 pandemic. 

Alshboul et al. [37] utilized FR, Deep NN (DNN) and 
XGboost to estimate the costs of green buildings by 
considering both hard and soft cost-related factors. The 
performance of these models was evaluated using 
standard metrics, including MAE, MSE, MAPE, and R². 
Among the models, XGBoost achieved the highest 
predictive accuracy with an R² of 0.96, followed by DNN 
at 0.91 and RF at 0.87. In a separate study, Kim [38] 
assessed the effectiveness of three cost estimation 
methods, i.e., SVM, NN, and Regression Analysis (RA), 
with historical construction cost data. The results 
demonstrated that the NN model outperformed others in 
accuracy, making it the most appropriate choice for 
predicting school construction costs. Cheng and Hoang 
[39] proposed an innovative cost forecasting framework 
for construction projects, known as EAC-LSPIM, which 
combines LS-SVM, DE, and Machine Learning-based 
Interval Estimation (MLIE). This EAC-LSPIM generates 
both point estimates and prediction bounds, thus offering 
a confidence level that addresses inherent uncertainties 
in project costing. Yun [40] advanced construction cost 
prediction by employing a neural network with a multi-
output regression model to estimate seven sub-
construction costs, instead of a single aggregate figure. 
This approach enables the detailed prediction of 
individual cost factors simultaneously, thereby 
facilitating the estimation of various construction types or 
partial costs.  

Reviewing the literature, there is a noticeable trend 
towards utilizing ML methods in construction 
engineering, particularly for predicting construction costs 
due to their superior predictive capabilities. However, the 
application of ML in this domain is still in its early stages, 
presenting significant opportunities for further research. 
It is observed that similar ML models (e.g., LR, SVM, NN, 
RF, XGBoost) are frequently applied across various 
contexts. In contrast, the potential of other ML models in 
construction cost prediction remains underexplored. 

Moreover, most previous studies have limited their 
performance comparisons to a small selection of models, 
typically three to four. In response to these identified 
gaps, this research undertakes an in-depth comparative 
analysis by applying six diverse ML models, namely 
Ridge Regression, Lasso Regression, Elastic Net, KNN 
Regression, XGBoost, and CatBoost, on a unified 
construction cost dataset. Notably, most of these 
selected ML models have not been previously applied to 
construction cost prediction and are evaluated using 
metrics such as R2, RMSE, and MBE. 

 

III. Method 

The methodology adopted in this study follows a 
structured machine learning (ML) workflow, illustrated 
in Fig.1, aimed at systematically evaluating and 
comparing the predictive performance of six ML models 
for construction cost estimation. These models include 
Ridge Regression, Lasso Regression, Elastic Net, K-
Nearest Neighbors (KNN) Regression, Extreme 
Gradient Boosting (XGBoost), and CatBoost. This 
diverse selection of models encompasses linear, non-
parametric, and ensemble-based learners, enabling a 
comprehensive assessment of algorithmic 
effectiveness across a range of data complexities and 
non-linear relationships commonly encountered in 
construction datasets. 

The methodological pipeline begins with data 
acquisition and preprocessing, followed by partitioning 
the dataset into training and testing subsets. To ensure 
a robust evaluation and reduce the risk of overfitting, a 
stratified 5-fold cross-validation was integrated into the 
hyperparameter tuning process. GridSearchCV was 
employed to systematically explore hyperparameter 
spaces for each model, optimizing for the highest R² 
score on validation folds. All models were implemented 
using Python (version 3.13) with packages from scikit-
learn (version 1.6.9), XGBoost (version 2.1.4), and 
CatBoost (version 1.2.7). 

The model performance is assessed using three key 
metrics: the coefficient of determination (R²), root mean 
square error (RMSE), and mean bias error (MBE). To 
enhance the interpretability and reliability of 
performance estimates, 95% confidence intervals were 
computed using bootstrapped resampling (n = 1,000 
iterations) on the test set predictions. 

A. Description of the RSMeans Dataset 

The construction cost prediction models in this study 
were developed and evaluated using a dataset 
compiled from the RSMeans Assemblies Books 
published between 1998 and 2018. This dataset 
provides comprehensive historical records of 
construction component costs in the United States  
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Table 1. Descriptive statistics of RSMeans dataset 

Variables Avg. Std. Dev. Min. Max. 

Structural 
Assembly 
Types 

- - 1 6 

Triburaty Area 
[ft2] 

763.23 421.86 225 1800 

Superimposed 
Load [lbs./ft2] 

107.04 58.8 40 200 

Formwork [$/ft2] 7.43 2.28 4.19 13.75 

Concrete [$/ft2] 3.55 0.96 1.73 5.23 

Total Cost [$/ft2] 16.81 4.32 7.7 29.75 

 

 

and is widely recognized as a benchmark in the 
industry. The target variable used is the total 
construction cost of structural assemblies, measured in 
USD per square foot [$/ft²]. The feature set includes five 
independent variables: structural assembly type 
(categorical), tributary area [ft²], superimposed load 
[lbs./ft²], unit cost of formwork [$/ft²], and unit cost of 
concrete [$/ft³]. 

The dataset contains 4,477 samples, each 
representing a distinct floor assembly in a medium- or 
high-rise structure. Assemblies include one-way slabs, 
two-way slabs, flat slabs with and without drop panels, 
multi-span joist slabs, and waffle slabs. These are 
encoded as an integer-valued categorical variable (1 to 
6), representing the structural type. To retain ordinal 
information while minimizing dimensionality, label 
encoding was used instead of one-hot encoding. This 
approach was selected due to the low cardinality of the 
categorical variable and its implicit rank structure, as 
described in the RSMeans documentation. 

Data integrity was thoroughly assessed prior to 
modeling. All features were complete with no missing 
values or null entries, thereby eliminating the need for 
imputation. Independent variables, such as unit costs 
and tributary area, were inspected for skewness and 
outliers using boxplots and kernel density estimation 
(KDE). Values beyond three standard deviations were 
capped using a mild winsorization strategy to reduce 

distortion while preserving data integrity. The 
descriptive statistics (mean, standard deviation, min, 

max) for each variable are summarized in Table 1.  
RSMeans, now maintained by Gordian, undergoes 

continuous verification by a dedicated team of cost 
engineers. Its extensive coverage across regions and 
project types ensures that the dataset used is both 
authoritative and representative of real-world cost 
conditions. Despite its breadth, the dataset primarily 
reflects North American construction practices, which is 
acknowledged as a limitation in the generalizability of 
our models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1. Workflow of the proposed methodology for construction cost prediction.  
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B. Data Preprocessing and Data Splitting 

The raw dataset underwent a structured three-stage 
preprocessing pipeline: feature analysis, normalization, 
and data partitioning. First, Pearson correlation 
analysis was conducted to assess the linear 
relationships between input features and the target 
variable (Total Cost in $/ft²). As shown in the heatmap 
in Fig.2., the unit cost of formwork and the unit cost of 
concrete exhibited strong positive correlations with the 
target variable (r = 0.82 and 0.79, respectively), 
confirming their importance in cost estimation. 
Conversely, superimposed load and tributary area had 
weak correlations (r < 0.15), suggesting a lower 
predictive contribution in linear space. 

Second, all continuous numerical variables were 
normalized using MinMaxScaler to a [0, 1] range. This 
transformation addressed scale disparities among 
features and improved convergence stability for 
gradient-based models such as Ridge, Lasso, and 
XGBoost. Normalization was consistently applied to 
both training and test data using the same scaling 
parameters derived from the training set. 

Third, the dataset was partitioned into training and 
testing subsets, with 70% of the data allocated for 
training and 30% reserved for testing. A randomized 
shuffle split (random_state = 2021) was employed to 
ensure reproducibility and preserve the natural 
distribution of data. As the dataset targets a continuous 

variable, simple random sampling was used rather than 
stratified sampling, which is more appropriate for 
classification tasks. The split aimed to facilitate an 
unbiased evaluation of model generalization on unseen 
data. 

Throughout preprocessing, the dataset was verified 
to contain no missing values, null entries, or 
inconsistent formatting. As the structural assembly type 
(categorical feature) had already been label-encoded 
in the dataset preparation phase (described in Section 
III.A), no further encoding was required at this stage. 
Although the training-test split is essential for 
performance evaluation, additional validation 
procedures, such as 5-fold cross-validation with 
shuffled splits, were subsequently applied during model 
training and hyperparameter optimization to ensure 
robust assessment across different subsets of the data. 

