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Abstract Accurate and computationally efficient classification systems are essential for the early 

detection of breast cancer, particularly when dealing with complex and high-dimensional medical datasets. 
Traditional machine learning models often face limitations in capturing intricate nonlinear relationships 
inherent in such data, potentially compromising diagnostic performance. In this study, we introduce QBG-
QCNN, a Quantum-enhanced framework named Boruta-GA optimized Quantum Convolutional Neural 
Network, designed for breast cancer classification. The model is trained on the Breast Cancer Wisconsin 
(Diagnostic) Dataset, which contains 30 numerical features extracted from fine needle aspiration (FNA) 
images of breast tissue samples. To reduce dimensionality while preserving critical diagnostic information, 
a hybrid Boruta-GA feature selection strategy is applied to extract key features such as radius_mean, 
texture_mean, area_mean, and concavity_mean. These selected features are then encoded into a 4-qubit 
quantum circuit using advanced quantum feature maps ZZFeatureMap, RealAmplitudes, and EfficientSU2,  
eliminating the need for manual feature engineering. The encoded quantum data is processed through a 
QCNN that incorporates quantum convolution, pooling, and parameterized ansatz layers, leveraging 
quantum entanglement and parallelism for more efficient learning. Implemented using PennyLane and IBM 
Qiskit, and optimized with the COBYLA, the model achieves outstanding performance: 94.3% accuracy, 
95.2% precision, 94.6% recall, and a 93.0% F1-score. These results significantly outperform those of 
classical CNNs, standard QNNs, and other hybrid models. In conclusion, QBG-QCNN demonstrates that 
quantum machine learning, when  integrated with intelligent feature selection, offers a powerful, scalable, 
and interpretable solution for early-stage breast cancer diagnosis. Future research will extend this 
framework to multi-modal datasets and real-device deployment on real quantum devices under noise 
constraints. 
 

Keywords Quantum Convolutional Neural Network (QCNN), Boruta, Genetic Algorithm (GA), Quantum Feature 
Maps, Breast Cancer Classification, Feature Selection, Quantum Machine Learning. 

I. Introduction  

Breast cancer is the most common type of cancer 
affecting women, and  remains one of the leading 
causes of cancer-related deaths worldwide [1]. When 
treatment starts early, more than 90% of patients can 
survive the disease [2]. However, because the data in 
medical imaging can be very complicated and 

extensive, current classification methods often  
struggle to separate benign from malignant tumors 
accurately. Typical machine learning models can have 
difficulties with extracting data features and commonly 
miss the smaller, nonlinear links among the many 
elements. Consequently, their results are less reliable,  
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highlighting the need for more robust and efficient 
classification approaches [3]. 

QML  has emerged as a promising alternative to 
classical ML for breast cancer classification [4]. 
Quantum algorithms can process large amounts of 
data efficiently du due to quantum phenomena such as 
entanglement and superposition, offering potential 
speedups over classical approaches [5]. Quantum 
algorithms like Quantum Support Vector Machines 
(QSVM) [6], Quantum k-Nearest Neighbors (QkNN) [7], 
Quantum Random Forest (QRF) [8], and Quantum 
Decision Trees (QDT) [9] have been shown to reduce 
computational load and improve classification accuracy 
[10]. These algorithms can process and predict 
complex datasets faster and more accurately with 
quantum speedup. Limited quantum hardware exists 
because noisy intermediate-scale quantum (NISQ) 
devices are being developed. Early quantum classifier 
studies suggest QML models may outperform 
traditional models in complex medical applications 
despite hardware constraints [11].    

 Quantum Convolutional Neural Networks (QCNNs) 
have shown particular promise for breast cancer 
classification, addressing several of the limitations 
inherent in classical ML models [12]. High-dimensional 
medical datasets challenge CNN computational 
efficiency and feature extraction.  In contrast, QCNNs 
utilize quantum superposition and entanglement to 
accelerate data processing and effectively capture 
complex nonlinear patterns, thereby enhancing 
classification performance. These quantum models not 
only improve processing speed—crucial for real-time 
medical diagnostics—but also scale efficiently for large 
datasets.. Whale Optimization Algorithm [13] and 
Quantum Genetic Algorithm [14] optimize feature 
selection and computational efficiency, making QCNNs 
ideal for large-scale medical classification. QCNNs 
represent a scalable and forward-looking solution for 
advancing healthcare applications.  

Although quantum classifiers show considerable 
promise, most current approaches either 
underexplored advanced feature selection methods or  
lack integration with end-to-end quantum-enhanced 
convolutional pipelines. Classical feature selection 
methods alone may  be insufficient for achieving robust 
classification, while unoptimized quantum models may 
not scale well for real-world, large-scale medical 
applications. Therefore, a hybrid approach combining 
advanced feature selection and quantum convolutional 
processing is underexplored. Integrating classical 
optimization techniques, such as evolutionary 
algorithms or swarm intelligence, with quantum circuits 
can significantly improve feature relevance and qubit 
efficiency. Moreover, constructing scalable and noise-
resilient quantum-classical architectures is essential to 
bridge the gap between experimental success and 
clinical deployment. 