C. ML Models for Construction Costs Prediction 
This section presents the six machine learning models 
evaluated in this study: Ridge Regression, Lasso 
Regression, Elastic Net, KNN Regression, XGBoost, 
and CatBoost. All models were implemented using the 
Anaconda Python distribution, which includes essential 
scientific computing libraries such as Scikit-learn, 
NumPy, and SciPy. XGBoost and CatBoost were 
integrated via their latest official releases from GitHub. 
This setup ensures reproducibility and compatibility 
across all training, tuning, and evaluation tasks. 

 

 

 
Fig.2. Correlation heatmap showing the relationships between features and total construction cost ($/ft2). 
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D. ML Models for Construction Costs Prediction 
 
1. Ridge Regression 

Ridge Regression is a regularization technique 
particularly valuable for addressing multicollinearity, an 
issue often encountered in construction cost prediction 
where input features such as labor cost, material cost, 
and project scale are strongly correlated. 
Multicollinearity can cause instability in coefficient 
estimation under ordinary least squares (OLS) 
regression, where minor changes in the input data may 
result in  significant fluctuations in predicted outcomes. 
Ridge Regression alleviates this by adding a penalty 
term to the OLS cost function, thereby shrinking the 
magnitudes of the coefficients and reducing model 
variance.  

 In the context of construction cost prediction, Ridge 
Regression stabilizes the model by incorporating a 
regularization parameter 𝛼, a non-negative scalar that 

controls the strength of the penalty. The Ridge cost 
function is formulated in Eq. (1)  [41] as follows: 

�̂�𝑟𝑖𝑑𝑔𝑒 = argmin
𝛽

{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 )

2
+𝑛

𝑖=1

                           𝛼 ∑ 𝛽𝑗
2𝑝

𝑗=1 }  (1) 

where n denotes the total number of data points; p is the 
total number of features used for construction cost 
prediction; 𝑖 = 1, … , 𝑛  and 𝑗 = 1, … , 𝑝  refer to the 

indices of the data point and feature, respectively; 𝑦𝑖 

represents the actual construction costs; 𝑥𝑖𝑗 represents 

the features (e.g., square footage, number of floors, 
labor hours, etc.); 𝛽𝑗  are the coefficients; 𝛼 serves as 

the tuning parameter that determines the strength of the 
regularization applied. The closed-form solution to this 
minimization problem is calculated using Eq. (2) [41]:     

      �̂�𝑟𝑖𝑑𝑔𝑒 = (𝑋𝑇𝑋 + 𝛼𝐼)−1𝑋𝑇𝑦 (2) 

where 𝑋 represents the matrix of input variables, with 

rows denoting individual observations and columns 
representing specific features; 𝑦  is the vector of 

dependent variables, representing the construction 
costs of reach data point; 𝐼  is the identity matrix, 

ensuring that the regularization is applied uniformly 
across all coefficients.  

 To ensure numerical stability and mitigate feature 
dominance due to scale differences (e.g., Tributary 
Area ranging from 225 to 1800 ft² versus Concrete Cost 
ranging from $1.73 to $5.23/ft³), all features were 
normalized to the [0, 1] range using MinMaxScaler. This 
ensure the regularization terms affects all features 
equitably.  

Hyperparameter tuning was conducted using 
GridSearchCV with 5-fold cross-validation (random 
seed = 2021). Six candidate values of 𝛼, logarithmically 

spaced between 0.0001 and 10, were evaluated using 
R2 as the scoring metric. The optimal configuration, 𝛼 =

1, achieved the highest validation score (R2 = 0.836). 

When assessed on the test dataset, the model attainted 
strong performance with an R2 of 0.827, confirming its 
ability to generalize to unseen data. 

 

2. Lasso Regression 

Lasso Regression enhances traditional LR by 
incorporating an L1 regularization term into the 
objective function, which penalizes the absolute values 
of the coefficients. This penalty not only controls model 
complexity to mitigate overfitting, but also enforces 
sparsity, shrinking less significant coefficients to 
precisely zero. Such automatic feature selection is 
especially advantageous in construction cost prediction, 
where datasets may contain numerous variables with 
varying levels of relevance. 

Mathematically, Lasso Regression modifies the OLS 
loss function by using Eq. (3) [42]: 

�̂�𝑙𝑎𝑠𝑠𝑜 = argmin
𝛽

{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 )

2
+𝑛

𝑖=1

                          𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1 }  (3) 

where 𝜆 is the regularization parameter that determines 

the penalty strength, and the second term promotes 
sparsity in 𝛽.  

 In construction cost modeling, this capability is vital, 
as it eliminates redundant or weak predictors (e.g., 
overly correlated economic factors), thereby yielding 
simpler, more interpretable models. After applying 
MinMaxScaler normalization to scale all features to the 
[0,1] range, a GridSearchCV procedure was used to 
identify the optimal value of 𝜆  from the set [0.0001, 

0.001, 0.01, 0.1, 1, 10], using 5-fold cross-validation 
(random seed = 2021).  

 The optimal model was obtained with 𝜆 = 0.001 , 

corresponding to a relatively mild penalty. This weaker 
regularization was necessary to retain informative 
features while still encouraging sparsity. The selected 
model achieved an R² of 0.836 on the training set. 
Significantly, on the test set, the model maintained 
robust performance with an R² of 0.827, indicating good 
generalization despite the reduced complexity.  

 The final trained Lasso model retained a subset of 
the original features, suggesting that only the most 
informative predictors, such as formwork cost and 
concrete cost, were utilized. This sparsity supports 
streamlined cost forecasting pipelines and enhances 
explainability, a critical consideration in the construction 
industry. 

 

3. Elastic Net 

Elastic Net is a regularized regression method that 
effectively combines the strengths of both Ridge and 
Lasso Regression, instrumental in scenarios with high-
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dimensional feature spaces or strongly correlated 
predictors, i.e., conditions often found in construction 
cost prediction tasks. While Ridge is known for 
coefficient shrinkage and Lasso for automatic feature 
elimination, Elastic Net offers a flexible compromise by 
applying both L1 and L2 regularizations. 

 The Elastic Net loss function is defined using Eq. (4) 
[43]: 

�̂�𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑛𝑒𝑡
= argmin

𝛽
{

1

2𝑛
∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝
𝑗=1 )

2
+𝑛

𝑖=1

                𝛼𝑜𝑣𝑒𝑟𝑎𝑙𝑙 [𝜌 ∑ |𝛽𝑗|
𝑝
𝑗=1 +

(1+𝜌)

2
∑ 𝛽𝑗

2𝑝
𝑗=1 ]}

  (4) 

where 𝛼𝑜𝑣𝑒𝑟𝑎𝑙𝑙 is the overall regularization strength; 𝜌 ∈
[0,1] is the mixing parameter that control the trade-off 

between L1 (sparsity-inducing) and L2 (shrinkage-
inducing) penalties. When 𝜌 = 1, Elastic Net becomes 

equivalent to Lasso, and when 𝜌 = 0 , it reduces to 

Ridge Regression. In construction cost prediction, many 
cost-related features, such as unit prices for formwork 
and concrete, often exhibit strong correlations. Elastic 
Net retains these grouped features (via L2) while 
eliminating irrelevant predictors (via L1), ensuring that 
no critical variables are inadvertently discarded.  

 For this study, all features were scaled to the [0, 1] 
range using MinMaxScaler to maintain uniform 
regularization. A grid search over five values of 
𝛼𝑜𝑣𝑒𝑟𝑎𝑙𝑙 ∈ {0.001, 0.01, 0.1, 1,10}  was conducted using 

5-fold cross-validation (random seed = 2021), with a 
fixed  𝜌 = 0.5 . This configuration was selected to 

leverage both L1 and L2 penalties evenly, allowing the 
model to strike a balance between sparsity and stability. 
The best-performing Elastic Net model was found at 
𝛼𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 0.001 , achieving an R2 of 0.836 on the 

training set and 0.827 on the test set, matching Ridge 
and Lasso in generalization, but offering better feature 
handling. The selected model retained all major 
predictors while shrinking minor ones, thereby 
producing a robust yet interpretable model. In practice, 
this balance is essential for the construction industry, 
where model explainability is critical for stakeholder 
trust. Elastic Net not only avoids the instability of Ridge 
in the presence of collinearity, but also overcomes the 
aggressive zeroing tendencies of Lasso. 

4. KNN Regression 

K-Nearest Neighbors (KNN) Regression is a non-
parametric machine learning technique widely used to 
estimate continuous outcomes by leveraging the 
proximity of similar instances. Unlike parametric 
methods that assume a functional relationship between 
input variables and the target, KNN relies purely on 
data-driven similarities, making it well-suited for 
problems with complex or unknown interactions, such 
as construction cost estimation. 

 To estimate the construction cost for a new input 𝑥, 

KNN identifies the k most similar instances from the 
training data, determined using distance measures 
such as Euclidean metric, and computes the averages 
of their corresponding target values. The predicted 
value 𝑦𝑝𝑟𝑒𝑑  for the new input  𝑥  is then calculated as 

shown in Eq. (5) [44]: 

     𝑦𝑝𝑟𝑒𝑑 =
1

𝑘
∑ 𝑦𝑎𝑎∈𝑁𝑘(𝑥)  (5) 

where 𝑦𝑎  is the target value (e.g., construction cost) of 

the a-th nearest neighbor in the training set; 𝑁𝑘(𝑥) is the 

group of k closest data points to 𝑥, determined using the 

selected distance measurement method.  

 In this study, the KNN Regressor was implemented 
using the Scikit-learn library and optimized via 5-fold 
cross-validation (random seed = 2022). A grid search 
explored different values of 𝑘 ∈ {2,4,6,8,10, 12,14,16} 
and two distance metrics, i.e., Euclidean (L2) and 
Manhattan (L1). The best performance was achieved 
with 𝑘 = 8 and Euclidean distance, which yielded the 

highest validation R2 score. Although Manhattan 
distance was considered, it did not improve predictive 
performance and was therefore excluded from the final 
configuration. Prior to training, all features were 
normalized using MinMaxScaler to mitigate the 
influence of feature scale on distance calculations, a 
critical step, as KNN is highly sensitive to feature 
magnitude. The model’s performance on the test set 
confirmed moderate predictive ability, with signs of 
overfitting due to its instance-based learning nature and 
lack of internal regularization mechanisms.  KNN 
proved most effective on training data, but its 
generalization performance was inferior compared to 
ensemble methods such as XGBoost and CatBoost. 
This can be attributed to its local learning strategy, 
which fails to model broader structural patterns in the 
data, especially in high-dimensional spaces. 
Additionally, its computational complexity grows linearly 
with the dataset size, making it less suitable for large-
scale real-time applications in construction 
management. 

5. XGBoost 

XGBoost is a powerful ML algorithm known for its ability 
to make accurate predictions by combining the outputs 
of multiple weak models, typically decision trees, into a 
strong predictive model. As an enhancement of the 
traditional Gradient Boosting Decision Tree (GBDT) 
algorithm, XGBoost introduces several improvements 
that make it particularly effective for large-scale 
datasets and complex models, such as those used in 
construction cost prediction. Unlike traditional GBDT, 
XGBoost incorporates a regularization term in its 
objective function, which helps prevent overfitting and 
enhances the model's generalization ability. This 
feature is crucial in construction cost prediction, where 
the model must perform reliably across a variety of 
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projects with differing characteristics. Additionally, 
XGBoost improves efficiency and accuracy by using a 
second-order Taylor expansion of the loss function, 
allowing the algorithm to handle more complex loss 
functions that may be difficult to differentiate directly. 

 Let �̂�𝑖 be the predicted construction cost for each i-

th data point (i.e., 𝑥𝑖) in XGBoost and it is calculated 

using Eq. (6) [45] as: 

     �̂�𝑖 = ∑ 𝑓𝑘(𝑥𝑖)𝐾
𝑘=1 ,     𝑓𝑘 ∈ 𝐹,       𝑖 = 1, … , 𝑛  (6) 

where 𝐾 is the total number of trees in the XGBoost 

model; 𝑓𝑘(𝑥𝑖) represents the output of the k-th decision 

tree for the input 𝑥𝑖; 𝐹 = {𝑓(𝑥) = 𝜔𝑞(𝑥)}  is the set of all 

possible trees, where 𝑞(𝑥)  maps each input to a 

corresponding leaf in the tree, and 𝜔  is the weight 

associated with that leaf. XGBoost seeks to minimize an 
objective function that combines the loss function and 
regularization terms, formulated in Eq. (7)  [45] as: 

  �̂� = argmin
𝑓1,,.,𝑓𝐾

{∑ 𝐿(𝑦𝑖 , �̂�𝑖) + ∑ Ω(𝑓𝑘)𝐾
𝑘=1

𝑛
𝑖=1 } (7) 

where 𝐿(𝑦𝑖 , �̂�𝑖)  is the loss function measuring the 

differences between the actual cost 𝑦𝑖  and the 

predicted cost �̂�𝑖; Ω(𝑓𝑘) is the regularization term for the 

complexity of the k-th tree, typically defined in Eq. (8) 
[45]: 

  Ω(𝑓𝑘) = 𝛾𝑇𝑘 +
1

2
𝜆 ∑ 𝜔𝑘𝑗

2𝑇
𝑗=1  (8) 

where 𝑇𝑘 is the number of leaves in the k-th tree; 𝜔𝑘𝑗 is 

the weight of the j-th leaf in k-th tree; 𝛾  and 𝜆  are 

regularization parameters that control the trade-off 
between model complexity and performance.   

 In this study, XGBoost was implemented using the 
xgboost library in Python. Hyperparameter tuning was 
conducted using grid search with 5-fold cross-validation 
(random seed = 2022). The following hyperparameters 
and their ranges were explored: (a) number of 
estimators 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 ∈ {100,200, … ,2000} , with a 

step size of 100, (b) maximum depth of the trees, 
𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈ {1,2, … ,10} , (c) learning rate, 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∈ {0.001, 0.005, 0.01, 0.05, 0.1} , (d) 

regularization on tree complexity, 𝛾 ∈ {0, 0.1, 0.5}  and 

(e) L2 penalty, 𝜆 ∈ {0.5, 1,2}.  

 The best-performing hyperparameter configuration 
was 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 1400 , 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 6 , 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.01 , 𝛾 = 0.1  and 𝜆 = 1.0 . This 

configuration yielded a training R² of 0.994 and a test R² 
of 0.988, with an RMSE  of 0.43 and near-zero MBE, 
indicating excellent predictive accuracy and 
generalization. The model’s ability to suppress 
overfitting is primarily attributed to the regularization 
parameters and its iterative additive training structure.  

 XGBoost also supports feature importance analysis. 
In our study, formwork cost and concrete cost emerged 
as the most influential predictors, i.e., consistent with 
findings from the correlation heatmap. This 
interpretability facilitates decision-making in budget 

planning and resource allocation. Given the high 
dimensionality and nonlinearity of construction cost 
data, XGBoost's scalability, ability to model complex 
interactions, and resilience to multicollinearity make it a 
compelling choice for practical deployment in cost 
estimation workflows. 

6. CatBoost 

CatBoost is another gradient boosting algorithm that 
builds upon the foundations of GBDT, following in the 
advancement of algorithms like XGBoost and 
LightGBM. Developed and open-sourced by Yandex in 
2018, CatBoost offers unique features that make it 
suitable for construction cost prediction, where 
categorical variables often play a significant role. One of 
CatBoost’s key advantages is its native handling of 
categorical features, eliminating the need for extensive 
preprocessing, such as one-hot encoding. This 
capability reduces the risk of overfitting and enhances 
prediction accuracy, which is crucial in construction cost 
prediction, where features or variables such as project 
type, location, and material grade are commonly 
categorical. Additionally, CatBoost employs Ordered 
Boosting, a method that improves model robustness 
and efficiency by sorting the training data and selecting 
a subset of relevant samples to train each decision tree 
iteration. This approach helps to reduce overfitting and 
ensure better generalization. 

Denote 𝐹𝑚(𝑥𝑖) as the predicted construction cost for 

each i-th data point (i.e., 𝑥𝑖) in CatBoost after adding the 

m-th decision tree, and it is calculated using Eq. (9) [46]  
as: 

𝐹𝑚(𝑥𝑖) = 𝐹𝑚−1(𝑥𝑖) + ℎ𝑚(𝑥𝑖)  (9) 

where 𝐹𝑚−1(𝑥𝑖) is the cumulative prediction from the 

first (𝑚 − 1)  decision trees; ℎ𝑚(𝑥𝑖)  represents the 

output of the m-th decision tree, which fits the residuals 
from the previous trees. Similar to XGBoost, CatBoost 
minimizes an objective function, as shown in Eq. (7) [45] 
and Eq. (8) [45], that combines the loss function with a 
regularization term to control model complexity and 
prevent overfitting. The key difference lies in 
substituting the predicted value �̂�𝑖  in Eq. (7) [45]with 

𝐹𝑚(𝑥𝑖) as computed through Eq. (9) [46].  