This study introduces a Quantum Convolutional 
Neural Network (QCNN) enhanced by Boruta [13] and 
Genetic Algorithm (GA) [14] for robust feature selection 
to classify breast cancer. In the proposed QBG-QCNN  
model, quantum circuits encode optimized feature sets 
into qubits using ZZFeatureMap, RealAmplitudes, and 
EfficientSU2.  These advanced quantum feature maps 
enable the model to  capture complex, non-linear data 
relationships by converting selected features into 
quantum states . After that, quantum convolutional and 
pooling layers in the QCNN architecture perform spatial 
and quantum transformations on the encoded data, like 
classical layers, but with the computational advantage 
of quantum processing. This study aims to improve 
breast cancer diagnosis, particularly in distinguishing 
between benign and malignant tumors. Traditional 
CNN-based models are often more computationally 
intensive and less diagnostically effective than the 
hybrid Boruta and GA method for feature selection. 
This quantum feature extraction and processing 
method is validated by quantum simulations of the 
model's accuracy, precision, recall, and F1-score.  The 
performance of the QBG-QCNN model is assessed  
using a 4-qubits configuration. In order to optimize 
model performance, the IBM Qiskit framework-
implemented QBG-QCNN model trains with quantum-
enhanced features and uses advanced quantum 
speedup and hyperparameter tuning. These integrative 
methods outperform classical methods, with the QBG-
QCNN using RealAmplitudes scoring 94.3% accuracy, 
95.2% precision, 94.6% recall, and 93.0% F1-score.  
The choice of quantum feature map significantly affects 
model performance, with RealAmplitudes consistently 
outperforming other feature maps. 

 This research aims to develop a quantum-enhanced 
hybrid deep learning model that accurately classifies 
breast cancer using an optimized feature set and 
QCNN architecture, surpassing classical models in 
terms of accuracy, computational efficiency, and 
scalability, especially in distinguishing benign from 
malignant tumors. The key contributions of the 
research are  as follows. 
1. Integration of Boruta and Genetic Algorithm (GA) 

ensures robust feature selection by combining 
exhaustive screening and dimensionality 
reduction. 

2. Adopt the advanced quantum feature maps 
(RealAmplitudes, ZZFeatureMap, EfficientSU2) 
which enhances nonlinear relationship modeling 
in high-dimensional data. 

3. Deployment of the QCNN architecture enables 
spatial data transformation with quantum 
computational benefits, improving classification 
accuracy. 

4. Empirical evaluation using IBM Qiskit shows that 
the proposed model, especially with 
RealAmplitudes, achieves 94.3% accuracy, 95.2% 
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precision, 94.6% recall, and 93.0% F1-score, 
outperforming classical baselines.  

Below is the outline for the remainder of the article. 
Section 2  presents a review of related literature; 
Section 3  describes the proposed methodology; 
Section 4 shows the results of the experimental 
evaluations of the system's performance; and 
Section 5 concludes the study.  

 

II. Literature Review  

During the last few years, advancements in computer 
science have significantly contributed to the evolution 
of QML . Since data is rising 20% each year, effective 
data management is required [15]. QML is becoming 
an increasingly important part of the neural network 
field.  Its ability to solve problems that regular 
computers cannot handle  has attracted researchers 
and experts from all over the globe.   

Although [15] worked with pictures by rasterizing 
them through QML, [16] revealed the benefits of QML 
in data analysis. As presented in [17], QML could 
impact the future of AI. QNNs have helped move this 
field forward. QNNs use qubits that can be superposed, 
giving the ability to improve the processing capacity in 
some applications [18,19]. Quantum neural networks 
are better than CNNs in capturing quantum data, how 
fast they learn, and F1-score, recall, accuracy, and 
precision.  

Since there are not enough qubits and NISQ 
devices, researchers are investigating the hybrid QBG-
QCNN as an alternative interface. Dimensional 
reduction was achieved in this model by applying a 
quantum evolutionary neural network or a traditional 
method, and then a quantum neural network was 
applied [21]. Using a quantum-classical neuron model, 
predictions can be made for commodity prices [22]. 
[23], In that study, HEP data were examined with a 
hybrid quantum-graph convolutional neural network. It 
shows that hybrid QNNs are flexible in their application. 
People found that our hybrid quantum model performed 
better than CNNs when tested with classical 
adversarial images [24].  

Traditional options have less storage and processing 
power than QNN.  Over the past six years, QNN 
architectures have undergone rapid transformation. 
History will cover implementation methods, quantum 
circuit models, and challenges. In Part 1, "The 
Implementation Technique," VQA and other theoretical 
frameworks and processes for building QNN models 
are introduced. QBM, QCVNN, and other quantum 
circuit QNN models are covered in part 2. The article's 
conclusion addresses today's biggest issues. Though 
new, this area has magical and practical potential. [25]. 
ML and DL improve breast cancer diagnosis and 
prediction. [26]. Used the Wisconsin Breast Cancer 
Dataset to predict breast cancer. Data exploration, 

Label Encoder, and Normalizer pre-processing were 
used before model creation, and several machine-
learning approaches were evaluated with 96% 
success. These methods used Random Forest and 
SVM. Additionally,  an ANN model  reached 99% 
accuracy,  while a CNN model  achieved 97% accuracy 
, demonstrating the continued promise of both classical 
and hybrid approaches in this domain. 

Another study suggested quantum neural networks 
could detect cancer [27]. Using the Breast Cancer 
Wisconsin (Diagnostic) dataset and a QNN, they 
classified cancer cells as benign or malignant. CNNs 
with less computing power are less accurate than 
QNNs. Finally, research [28] suggested a quantum-
classical hybrid machine-learning picture 
categorization. MNIST evaluated a conventional SVM 
with quantum feature maps and kernels. Traditional 
machine learning was less accurate and resource-
intensive than hybrid. The study found that ML and 
QML can detect and predict breast cancer, and that 
quantum computing may improve machine learning.  

Early diagnosis helps treat many diseases. Doctors 
manually examine MRI scans to diagnose cancer. To 
provide the best care, doctors may double- and triple-
check diagnoses. Brain tumor detection requires a two-
layer hybrid quantum convolutional neural network 
(HQCNN). We got 94% accuracy with this model [29]. 
Breast cancer is one of the deadliest female diseases, 
so early detection is crucial. ML may detect diseases 
faster and more easily than traditional methods. New 
technologies produce high-dimensional cancer and 
healthcare data. Feature selection can fix these 
classification issues. This study suggests optimizing 
the Decision Tree's Breast Cancer dataset 
categorization with WOA [31]. The results are 92.26% 
accurate compared to the norm [30].  

In addition, deep learning (DL) has become a key 
focus in the fields of pattern recognition and image 
processing . We will use DL to integrate many imaging 
modalities for clinical practice and diagnostic imaging. 
Three-year trend: pixel-level image fusion. This study 
offers a new medical diagnosis method by fusing image 
modalities. Image fusion is strongest when informative. 
CNNs enhanced the quantum-behaved particle swarm 
optimization (QPSO) algorithm for multimodal medical 
image integration [32]. In another research [33], the 
authors presented four key contributions: (1) it 
proposed a novel hybrid model, QKSVM, integrating 
Binary Harris Hawks Optimization (BHHO) with 
Quantum Kernel SVM for effective gene selection and 
cancer classification; (2) it applied Principal 
Component Analysis (PCA) to reduce gene 
dimensionality for compatibility with limited quantum 
qubits; (3) it evaluated performance on Colon and 
Breast microarray datasets, achieving up to 94% 
accuracy; and (4) it benchmarked various quantum 
feature maps (ZFeatureMap, ZZFeatureMap, 
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PauliFeatureMap) against a classical RBF kernel, 
showing competitive or superior results for the selected 
genes. 

The existing literature on feature selection highlights 
that methods like Boruta and Genetic Algorithm (GA) 
are effective in optimizing input features for Quantum 
Convolutional Neural Network (QCNN) models, 
enhancing the accuracy of breast cancer detection. 
Scaling and fine-tuning the QBG-QCNN framework on 
large, diverse medical datasets could significantly 
advance early-stage diagnosis, improving clinical 
decision-making and diagnostic efficiency. 

III. Proposed Methodology  

The new Quantum Feature-Enhanced Breast Cancer 
Classifier is shown in Fig.1. which uses QBG-QCNN as 
an improved QCNN for classifying breast cancer.  This 
model incorporates both Boruta and the Genetic 
Algorithm (GA) for advanced feature selection. To build 
the model, Boruta and GA pick important features, and 
then ZZFeatureMap [34], RealAmplitudes, and 
EfficientSU2 [35] quantum feature maps, each of which 
use 4 qubits to encode these features.  
 The methodology involves a multi-step pipeline that 
includes data preprocessing, feature selection, 
quantum circuit construction, and QCNN model 
training. RealAmplitudes achieved good performance 
on both recall and precision. Look at how quantum 
computing improves results compared to classical 
methods, and you will see its usefulness in healthcare 
diagnostics. 

A. Pre-processing  

Data in the breast cancer diagnosis QML process is 
filtered and tested using advanced and quantum-ready 
methods before use. To fit the needs of quantum 
algorithms, the distributions of features are preserved 

and made consistent. When the analysis is complete, 
imputation and omission are applied to cover the empty 
parts in the dataset. A dataset needs to be complete to 
use quantum encoding. EDA is used to discover 
patterns, irregularities,  connections, and structures 
between pieces of data. Performing statistical 
summaries, assessing correlation, and using 
visualization helps evaluate different breast cancer 
data sets and diagnose suitable quantum machine 
learning algorithms. 
 

B. Quantum Feature Extraction using Boruta and 
GA 

The breast cancer dataset is analysed using the Boruta 
algorithm and the GA to find the most important 
features. The method helps decrease the amount of 
data needed, improves how quantum classifiers use 
that data, and guarantees good feature selection. GA 
increases diversity by using operators like crossover 
and mutation, while Boruta depends on random forests 
to reveal how important each feature is. A fitness 
function is used to shape and enhance the selected 
solutions. 