In this study, CatBoost Regressor was applied to 
predict total construction costs using the RSMeans 
dataset. The model was implemented using the 
catboost library in Python. Hyperparameter tuning was 
conducted using 5-fold cross-validation with 
randomized search, optimizing the following key 
parameters: (a) 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 1000 that determines the 

total number of boosting iterations, (b) 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 4 

that controls tree complexity, aiming to balance the 
expressiveness and overfitting risk, (c) 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 =
0.1 that determines the contribution of each tree to the 

ensemble, (d) 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 = 0.9  that specifies the 

fraction of samples used per boosting round to 
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introduce variance and mitigate overfitting and 
(e) 𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒_𝑏𝑦𝑙𝑒𝑣𝑒𝑙 = 0.9 that denotes the proportion 

of features used at each level of tree construction.  

After hyperparameter tuning, the model was trained 
on the training set and evaluated on the test set using 
RMSE, MAE, MAPE, and maximum error as the key 
performance indicators. The CatBoost model achieved 
a test R² of 0.987 and RMSE of 0.47, comparable to 
XGBoost and significantly outperforming linear models. 
Additionally, CatBoost provides built-in feature 
importance metrics, which were visualized via bar 
charts. These insights help identify the most influential 
cost drivers, such as formwork and concrete unit costs, 
thereby enhancing interpretability and enabling 
informed decision-making by practitioners.  

Overall, CatBoost's native handling of categorical 
variables, robust boosting technique, and efficient 
optimization process make it particularly suitable for 
construction cost modeling, where data complexity, 
heterogeneity, and inter-variable dependencies are 
common. 

 

E. Performance Metrics Used for Model 
Evaluations 

The performances of the six ML models for construction 
cost prediction are evaluated and compared using three 
performance metrics: coefficient of determination (R2),  
root mean square error (RMSE), and mean bias error 
(MBE). The detailed definitions of these performance 
metrics are as follows. 

 The R2 metrics assess how well the regression 
model fits the data and it is defined in Eq. (10)  [47] as:  

  𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝜇)𝑛
𝑖=1

    (10) 

where 𝑦𝑖  is the i-th actual data point; �̂�𝑖  is the i-th 

predicted data point; n is the total number of data points; 
i is the index of data point; 𝜇 is the mean of the actual 

data. Higher R2 values indicate a better fit of the model 
to the data, as they represent a higher proportion of 
variance in the dependent variable that the model 
explains. 

 The RMSE metric is a commonly used evaluation 
metric that measures the average magnitude of the 
error between predicted and actual data points. It is 
mathematically defined in Eq. (11)  [47] as: 

  𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1  (11) 

Smaller RMSE values are preferable because they 
indicate lower prediction errors, reflecting higher 
prediction accuracy and model performance. 

 The MBE metric measures the average difference 
between the actual and predicted values of data points, 
reflecting the overall bias in the model's predictions. 
MBE provides insight into whether the model tends to 

overestimate or underestimate the actual values on 
average. It is mathematically defined in Eq. (12) [47]  as: 

  𝑀𝐵𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)𝑛

𝑖=1   (12) 

A smaller absolute value of MBE indicates less bias 
and a better overall prediction accuracy. The closer the 
MBE metric is to zero, the better the model's 
performance, as it signifies minimal average deviation 
between predicted and actual values. 

 

IV. Result 

A. Performance Comparisons of ML Models 

The performance of six selected ML models (Ridge 
Regression, Lasso Regression, Elastic Net, KNN 
Regression, XGBoost, and CatBoost) for solving 
construction cost prediction problems is compared in 
Table 2 and Fig. 3. These comparisons are based on the 
R2, RMSE, and MBE metrics, evaluated on both the 
training dataset (70% of the entire dataset) and testing 
dataset (30% of the whole dataset). 

The training dataset results provide insights into how 
well each model captures the underlying patterns in the 
dataset. The first three models (Ridge Regression, 
Lasso Regression, and Elastic Net) yield identical 
performance metrics, with R2 values of 0.836 and RMSE 
values of 1.750. Their MBE values are zero, indicating 
no significant bias in the training predictions. The 
moderate R2 and relatively high RMSE suggest that 
while these models capture the data patterns to a 
reasonable extent, they fall short in accuracy compared 
to more complex models. KNN Regression, with an R2 
value of 0.986 and a significantly lower RMSE of 0.503, 
demonstrates a much better fit to the training data than 
the linear models. However, the slightly positive MBE of 
0.029 indicates a minor tendency to overestimate costs 
on average. XGBoost and CatBoost show exceptional 
performance on the training dataset, with R2 values 
close to 1.000 (0.995 and 0.996, respectively). Their 
RMSE values (i.e., 0.306 for XGBoost and 0.275 for 
CatBoost) are the lowest among all models, indicating 
high precision in capturing the training data patterns. 
The testing dataset results are crucial as they reveal the 
models' generalization capabilities on unseen data. 
Similar to the training dataset, Ridge Regression, Lasso 
Regression, and Elastic Net perform consistently on the 
testing dataset, with R2 values of 0.827 and RMSE 
values around 1.792. Their positive MBE values (0.102) 
indicate a slight overestimation in predictions. The 
similarity in results across these models suggests limited 
flexibility, impacting their ability to generalize effectively 
to new data. KNN Regression maintains a high R2 value 
of 0.951 on the testing dataset, although the RMSE 
increases to 0.951, and the MBE reduces to 0.042. 

These results indicate that while KNN generalizes 
relatively well, it exhibits some overfitting compared to 
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the training dataset, as reflected in the increased RMSE. 
XGBoost and CatBoost continue to outperform the other 
models on the testing dataset, with R2 values of 0.988 
and 0.987, respectively. Although their RMSE values 
increase slightly to 0.478 for XGBoost and 0.485 for 
CatBoost, they remain the lowest among all models, 
indicating excellent predictive accuracy. Additionally, the 
near-zero and slightly negative MBE values suggest that 
these models have minimal bias and are highly reliable 
for predicting construction costs. 

The scatter plots in Fig. 4 illustrate the relationship 
between predicted and actual construction costs for 
each ML model, providing a visual validation of the 
performance metrics presented in Table II. The scatter 
plots for Ridge Regression, Lasso Regression, and 
Elastic Net on both training and testing datasets show a 
moderate spread around the diagonal line of perfect 
prediction, indicating that while the models’ predictions 
are somewhat aligned with actual costs, there is room 
for improvement. The consistent spread across both 

datasets suggests these models generalize reasonably 
well but lack the flexibility needed to capture more 
complex patterns. The KNN Regression model shows a 
tight clustering of points around the diagonal in the 
training dataset, reflecting its high R2 value of 0.986. 
However, in the testing dataset, while the clustering 
remains relatively tight, the increased spread indicates a 
slight reduction in accuracy, consistent with its R2 value 
of 0.951. This suggests some overfitting, where the 
model performs exceptionally well on known data but 
less so on new data. Finally, both XGBoost and 
CatBoost demonstrate near-perfect alignment of 
predicted and actual costs in both training and testing 
datasets, as evidenced by the close clustering of points 
along the diagonal line. The minimal deviation from the 
line of perfect prediction, along with high R2 values, 
confirms their robustness and generalization capability. 
The consistency in their performance across both 
datasets suggests that these models are well-tuned and 
highly effective for construction cost prediction.

 

  

(a) (b) 

Fig. 3. Performance comparison of six ML models using: (a) training dataset and (b) testing dataset. 

Table 2. Performance comparison of six ML models 

ML Models 
Training Dataset Testing Dataset 

R2 RMSE MBE R2 RMSE MBE 

Ridge Regression 0.836 1.750 0.000 0.827 1.790 0.102 

Lasso Regression 0.836 1.750 0.000 0.827 1.792 0.102 

Elastic Net 0.836 1.750 0.000 0.827 1.792 0.102 

KNN Regression 0.986 0.503 0.029 0.951 0.951 0.042 

XGBoost 0.995 0.306 0.000 0.988 0.478 - 0.010 

CatBoost 0.996 0.275 0.000 0.987 0.485 - 0.010 
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B. Confidence Intervals of ML Predictions 

To enhance the interpretability and reliability of model 

performance, we included 95% confidence intervals (CI) 

for all predicted costs across both training and testing 

sets, as shown in Fig. 5. These intervals were computed 

using bootstrapped residuals over 1,000 iterations, 

capturing the range of variability in the prediction 

estimates. The blue vertical lines indicate the prediction 

uncertainty for each individual sample, where narrower 

intervals denote higher model confidence, and wider 

intervals suggest less stable forecast.  