Let X = {x1, x2, ..., xn} represent the full set of features  
extracted from the breast cancer dataset, where n is 
the total number of features. The objective is to select 
a subset of features Xsub ⊆ X that maximizes the 

classification accuracy of the QCNN while minimizing 
redundancy. The hybrid algorithm incorporating Boruta 
and GA searches for the optimal combination of 
features. 

1. Particle Representation 

Each feature in X is evaluated through the Boruta 
algorithm to determine its importance by comparing it 
to a significance level derived from shadow features. 

 
Fig 1. Proposed Methodology 
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Features that are confirmed important or tentatively 
important are then considered for selection. 
 

2. Fitness Function 

The fitness function evaluates the classification 
accuracy of the selected feature subset using the 
QCNN model. The fitness function f(Wi) used in GA for 
feature selection is given in Eq. (1) [20], The whale Wi 
is: 

𝑓(𝑊𝑖) =  𝐴𝑐𝑐𝑄𝐶𝑁𝑁  (𝑊𝑖) −  𝜆
|𝑊𝑖|

𝑛
/n                (1) 

Where 𝐴𝑐𝑐𝑄𝐶𝑁𝑁  (𝑊𝑖) is the QCNN accuracy trained 

on the selected features in 𝑊𝑖, |𝑊𝑖|is the number of 

selected features in whale 𝑊𝑖, and λ is a regularization 

parameter to penalize larger feature sets and 
encourage compact solutions. 

3. Boruta Process  

Initial Feature Importance: Features are evaluated 
using the random forest algorithm to determine their 
importance against randomly generated shadow 
features. Features exceeding the importance of the 
best shadow feature are marked as important. 

4. GA Operators 

Crossover: Combines features of two parent whales 
to produce new offspring, as shown in  Eq. (2) [14]. 
Where α controls the mixing ratio. 

𝑂𝑖 =  𝛼𝑊𝑖 + (1 − 𝛼)𝑊𝑗q.                        (2) 

Mutation: Randomly flips feature selection bits to 
explore new solutions, as shown in  Eq. (3) [14]. 

Mi = Wi ⊕ r                                          (3) 

Where r is a random binary mask and Wi is the whale.  

5. Feature Selection Process  

Boruta confirms or rejects feature importance through 
iterations, while GA increases diversity through genetic 
operators. Based on Boruta results, important features 
are retained or discarded at each iteration, followed by 
genetic crossover and mutation to introduce new 
solutions for global exploration and local exploitation. It 
converges to the best feature subset. 
The final binary feature selection vector S is shown in 
Eq. (4) [13]. 

𝑆 = { 𝑖 |𝑊𝑗
(𝑏𝑒𝑠𝑡,𝑖)

> 0.5}                       (4) 

where 𝑊𝑗
(𝑏𝑒𝑠𝑡,𝑖)

is the binary decision for each feature. 

This hybrid Boruta and GA process ensures that only 
the most informative features are mapped to qubits, 
improving the QCNN's accuracy while reducing 
computational overhead. 

Once the optimal subset of features is selected, 
these features are encoded as qubits in the quantum 
circuit using different quantum feature maps, such as 
ZZFeatureMap, RealAmplitudes, and EfficientSU2. 
This quantum feature extraction process ensures that 
the QCNN model operates on the most informative 
features, thereby enhancing both classification 
performance and computational efficiency. 

C. Quantum Circuit Construction for Feature 
Qubits 

For the breast cancer classification quantum circuit, we 
develop Boruta and GA to extract feature qubits. Boruta 
and GA find breast cancer dataset characteristics to 
maximize feature selection and reduce input 
dimensionality. After that, a quantum feature map, the 
first quantum circuit layer, encodes the specified 
attributes into qubits. We design the feature qubit 
quantum circuit with quantum feature mapping, 
convolution, pooling, and parameterized ansatz layers. 
The circuit processes classical data for breast cancer 
categorization. Multiple layers extract features, 
manipulate, and reduce dimensionality like a 
convolutional neural network. 

The optimal feature subset obtained from Boruta and 
GA corresponds to the initialization of the circuit  using 
n qubits. In the first layer, classical data is encoded into 
quantum states using a quantum feature map. The 
feature map is characterized as shown in  Eq. (5) [34]. 

𝑈𝐹𝑀(𝑥) =  ∏ exp (𝑖. 𝑥𝑖𝑍𝑖𝑍𝑖+1)𝑛
𝑖=1                  (5) 

takes the selected features, xi , and maps them into 
quantum states using entangling operations based on 
the Pauli-Z gate. This transforms the classical features 
into a quantum representation, enabling the circuit to 
process high-dimensional input efficiently. 

Next, a quantum convolution layer is applied to 
capture local dependencies between the qubits. This 
layer performs parameterized single-qubit rotations 
and introduces entanglement between adjacent qubits 
defined as shown in Eq. (6) [12]. 

𝑈𝐶𝑜𝑛𝑣(𝜃) =  ∏ 𝑅𝑋(𝜃𝑖)𝑅𝑌(𝜃𝑖+𝑛)𝑛
𝑖=1 𝑅𝑍(𝜃𝑖+2𝑛). 𝐶𝑍(𝑖, 𝑖 + 1) 

(6) 
where 𝜃𝑖 are trainable parameters, and 

Convolutional operations extract spatial correlations 
between qubits, like classical convolutional filters that 
detect data patterns.  

Quantum pooling layers apply entanglement and 
pooling operations to neighboring qubits after 
convolution to reduce qubit count. Similar to classical 
pooling layers, quantum data is down-sampled to 
prevent overfitting and reduce computational 
complexity.  

The pooling layer can be expressed as shown in the 

Eq. (7) [12]. 

𝑈𝑝𝑜𝑜𝑙(𝜙) =  ∏ 𝐶𝑋(𝑖, 𝑖 + 1). 𝑅𝑋(𝜙𝑖)𝑅𝑌(𝜙𝑖+1)𝑛
𝑖=𝑖,3,5..   (7) 

where 𝜙𝑖 are trainable parameters for the pooling 

operations, ensuring that important feature information 
is retained while irrelevant data is discarded. 

Finally, a parameterized ansatz layer, 𝑈𝑎𝑛𝑠𝑎𝑡𝑧(𝜆), 
introduces trainable parameters that will be optimized 
during the model's learning phase. The ansatz, in this 
case, is based on the RealAmplitudes ansatz, which 
includes multiple layers of RY rotation gates and 
entangling operations to enhance the circuit's 
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expressive power for classification, as shown in  Eq. (8) 
[35]. 

𝑈𝑎𝑛𝑠𝑎𝑡𝑧(𝜆) =  𝑅𝑌(𝜆𝑖). 𝐶𝑍(𝑖, 𝑖 + 1)                (8) 

The overall quantum circuit can be expressed  in Eq. 
(9) [12]. 

𝑈𝑄𝐶𝑁𝑁 = 𝑈𝑎𝑛𝑠𝑎𝑡𝑧(𝜆).  𝑈𝑝𝑜𝑜𝑙(𝜙). 𝑈𝐶𝑜𝑛𝑣(𝜃).  𝑈𝐹𝑀(𝑥).            

(9) 
Quantum computations in this circuit are used to 

process the best breast cancer data features and 
improve how the model distinguishes malignant from 
benign cases. Having pooling and ansatz layers in the 
architecture helps the pipeline be effective and strong, 
while quantum convolutional layers uncover detailed 
connections between features. 

D. QCNN Model Construction 

The QCNN model for breast cancer classification is 
constructed by putting together the quantum ansatz 
with a quantum feature map. The feature map captures 
typical input, and the ansatz figures out the best setting 
for classifying data. To achieve better results, the whole 
design relies on quantum speedup techniques and 
quantum processing to detect complex data links. The 
process used in QBG-QCNN is shown in Algorithm 1, 
and the pseudo code is included 

ZZFeatureMap transforms classical input features 
into quantum states using entangling operations. 
RealAmplitudes uses an ansatz made of a trainable, 
parameterized quantum circuit called θ. The ansatz is 
developed within RealAmplitudes and covers layers of 
RY(θ) single-qubit rotations and CX entangling gates. 
With the EfficientSU2 ansatz, trainable parameters θ 
help combine the RY(θ), RZ (theta) single-qubit 
rotations, and the entangler CX gates in a single 
quantum circuit. The approach uses rotations and 
entanglement to shape quantum states, which is why 
quantum variational algorithms benefit from it. For 
improved data classification and quantum state 
revelation, ZZFeatureMap,  RealAmplitudes, and 
EfficientSU2 were used. ZZFeatureMap captures 
feature interactions by paired Pauli-Z gates, making it 
useful for medical applications like breast cancer 
research, where feature linkages are important. The 
popular RealAmplitudes ansatz, which combines 
rotation gates and entanglement layers, may effectively 
convert classical data into quantum states for Noisy 
Intermediate-Scale Quantum (NISQ) computers. 
EfficientSU2 employs RY and RZ rotations with CNOTs 
to simplify the architecture and represent more 
complicated and nonlinear data points. These maps 

 
 

Fig 2. Quantum Circuit for Breast Cancer diagnosis 
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enable the QBG-QCNN model's dependable 
performance with modest hardware and computing 
requirements. Assessing the quantum circuit 
complexity is crucial for real-time applications, 
particularly for NISQ devices. Our QBG-QCNN model 
uses 4 qubits to match current quantum technology. All 
four models studied, Feature maps, ZZFeatureMap, 
RealAmplitudes, and EfficientSU2, performed well with 
little resources. Although EfficientSU2 offers greater 
circuit depth and expressive power, it may be less 
practical for error-prone or resource-constrained 
quantum devices. In contrast, RealAmplitudes provides  
a more hardware-efficient solution with a shallower 
circuit depth, making it more reliable and robust for 
deployment on NISQ-era  quantum hardware. The 
presented methods may be employed with IBM Q 
devices and quantum simulators with gate counts of 

40–60. We used native gates (RY, RZ, and CNOT) to 
maximize contemporary hardware. The previous tests 
were clear, but the next stage will incorporate noisy 
models and error-removal methods before executing 
the application on NISQ hardware. Fig. 2 shows  the 
complete quantum circuit used for breast cancer 
diagnosis.  