From the visualization, it is evident that the linear 

models (Ridge, Lasso, and Elastic Net) exhibit relatively 

wide confidence intervals across both training and 

testing sets. This suggests these models have higher 

variance in their prediction errors, likely due to their 

limited ability to model nonlinearities inherent in 

construction cost data. Moreover, their average RMSE 

values remain above 1.75, confirming their weaker 

generalization performance.  

In contrast, ensemble methods such as XGBoost and 

CatBoost consistently show narrow confidence intervals, 

especially in the testing set. This reflects their superior 

robustness and lower prediction variance. For instance, 

the CatBoost model achieves an RMSE of 0.488 on the 

test set, accompanied by relatively tight confidence 

bounds, indicating a strong fit to unseen data while 

maintaining consistent predictive accuracy. 

 
Fig.4. Scatter plots of all six ML models in training and testing datasets. 
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These confidence interval plots provide a more 

comprehensive understanding of each model's 

predictive reliability and highlight the practical advantage 

of ensemble approaches in capturing uncertainty with 

greater precision, an important consideration for real-

world construction cost estimation tasks. 

 

V. Discussion 

A. Machine Learning for Construction Cost 

Estimation 

This study provides a comprehensive evaluation of six 
machine learning models Ridge Regression, Lasso 
Regression, Elastic Net, KNN Regression, XGBoost, 
and CatBoost for predicting construction costs using the 
standardized RSMeans dataset The results strongly 

indicate that ensemble-based models, particularly 
XGBoost and CatBoost, significantly outperform 
traditional linear models and KNN in prediction accuracy, 
generalization, and robustness across both training and 
testing datasets. 

Specifically, XGBoost and CatBoost consistently 
achieved R2 values above 0.98, RMSE values below 
0.5, and near-zero MBE, demonstrating their 
exceptional capability to model nonlinear relationships 
and capture complex feature interactions often present 
in construction datasets. These findings confirm that 
ensemble methods are well-suited for high-dimensional 
data with multicollinearity and nonlinear dependencies, 
i.e., common characteristics in cost estimation tasks 
involving structural, economic, and categorical variables. 
By comparison, Ridge Regression, Lasso Regression, 

 
Fig.5. Confidence Intervals of all six ML models in training and testing datasets. 
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and Elastic Net, although known for their stability and 
interpretability, yielded only moderate predictive 
performance, with R2 values around 0.83 and RSME 
values ranging from 1.75 to 1.79. These models' 
inherent assumption of linearity limits their ability to 
account for intricate variable interactions, making them 
less effective for capturing the complex cost dynamics in 
construction data. KNN Regression, while 
demonstrating strong accuracy on the training set, 
showed a significant increase in error on the testing set, 
indicating overfitting. This suggests that KNN is highly 
sensitive to local data structures and noise, which may 
hinder its generalization performance in real-world 
applications with varying project profiles. 

This evaluation confirms that ensemble models, 
particularly XGBoost and CatBoost, are highly capable 
of delivering accurate, stable, and generalizable 
predictions in the context of construction cost estimation. 
Their superior performance can be attributed to their 
capacity for iterative learning, regularization, and 
handling of both continuous and categorical variables 
without extensive preprocessing. These strengths make 
them highly effective tools for practitioners seeking data-
driven approaches to improve cost estimation accuracy 
and reliability.  

 

B.  Comparative Analysis with Existing Studies  

Numerous studies have employed machine learning 
techniques for predicting construction costs, each 
contributing uniquely to the field. For instance, Yun [40]  
explored the use of a multi-output regression model 
based on artificial neural networks (ANN) to  predict 
seven sub-itemized construction costs simultaneously. 
By comparing the multi-output model (error rate = 
16.80%) with a traditional single-output model (error rate 
= 17.67%), the study demonstrated that itemized 
prediction slightly improved the accuracy of total cost 
estimation. This method provided more granular insights 
into the influence of individual construction activities on 
overall cost. However, the study also highlighted 
limitations related to varying error rates across project 
types, the lack of optimization strategies for specific 
items, and high data annotation costs, all of which could 
hinder model generalizability in practice. Expanding on 
this, Simić et al. [36]  incorporated XGBoost into a cost 
prediction framework for highway projects, integrating 
multiple regression analysis and neural networks. The 
study emphasized different stakeholder perspectives, 
such as owners and contractors, by identifying key cost 
drivers through surveys. Interestingly, their findings 
indicated that including too many input variables did not 
necessarily improve model accuracy, underscoring the 
importance of feature selection and model simplification. 
Similarly, Harrison et al. [23] applied XGBoost to 
forecast cost overruns in Ghanaian construction projects. 
The model demonstrated strong predictive performance, 

as indicated by RMSE, MSE, MAE, and MAPE metrics, 
validating the algorithm's ability to effectively model cost 
deviations using real-world data. In another study, 
Alshboul et al. [33]  employed a hybrid approach  that 
combines mathematical modeling and machine learning 
to estimate green building costs. Utilizing data from 
3,578 green projects in the northern United States, the 
authors developed a supply-demand equilibrium model 
that incorporated macroeconomic factors, including 
inflationary cycles and external investments. Their 
results revealed that both public and private investments 
significantly lowered green building costs, especially 
during deflationary periods. However, the study’s 
regional scope limits its generalizability to non-green or 
international construction projects. 

As summarized in Table 3, most prior studies focused 

on either single-output prediction, limited machine 

learning techniques, or narrow cost variables, and often 

lacked a unified evaluation framework. Few studies 

comprehensively benchmarked multiple machine 

learning models on a standardized dataset using 

consistent evaluation metrics. This study addresses 

these gaps by applying six different ML algorithms to a 

unified RSMeans dataset and evaluating them using 

RMSE, MBE, and R² metrics. Compared to prior 

research, the integration of XGBoost and CatBoost in 

this study offers superior accuracy, generalizability, and 

modeling efficiency for multidimensional and nonlinear 

construction datasets. 

Table 3. Comparison with previous studies 

Authors Methodology Metrics 

Yun [40]  Multiple-Regression, 
ANN 

R2 

Simić et al. [36]  Multiple-Regression, 
ANN,  

XGBoost 

R2, 
MAPE 

Harrison et al. 
[23] 

XGBoost RMSE, 
MSE, 
MAE, 

MAPE 

Alshboul et al. 
[33]  

LightGBM,  

XGBoost 

MAE, 
RMAE, 
MAPE, 
R2 

This study Ridge Regression, 
Lasso Regression, 
Elastic Net, KNN 
Regression, 

XGBoost,  

CatBoost 

RMSE,  

MBE, 

R2 
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C. Justifying the Superior Performance of 

Ensemble Learning Models in Cost Prediction 

The superior performance of ensemble-based models, 
such as XGBoost and CatBoost, observed in this study 
can be attributed to their ability to capture complex, 
nonlinear relationships and automatically manage 
diverse data characteristics, which are critical 
challenges in construction cost prediction tasks. 
Construction datasets often include intricate interactions 
between features such as material type, labor costs, 
project scale, structural complexity, and economic 
variables. These variables rarely exhibit linear 
dependencies, rendering traditional linear models, such 
as Ridge Regression, Lasso, and Elastic Net, 
suboptimal due to their inherent assumption of linearity.  

Unlike linear regressors, XGBoost and CatBoost are 
built upon decision tree ensembles that iteratively 
correct prediction errors through boosting mechanisms. 
Specifically, XGBoost uses a second-order Taylor 
expansion of the loss function and incorporates both L1 
and L2 regularization, which not only accelerates 
convergence but also improves generalization by 
penalizing model complexity. Its ability to handle missing 
values, incorporate sparsity-aware learning, and 
parallelize tree construction further enhances its 
suitability for large, noisy, and high-dimensional 
construction datasets.  

CatBoost, on the other hand, introduces additional 
innovations tailored to handling categorical features, a 
crucial characteristic in construction datasets that 
include variables such as project location, structural 
type, and material categories. Its use of Ordered 
Boosting avoids target leakage and overfitting by 
ensuring that each data point is used for both training 
and evaluation without introducing artificial bias. 
Moreover, CatBoost implements gradient bias correction 
during tree construction, further improving robustness 
and accuracy even on smaller datasets or when feature 
distributions are imbalanced.  

These strengths explain the high predictive 
performance observed in this study, where both models 
achieved R² values above 0.98 and RMSE values below 
0.5 across the test data. Their architecture enables the 
capture of subtle dependencies and nonlinear effects 
that are often overlooked or misrepresented by simpler 
models. Furthermore, their embedded feature selection 
and handling of multicollinearity ensure that redundant 
or weakly correlated inputs do not degrade model 
performance, a crucial advantage in cost modeling, 
where correlated features are standard.  