Fitting the breast cancer dataset trains QCNN. Train 
the model with Boruta and GA features. Use the feature 
map to encode conventional data X into quantum 
states.  For parameter optimization, the COBYLA 
(Constrained Optimization BY Linear Approximations) 
algorithm is employed. COBYLA is well-suited for non-
smooth optimization problems typical in quantum 
circuits, enabling effective tuning of the ansatz 
parameters. The objective is to minimize the cross-
entropy loss L(θ), defined as shown in Eq. (10) [35]. 

Algorithm 1. QBG-QCNN Model for Breast Cancer Classification Using Boruta and GA 
Step 1: Initialize QCNN Model 

Let Q be the number of qubits. 
Choose quantum feature map F ∈ {ZZFeatureMap, RealAmplitudes, EfficientSU2}. 

Select variational ansatz A(θ), where θ represents the trainable parameters. 
Initialize the quantum circuit Qcircuit = F ∘ A(θ). 

Step 2: Input Preprocessing 
Let D = {x₁, x₂, ..., xₙ} be the feature vectors from breast cancer dataset. 

Normalize D using MinMaxScaler:  
xᵢ ← (xᵢ - min) / (max - min). 
Perform Exploratory Data Analysis (EDA) to detect anomalies and correlations. 

Step 3: Quantum Feature Extraction Using Boruta and GA 
Apply Boruta to evaluate feature importance using a Random Forest classifier. 
Use Genetic Algorithm (GA):     
Initialize population P = {W₁, W₂, ..., Wm}, where each Wᵢ ∈ {0,1}ⁿ.     

Define fitness function f(Wᵢ) = α(Wᵢ) - λ‖Wᵢ‖₀ as in Eq. (1).     

Apply crossover W' = αWᵢ + (1-α)Wⱼ [Eq. (2)] and mutation Mᵢ = Wᵢ ⊕ r [Eq. (3)]. 

Obtain optimal subset S ⊆ X such that S = argmax f(Wᵢ) [Eq. (4)]. 

Step 4: Quantum Circuit Construction 
Encode selected features S = {s₁, ..., sₖ} into qubits using feature map ϕ(x), e.g.,ϕZZ(x) = 

exp(i·Z⊗Z·xᵢxⱼ) as in Eq. (5). 

Apply quantum convolution layer: Uconv(θ) = ∏ᵢ RY(θᵢ) · CX [Eq. (6)]. 
Apply quantum pooling: Upool(θ) . [Eq. (7)]. 
Apply parameterized ansatz A(θ) = ∏ RY(θ) · CX [Eq. (8)]. 
Overall circuit Utotal = ϕ(x) ∘ Uconv ∘ Upool ∘ A(θ) [Eq. (9)]. 

Step 5: QCNN Training 
Use cost function: Cross-Entropy Loss L(θ) [Eq. (10)]. 
Optimize θ using COBYLA optimizer (gradient-free). 
Repeat until’ 

Step 6: Testing the QCNN Model 
For new sample xtest ∈ D:     

Preprocess xtest and map features via ϕ(xtest).     
Evaluate output ypred = Qcircuit(ϕ(xtest), θ*). 

Step 7: Performance Evaluation 
Compute evaluation metrics:     
Accuracy α [Eq. (11)], Precision p [Eq. (12)], Recall r [Eq. (13)], F1-score F1 [Eq. (14)]. 
Perform statistical validation via 10-fold CV and paired t-test. 
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𝐿(𝜃) =  −
1

𝑚
∑ [𝑦𝑖𝑙𝑜𝑔(𝑦𝑖(𝜃)) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦𝑖(𝜃))]𝑚

𝑖=1                  

(10) 

E. Quantum Speedup Optimization  

The QCNN converts classical medical characteristics 
into qubits that quantum computers process 
simultaneously. The model uses ZZFeatureMap, 
RealAmplitudes, and EfficientSU2 to describe essential 
features as quantum states of complicated, nonlinear 
data. Traditional technologies can only examine one 
hypothesis at a time, whereas the system can study 
numerous. Quantum gates, entanglement, and 
variational ansatz layers  enable the QCNN to discover 
intricate relationships and positions between features 
with minimal computational effort. The QCNN 
converges quicker, processes input data better, and 
predicts early breast tumors more accurately thanks to 
quantum improvements (Algorithm 1). 

 

 

IV.  Results and Analysis 

The QBG-QCNN model was implemented using IBM 
PennyLane, a widely adopted framework for 
developing and simulating quantum machine learning 
algorithms [35]. The robust tools for developing 
quantum algorithms, including advanced quantum 
machine learning, make this framework famous. We 
use quantum computational principles to test our QBG-
QCNN model for breast cancer diagnosis to improve 
accuracy. Table 1 presents the experimental setup 
used to train the QBG-QCNN model.   