In essence, XGBoost and CatBoost are not merely 
predictive models but comprehensive learning systems 
capable of adaptive learning, robust generalization, and 
scalable deployment, making them highly effective for 
the dynamic and multidimensional nature of construction 

cost prediction. Their demonstrated superiority in this 
study highlights the strategic importance of ensemble 
learning in modern construction informatics and 
supports their integration into future intelligent cost 
estimation frameworks. 

 

D. Overfitting Concerns and Practical Deployment 

Considerations 

Although KNN Regression demonstrated promising 
accuracy on the training dataset, its performance 
deteriorated substantially on the test dataset, 
highlighting a classic case of overfitting. This limitation is 
especially problematic in real-world deployment 
scenarios where unseen data frequently deviates from 
the training distribution. KNN’s reliance on memorizing 
training instances and its sensitivity to noise and 
irrelevant features make it prone to overfitting, especially 
in high-dimensional spaces. This is evident in the 
inflated RMSE and reduced R² scores observed during 
testing. 

To mitigate such issues, future implementations of 
KNN or similar non-parametric models should 
incorporate cross-validation, feature selection, and 
dimensionality reduction techniques such as Principal 
Component Analysis (PCA). Additionally, applying 
distance-weighted variants of KNN or ensemble 
versions (e.g., bagged KNN) could enhance robustness. 
However, such improvements often come with 
increased complexity and diminishing returns, 
particularly when more sophisticated models are 
available. 

In contrast, while XGBoost and CatBoost exhibit 
outstanding performance in both training and testing 
scenarios, with near-zero bias and minimal variance, 
they introduce a different set of challenges. Their 
ensemble nature and iterative training process 
inherently demand greater computational resources and 
longer training times. This complexity can impede real-
time applications in construction project environments, 
where decisions must often be made rapidly and based 
on evolving data. Furthermore, model interpretability 
becomes more difficult as the number of trees and depth 
increases. While both XGBoost and CatBoost offer 
feature importance metrics and compatibility with SHAP 
(SHapley Additive exPlanations) for explainable AI, 
these tools may still fall short of the intuitive transparency 
desired by construction project managers or 
stakeholders with limited technical expertise. 

To bridge this gap, future research should focus on 

streamlining these models for operational use. 

Techniques such as model pruning, quantization, or the 

development of surrogate models that approximate 

ensemble behavior using simpler structures could 

provide viable solutions. Additionally, integrating these 

models into cloud-based decision support systems can 
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help alleviate the burden of local computational 

demands, enabling scalable deployment in industry 

practice. While ensemble models like XGBoost and 

CatBoost deliver state-of-the-art accuracy in 

construction cost prediction, addressing their 

deployment barriers —namely, computational overhead 

and interpretability —will be essential for widespread 

adoption in the industry. Striking a balance between 

predictive performance and operational feasibility 

remains a critical area for future exploration. 

 

Ⅵ. Conclusion 

This study presents a comprehensive evaluation of six 
machine learning (ML) models, namely Ridge 
Regression, Lasso Regression, Elastic Net, K-Nearest 
Neighbors (KNN) Regression, XGBoost, and CatBoost, 
for predicting construction costs using the standardized 
RSMeans dataset, which comprises 4,477 data points. 
Models were evaluated on both training and testing sets 
using three key metrics: R², RMSE, and MBE. 
Simulation results reveal that ensemble-based models, 
particularly XGBoost and CatBoost, significantly 
outperform traditional linear and non-parametric models. 
With R² values exceeding 0.98 and RMSE below 0.5, 
these models demonstrated exceptional predictive 
accuracy and generalization, reinforced by their near-
zero MBE values. This strong performance highlights 
their capability to effectively capture complex, nonlinear 
relationships that simpler models typically overlook. In 
contrast, Ridge, Lasso, and Elastic Net, although 
interpretable and computationally efficient, 
underperformed due to their inability to handle such 
complex data. KNN Regression, though accurate on the 
training data, suffered from overfitting and poor 
generalization. 

However, this study acknowledges several 
limitations. First, the RSMeans dataset is primarily 
focused on the North American construction context, 
which may limit the global applicability of the findings. 
Variations in labor cost structures, material pricing, 
building codes, and regulatory factors across regions 
could reduce the accuracy of these models in 
international contexts. Future research should validate 
the model on more diverse, region-specific datasets and 
assess its robustness across economic environments 
and construction practices. Second, while the 
computational demands and scalability of XGBoost and 
CatBoost are not prohibitive, their training time and 
resource requirements require consideration. Further 
studies could explore model compression techniques, 
parallel processing, or hybrid methods that strike a 
balance between performance and computational 
efficiency. Moreover, the “black-box” nature of ensemble 
models poses concerns about transparency and 
decision traceability in industry applications. To bridge 

this gap, future work should incorporate explainable AI 
(XAI) techniques, such as SHAP (SHapley Additive 
Explanations) or LIME (Local Interpretable Model-
agnostic Explanations), to enhance stakeholder trust 
and model accountability. 

Beyond cost prediction, XGBoost and CatBoost also 
show promise in broader construction management 
domains. These include resource allocation, project risk 
assessment, schedule optimization, and sustainability 
forecasting. Integrating diverse datasets (e.g., sensor 
data, supply chain dynamics, economic indicators) could 
improve the robustness and adaptability of these 
models. In summary, this study contributes to process 
innovation in construction cost estimation by 
demonstrating the superiority of ensemble ML models in 
handling complex, multi-dimensional datasets. To 
translate this academic insight into industrial impact, 
future research should focus on interpretability, model 
scalability, and real-time integration, enabling these 
models to support intelligent decision-making across the 
construction lifecycle. 

 

Acknowledgment 

This study was funded by the Malaysian Ministry of 

Higher Education through the Fundamental Research 

Grant Scheme (FRGS/1/2024/ICT02/UCSI/02/1). 

  

References 

[1]  Y. Wang, et al., “Cost prediction of building 
projects using the novel hybrid RA-ANN model,” 
Eng. Constr. Archit. Manag., Jan. 2023. 

[2]  C. S. Chan, J. Lu, and B. Zhang, “Attaining cost 
efficiency in constructing sports facilities for 
Beijing 2008 Olympic Games by use of 
operations simulation,” in Proc. Winter 
Simulation Conf., Dec. 2006. 

[3]  W. Jennings, “Why costs overrun: risk, optimism 
and uncertainty in budgeting for the London 
2012 Olympic Games,” Constr. Manag. Econ., 
vol. 30, no. 6, pp. 455–462, Jun. 2012.  

[4]  D. Blomberg, P. Cotellesso, W. Sitzabee, and A. 
E. Thal, “Discovery of internal and external 
factors causing military construction cost 
premiums,” J. Constr. Eng. Manag., vol. 140, no. 
3, pp. 04013060, Mar. 2014.  

[5]  S. Ahn, S. Shokri, S. Lee, C. T. Haas, and R. C. 
G. Haas, “Effectiveness of interface-
management practices in large-scale 
construction projects,” J. Manag. Eng., vol. 33, 
no. 2, pp. 04016039, Mar. 2017. 

[6]  O. Swei, J. Gregory, and R. Kirchain, 
“Construction cost estimation: a parametric 
approach for better estimates of expected cost 
and variation,” Transp. Res. Part B Methodol., 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.799
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 624-645                                                e-ISSN: 2656-8632 

 
Manuscript received March 8, 2025; Accepted May 10, 2025; date of publication May 20, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.799 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 641               

vol. 101, pp. 295–305, Jul. 2017. 

[7]  H. H. Elmousalami, “Artificial intelligence and 
parametric construction cost estimate modeling: 
State-of-the-art review,” J. Constr. Eng. Manag., 
vol. 146, no. 1, pp. 03119008, Jan. 2020. 

[8]  S.-W. Yang, S.-W. Moon, H. Jang, S. Choo, and 
S.-A. Kim, “Parametric method and building 
information modeling-based cost estimation 
model for construction cost prediction in 
architectural planning,” Appl. Sci., vol. 12, no. 19, 
pp. 9553, Sep. 2022. 

[9]  L. H., C. L, and Z. R, “Research on project cost 
management under the mode of bill of quantities 
valuation,” Int. J. Front. Eng. Technol., vol. 4, no. 
2, 2022. 

[10]  H. Al‐Tabtabai, N. Kartam, I. Flood, and A. P. 

Alex, "Expert judgment in forecasting 

construction project completion,”  Eng. Constr. 

Archit. Manag., vol. 4, no. 4, pp. 271–293, Apr. 

1997. 

[11]  S. M. AbouRizk, G. M. Babey, and G. 
Karumanasseri, “Estimating the cost of capital 
projects: an empirical study of accuracy levels 
for municipal government projects,” Can. J. Civ. 
Eng., vol. 29, no. 5, pp. 653–661, Oct. 2002. 

[12]  S. S. Khanal, P. W. C. Prasad, A. Alsadoon, and 
A. Maag, “A systematic review: machine learning 
based recommendation systems for e-learning,” 
Educ. Inf. Technol., Dec. 2019. 

[13]  K. Rasheed, A. Qayyum, M. Ghaly, A. Al-Fuqaha, 
A. Razi, and J. Qadir, “Explainable, trustworthy, 
and ethical machine learning for healthcare: A 
survey,” Comput. Biol. Med., vol. 149, no. 
106043, p. 106043, Oct. 2022. 

[14]  A. Chlingaryan, S. Sukkarieh, and B. Whelan, 
“Machine learning approaches for crop yield 
prediction and nitrogen status estimation in 
precision agriculture: A review,” Comput. 
Electron. Agric., vol. 151, pp. 61–69, Aug. 2018.  

[15]  M. J. Esfandiari and G. S. Urgessa, “Progressive 
collapse design of reinforced concrete frames 
using structural optimization and machine 
learning,” Structures, vol. 28, pp. 1252–1264, 
Dec. 2020. 

[16]  M. Flah, I. Nunez, W. Ben Chaabene, and M. L. 
Nehdi, “Machine learning algorithms in civil 
structural health monitoring: A systematic 
review,” Arch. Comput. Methods Eng., vol. 28, 
no. 4, pp. 2621–2643, Jul. 2020. 

[17]  H. G. Melhem and Y. Cheng, “Prediction of 
remaining service life of bridge decks using 
machine learning,” J. Comput. Civ. Eng., vol. 17, 
no. 1, pp. 1–9, Jan. 2003. 

[18]  C. Chen, Y. Zuo, W. Ye, X. Li, Z. Deng, and S. 

P. Ong, “A critical review of machine learning of 
energy materials,” Adv. Energy Mater., vol. 10, 
no. 8, pp. 1903242, Jan. 2020. 

[19]  P. Davis, F. Aziz, M. T. Newaz, W. Sher, and L. 
Simon, “The classification of construction waste 
material using a deep convolutional neural 
network,” Autom. Constr., vol. 122, pp. 103481, 
Feb. 2021. 

[20]  C.-H. Huang and S.-H. Hsieh, “Predicting BIM 
labor cost with random forest and simple linear 
regression,” Autom. Constr., vol. 118, pp. 
103280, Oct. 2020. 

[21]  G.-H. Kim, J.-E. Yoon, S.-H. An, H.-H. Cho, and 
K.-I. Kang, “Neural network model incorporating 
a genetic algorithm in estimating construction 
costs,” Build. Environ., vol. 39, no. 11, pp. 1333–
1340, Nov. 2004.  

[22]  C. Hai, “Construction and application of multiple 
linear regression model for construction project 
cost,” in Int. Conf. Advanc. Enterp. Inf. Syst., Jun. 
2021. 

[23]  George Harrison Coffie and F. Cudjoe, “Using 
extreme gradient boosting (XGBoost) machine 
learning to predict construction cost overruns,” 
Int. J. Constr. Manag., pp. 1–9, Dec. 2023. 

[24]  D. J. Lowe, M. W. Emsley, and A. Harding, 
“Predicting construction cost using multiple 
regression techniques,” J. Constr. Eng. Manag., 
vol. 132, no. 7, pp. 750–758, Jul. 2006. 

[25]  R. Jafarzadeh, J. M. Ingham, K. Q. Walsh, N. 
Hassani, and G. R. Ghodrati Amiri, “Using 
statistical regression analysis to establish 
construction cost models for seismic retrofit of 
confined masonry buildings,” J. Constr. Eng. 
Manag., vol. 141, no. 5, pp. 04014098, May 2015. 

[26]  R. Martin Skitmore and S. Thomas Ng, “Forecast 
models for actual construction time and cost,” 
Build. Environ., vol. 38, no. 8, pp. 1075–1083, 
Aug. 2003. 

[27]  M. W. Emsley, D. J. Lowe, A. R. Duff, A. Harding, 
and A. Hickson, “Data modelling and the 
application of a neural network approach to the 
prediction of total construction costs,” Constr. 
Manag. Econ., vol. 20, no. 6, pp. 465–472, Sep. 
2002. 

[28]  S. M. Shahandashti and B. Ashuri, “Highway 
Construction Cost Forecasting Using Vector 
Error Correction Models,” J. Manag. Eng., vol. 32, 
no. 2, p. 04015040, Mar. 2016. 

[29]  S. Petruseva, V. Z. Pancovska, V. Zujo and A. 
Brkan-Vejzovic, “Construction costs forecasting: 
comparison of the accuracy of linear regression 
and support vector machine models,” Tech. 
Vjesn., vol. 24, no. 5, Oct. 2017. 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.799
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 624-645                                                e-ISSN: 2656-8632 

 
Manuscript received March 8, 2025; Accepted May 10, 2025; date of publication May 20, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.799 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 642               

[30]  C.-H. Huang and S.-H. Hsieh, “Predicting BIM 
labor cost with random forest and simple linear 
regression,” Autom. Constr., vol. 118, p. 103280, 
Oct. 2020. 

[31]    G. H. Kim, D. Seo, and K.-I. Kang, “Hybrid models 
of neural networks and genetic algorithms for 
predicting preliminary cost estimates,” J. 
Comput. Civ. Eng., vol. 19, no. 2, pp. 208–211, 
Apr. 2005. 

[32]  M.-Y. Cheng, N.-D. Hoang, and Y.-W. Wu, 
“Hybrid intelligence approach based on LS-SVM 
and differential evolution for construction cost 
index estimation: A Taiwan case study,” Autom. 
Constr., vol. 35, pp. 306–313, Nov. 2013. 

[33]  O. Alshboul, A. Shehadeh, G. Almasabha, R. E. 
A. Mamlook, and A. S. Almuflih, “Evaluating the 
impact of external support on green building 
construction cost: A hybrid mathematical and 
machine learning prediction approach,” 
Buildings, vol. 12, no. 8, p. 1256, Aug. 2022. 

[34]  C. Zhang, J. Zhu, T. Shi, and X. Li, “Influence line 
estimation of bridge based on elastic net and 
vehicle-induced response,” Meas., vol. 202, pp. 
111883–111883, Oct. 2022. 

[35]  A. Shehadeh, O. Alshboul, R. E. Al Mamlook, 
and O. Hamedat, “Machine learning models for 
predicting the residual value of heavy 
construction equipment: An evaluation of 
modified decision tree, LightGBM, and XGBoost 
regression,” Autom. Constr., vol. 129, p. 103827, 
Sep. 2021. 

[36]  N. Simić, N. Ivanišević, Đ. Nedeljković, A. Senić, 
Z. Stojadinović, and M. Ivanović, “Early highway 
construction cost estimation: Selection of key 
cost drivers,” Sustainability, vol. 15, no. 6, p. 
5584, Mar. 2023. 

[37]  O. Alshboul, A. Shehadeh, G. Almasabha, and A. 
S. Almuflih, “Extreme gradient boosting-based 
machine learning approach for green building 
cost prediction,” Sustainability, vol. 14, no. 11, p. 
6651, May 2022. 

[38]  G.-H. Kim, J.-M. Shin, S. Kim, and Y. Shin, 
“Comparison of school building construction 
costs estimation methods using regression 
analysis, neural network, and support vector 
machine,” J. Build. Constr. Plan. Res., vol. 01, 
no. 01, pp. 1–7, Mar. 2013. 

[39]  M.-Y. Cheng and N.-D. Hoang, “Interval 
Estimation of Construction Cost at Completion 
Using Least Squares Support Vector Machine,” ,” 
J. Civ. Eng. Manag., vol. 20, no. 2, pp. 223–236, 
Mar. 2014. 

[40]  S. Yun, “Performance Analysis of Construction 
Cost Prediction Using Neural Network for 
Multioutput Regression,” Appl. Sci., vol. 12, no. 

19, p. 9592, Sep. 2022. 