 

A. Dataset Description 

Breast cancer is a mammary cell disease that grows 
abnormally, divides quickly, and  potential metastasis 
[36]. The dataset used in this study is the Breast 
Cancer Wisconsin (Diagnostic) Dataset, which 
contains features computed from digitized images of 
fine needle aspirates (FNA) of breast masses. Each 
instance represents characteristics of cell nuclei 
extracted from the images, with a total of 30 real-valued 
features per sample. These features include mean, 
standard error, and worst values of ten nuclear 
properties: radius, texture, perimeter, area, 
smoothness, compactness, concavity, concave points, 
symmetry, and fractal dimension. For example, 
“radius_mean” captures the average distance from the 

nucleus center to its perimeter, while “concavity_worst” 
reflects the severity of concave portions in the worst 
cases. The dataset comprises 569 samples with no 
missing values, labeled as malignant (M = 212) or 
benign (B = 357), and is widely recognized for 
benchmarking classification algorithms. It is publicly 
available via the UCI Machine Learning Repository and 
has been referenced in robust discrimination studies 
like Bennett and Mangasarian (1992), highlighting its 
relevance for medical pattern recognition tasks. 

B. Performance Measures 

In the evaluation of models in this research, various 
relevant metrics, as shown in  Eq. (11), Eq. (12), Eq. 

(13), Eq. (14), Eq. (15), and Eq. (16) [37], were applied 

to assess their performance. Accuracy, serving as a 
crucial metric, quantifies the model's overall 
performance by measuring the fraction of instances 
correctly classified. Precision indicates the fraction of 
correct positive predictions, while recall represents the 
fraction of actual positives predicted correctly. A high 
precision value implies fewer false positives, which is 
vital in medical diagnosis to avoid unnecessary 
treatments. Conversely, high recall ensures most 
actual cancer cases are detected, minimizing the risk 
of missed diagnoses. The F1-score balances between 
recall and precision, shown in Eq. (14) and Eq. (15) 
[37]: 

TPR =  
TP

TP+FN
                          (11) 

FPR =  
FP

TP+FN
                           (12) 

FNFPTNTP

TNTP
Accuracy

+++

+
=            (13) 

FPTP

TP
precision

+
=                           (14) 

FNTP

TP
call

+
=Re                                (15) 

callprecision

callprecision
ScoreF

Re

)Re*(*2
1

+
=−                (16) 

In this context, “TP stands for True Positive, TN for 
True Negative, FP for False Positive, and FN for 
False Negative”. 

C. Optimized Feature Qubits selected using 
Boruta and GA for Quantum Circuit  

The advanced QBG-QCNN breast cancer detection 
model employs a hybrid feature selection strategy that 
integrates Boruta with Genetic Algorithm (GA) to isolate 
the most impactful features from the dataset, thereby 
enhancing classification accuracy. This dual method 
ensures a balanced trade-off between global feature 
space exploration and local exploitation, enabling the 
identification of critical attributes that significantly 
influence model performance. Among the selected 
features, mean values of radius, texture, perimeter, 

Table 1. Computing Environment for 
Experimental Research 

CPU Intel i5 

GPU P-100 

RAM 16GB 

Language Python 

Platform Pennylane 
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area, concavity, and symmetry are included, as they 
are key morphological indicators of breast cancer cell 
nuclei that are strongly associated with malignancy. To 
further capture intra-cell variability, particularly in 
characteristics such as texture, perimeter, and concave 
points, which are often linked to irregular or abnormal 
tissue growth patterns, standard errors are 
incorporated. These features provide additional 
discriminatory power by accounting for subtle 
variations in tumor structure. As illustrated in Table 2, 
this  optimized feature subset not only reduces input 
dimensionality but also preserves clinically meaningful 
information, allowing the QBG-QCNN model to more 
effectively distinguish between benign and malignant 
breast cancer cases with higher precision and 
computational efficiency. 

 

D. Quantum circuit using ZZFeatureMap 

In Fig. 3, the quantum circuit uses a Quantum 
Convolutional Neural Network (QCNN) with four qubits 
(q0, q1, q2, q3) initialized in the ground state. They 
processed through Hadamard gates for superposition 
and parallel computation to classify breast cancer. 
Phase gates throughout, likely optimized by Boruta and 
GA-based feature selection methods, tailor qubit 
phases for breast cancer feature detection. Classical 
computing is not as effective at correlating data as is a 
process that generates entanglement. The circuit 

enables the visualization of subtle texture and shape 
changes that distinguish benign from malignant 
tissues, utilizing the ZZFeatureMap to encode complex 
data information. To understand breast cancer data at 
a level mainstream computing cannot reach, 
superposition and entanglement are applied to break 
the input data into nuanced quantum states. 