[41]  A. E. Hoerl and R. W. Kennard, “Ridge 
Regression: Biased Estimation for 
Nonorthogonal Problems,” Technometrics, vol. 
12, no. 1, pp. 55–67, Feb. 1970, doi: 
https://doi.org/10.1080/00401706.1970.104886
34 

[42]  R. Tibshirani, “Regression Shrinkage and 
Selection Via the Lasso,” Journal of the Royal 
Statistical Society: Series B (Methodological), 
vol. 58, no. 1, pp. 267–288, Jan. 1996, doi: 
https://doi.org/10.1111/j.2517-
6161.1996.tb02080.x 

[43]  H. Zou and T. Hastie, “Regularization and 
variable selection via the elastic net,” Journal of 
the Royal Statistical Society: Series B (Statistical 
Methodology), vol. 67, no. 2, pp. 301–320, Apr. 
2005, doi: https://doi.org/10.1111/j.1467-
9868.2005.00503.x 

[44]  F. VALAFAR, “Pattern Recognition Techniques 
in Microarray Data Analysis,” Annals of the New 
York Academy of Sciences, vol. 980, no. 1, pp. 
41–64, Dec. 2002, doi: 
https://doi.org/10.1111/j.1749-
6632.2002.tb04888.x 

[45]  T. Chen and C. Guestrin, “XGBoost: a Scalable 
Tree Boosting System,” Proceedings of the 22nd 
ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining - 
KDD ’16, vol. 1, no. 1, pp. 785–794, Aug. 2016, 
doi: https://doi.org/10.1145/2939672.2939785 

[46]  Liudmila Ostroumova Prokhorenkova, Gleb 
Gusev, Aleksandr Vorobev, Anna Veronika 
Dorogush, and Andrey Gulin, “CatBoost: 
unbiased boosting with categorical features,” 
arXiv (Cornell University), Jun. 2017, doi: 
https://doi.org/10.48550/arxiv.1706.09516 

[47]   D. Chakraborty, H. Elhegazy, H. Elzarka, and L. 
Gutierrez, “A novel construction cost prediction 
model using hybrid natural and light gradient 
boosting,” Advanced Engineering Informatics, 
vol. 46, p. 101201, Oct. 2020, doi: 
https://doi.org/10.1016/j.aei.2020.101201 

 

 

 

 

 

 

 

 

 

 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.799
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 624-645                                                e-ISSN: 2656-8632 

 
Manuscript received March 8, 2025; Accepted May 10, 2025; date of publication May 20, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.799 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 643               

Author Biography  

Lifei Chen is currently a PhD candidate 
in Engineering at UCSI University, with 
a research focus on construction cost 
control and resource optimization. She 
obtained her Master’s degree in 
Engineering in 2022. During her 

postgraduate studies, she served as the project leader 
for a research initiative titled “Construction of the Whole 
Life Cycle Cost Optimization Model of Construction.” 
Her work provided innovative solutions for enhancing 
the precision of construction cost control throughout the 
project lifecycle. Since January 2024, she has been 
pursuing her doctoral research at the intersection of 
artificial intelligence and construction cost 
management. Her current work actively explores the 
application of AI techniques in construction cost 
prediction and resource optimization, aiming to improve 
decision-making and operational efficiency in the 
construction industry. 

 

Sew Sun Tiang received the Bachelor 
of Engineering (Hons.) Electronics 
majoring in Telecommunications from 
Multimedia University (MMU) in 2008 
and PhD degree in Electrical and 
Electronics Engineering from 

Universiti Sains Malaysia. She was the Senior Lecturer 
in the School of Engineering, Asia Pacific University 
from 2015 to 2027. Dr. Tiang is currently working as an 
Assistant Professor in the Faculty of Engineering, 
Technology, and Built Environment, UCSI University. 
She has published over 90 research articles in the 
research areas related to antenna design, wireless 
communication, metaheuristic optimization, machine 
learning, and deep learning. Dr Tiang is also actively 
involved in various professional bodies. To date, she 
has been awarded the qualifications of Chartered 
Engineer (CEng) from the UK Engineering Council, 
Professional Engineer (PEng) qualification from the 
Board of Engineer Malaysia, and Professional 
Technologist (PTech) qualification from the Malaysia 
Board of Technologist (MBOT).  

 

Kim Soon Chong has been an 
Assistant Professor and Head of 
Department in the Faculty of 
Engineering at UCSI University in 
Malaysia since 2023. He received his 
PhD in Electrical, Electronics & 
Systems Engineering from Universiti 

Kebangsaan Malaysia in 2022. Dr Chong is actively 
involved in various industrial collaborations, and he is 
currently working with several industrial grants. His 
main research interests are biomedical and healthcare 
technologies, machine learning, and deep learning. Dr 

Chong is also actively involved in various professional 
bodies. To date, she has been awarded the 
qualifications of Professional Engineer (PEng) 
qualification from the Board of Engineer Malaysia and 
Professional Technologist (PTech) qualification from 
the Malaysia Board of Technologists (MBOT).  

 

 Abhishek Sharma received the 
bachelor’s degree in electronics and 
communication engineering from ITM-
Gwalior, India, in 2012, and the 
master’s degree in robotics 
engineering from the University of 
Petroleum and Energy Studies 

(UPES), Dehradun, India, in 2014. He was a Senior 
Research Fellow in a DST funded project under the 
Technology Systems Development Scheme and 
worked as an Assistant Professor with the Department 
of Electronics and Instrumentation, UPES. He also 
worked as a research associate in Ariel university 
(Israel) and received Emerging Scientist award in 2021. 
Currently he is working as an Associate Professor in 
computer science and engineering department 
(Graphic era deemed to be university, India) and as a 
guest lecturer in UCSI university, Malaysia. His 
research interests include machine learning, 
optimization theory, swarm intelligence, embedded 
system, control, and robotics. 

 

Tarek Berghout is a distinguished 
researcher specializing in industrial 
informatics and manufacturing. He 
earned both his Master's and Ph.D. 
degrees from the University of Batna 
2, Algeria, completing his doctoral 
studies in 2021. Currently, Dr. 

Berghout serves as the Chief Laboratory Technician at 
the University of Batna 2, where he focuses on 
developing machine learning algorithms for condition 
monitoring, predictive maintenance, and cybersecurity. 
Throughout his academic career, Dr. Berghout has 
made significant contributions to the fields of machine 
learning and deep learning, particularly in their 
applications to industrial processes. His research 
interests encompass condition monitoring, 
cybersecurity, and the use of MATLAB for developing 
predictive models. He has authored numerous 
publications that delve into these areas, reflecting his 
commitment to advancing knowledge in industrial 
engineering. 

 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.799
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 624-645                                                e-ISSN: 2656-8632 

 
Manuscript received March 8, 2025; Accepted May 10, 2025; date of publication May 20, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.799 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 644               

Wei Hong Lim is currently an 
Associate Professor and a researcher 
at the Faculty of Engineering, 
Technology and Built Environment in 
UCSI University. He obtained his 
BEng (Hons) in Mechatronic 

Engineering and Ph.D. in Computational Intelligence 
from Universiti Sains Malaysia, Penang, Malaysia in 
the year 2011 and 2014, respectively. Dr. Lim was  
affiliated with the Intelligent Control Laboratory at 
National Taipei University of Technology, Taiwan as  a 
Postdoctoral Researcher from 2015 to 2017 and as  a 
Visiting Researcher in 2019. He has published more 
than sixty research articles in research areas related to 
computational intelligence, metaheuristic search 
optimization algorithms, deep learning, machine 
learning, energy management, digital image 
processing,  among others. He is an active academic 
editor and reviewer for various reputable journals. Dr. 
Lim is also involved in multipleprofessional bodies. To 
date, he has been awarded with the qualifications of 
Chartered Engineer (CEng) and International 
Professional Engineer in UK Section (IntPE(UK)) from 
UK Engineering Council, European Engineer 
qualification from European Federation of National 
Engineering Associations (FEANI), Professional 
Engineer (PEng) qualification from Board of Engineer 
Malaysia, Professional Technologist (PTech) 
qualification from Malaysia Board of Technologist 
(MBOT) and Senior Membership (SMIEEE) from IEEE. 

  

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.799
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 624-645                                                e-ISSN: 2656-8632 

 
Manuscript received March 8, 2025; Accepted May 10, 2025; date of publication May 20, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.799 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 645               

Graphical Abstract 
This study systematically compares six ML models (Ridge, Lasso, Elastic Net, KNN, XGBoost, CatBoost) for 
construction cost prediction using RSMeans data. Results demonstrate XGBoost and CatBoost’s superiority 
(R²>0.98, RMSE<0.5) in modeling nonlinear relationships, outperforming linear regressors and KNN in accuracy 
and robustness. 
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