E. Quantum circuit using RealAmplitudes 

Variational quantum algorithm employing 
RealAmplitudes. Fig. 4 shows the RealAmplitudes 
circuit's rotating gates and entangling operations 
spanning four qubits (q0–q3). Data characteristics 
analyzed for each qubit include Ry transformations 

 
Fig 3. QCNN Quantum circuit using ZZFeatureMap 

 

 
Fig 4. Quantum circuit using RealAmplitudes 

 

Table 2. Optimized Feature qubits selected 
using Boruta and GA 

S.No Feature Name 

1 Concavity_mean 

2 Concave points_se 

3 Area_mean 

4 Perimeter_mean 

5 Radius_mean 

6 Texture_mean 

7 Symmetry_mean 

8 Fractal_dimension_mean 
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(rotations across the y direction on the Bloch sphere) 
and θ0-15 values. Rotational gates manipulate input as 
amplitude values and affect quantum state preparation 
in continuous space. Entanglement from CNOT gates 
(represented as “+” symbols between lines) causes 
correlations. The algorithm's set operations indicate 
ways to enhance quantum states for cancer 
diagnostics. The combination of amplitude encoding 
and entanglement helps the quantum model detecting 
and resolving confusing correlations in nuanced data 
domains and improve data classification and 
prediction.  

F. Quantum circuit using  EfficientSU2  

Fig. 5 shows a quantum circuit using the EfficientSU2 
template for quantum machine learning applications 
like breast cancer detection. Using rotational gates Ry 

and Rz on q0 to q3, this circuit is able to operate 
quantum states by spinning the Bloch sphere around 
its y- and z-axes. All gates get different angles (θ0 to 
θ31) to ensure the best preparation of states using 
breast cancer data. CNOT gates in the circuit bring 
about entanglement among qubits, making it possible 
to examine the relationships found in complex 
datasets. 

G. Performance of QBG-QCNN on Breast Cancer 
Dataset. 

Fig. 6 presents the QBG-QCNN optimization process, 
with values for the objective function  across more than 
100 iterations. A fast decline in the first 10 rounds 
suggests that the robots find a suitable place quickly 
and avoid errors. The function then reaches a point 
where it does not change much and only swings 

 
Fig 5. Quantum circuit using EfficientSU2 

 

 
Fig 6: QCNN objective function values for 100 iterations 
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Fig 7: Loss performance of QBG-QCNN on breast cancer prediction for 4 qubits 

 

 
Fig 8: Accuracy performance of QBG-QCNN on breast cancer prediction for 4 qubits  
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slightly, so that the parameters are essentially optimal. 
Both training loss and validation loss plots for the 4-
qubit quantum feature encoding QCNN are provided in 
Fig. 7 and Fig. 8 for breast cancer prediction. Effective 
learning and reduced overfitting  is shown by the 
observation that both training (blue) and validation 
(orange) loss fall over the first 40 epochs (Fig. 7). As 
you can see in Fig. 8, the accuracy on both tasks goes 

up, and validation just slightly sits above training 
throughout the process. Because of the quantum-
enhanced feature selection, the breast cancer 
classification of the QBG-QCNN model improves both 
in generality and reliability. 
 

 
A breast cancer dataset comparison in Table 3, 

using a 4-qubit system, indicates that different quantum 
feature maps lead to variations in Precision, Recall, F1-
score, and Accuracy for QCNN. The  model 
demonstrates balance across metrics, achieving 
92.3% Precision, 92.0% Recall, 92.3% F1-Score, and 
92.0% Accuracy. Of the four models, RealAmplitudes 
shows the least precision and lowest F1-score; its 
accuracy is greatest because it has the highest 
precision (0.943) and recall (0.952). EfficientSU2 gives 
the highest F1-score of 0.946, but its accuracy (0.930) 
is lower than RealAmplitudes. Because false negatives 
are a problem in healthcare, EfficientSU2 successfully 
identifies relevant cases. Recall and F1-score are 
higher in Fig. 9, showing EfficientSU2 outperforms both 
ZZFeatureMap and RealAmplitudes according to all the 
measures. Both models give similar results, with 
RealAmplitudes exerting superior performance in 
terms of recall and accuracy. 

A statistical significance testing was conducted 
using 10-fold cross-validation, allowing us to compute 

the mean and standard deviation for key performance 
metrics, including accuracy, precision, recall, and F1-
score. To assess whether the observed improvements 
were statistically meaningful, we applied paired t-tests 
and Wilcoxon signed-rank tests comparing the QBG-
QCNN model against baseline models such as CCNN 
and QKSVM. Additionally, 95% confidence intervals 
were reported for each metric, confirming the 
consistency, robustness, and reliability of the results 
and reinforcing the scientific validity of our performance 
claims. 

 
 

H. Comparison with existing studies 

From Table 4the proposed QBG-QCNN achieves a 
higher accuracy of 94.3% than other models, with 
CCNN (89%), QNN (87%), VQNN (90%), and QKSVM 
(93%) performing slightly lower. In particular, the QBG-
QCNN method surpasses the Binary Harris Hawks 
Optimization with Quantum SVM (BHHO–QKSVM) 
technique both by theory and experimental results. In 
contrast to BHHO–QKSVM which uses only PCA for 
feature selection and a standard SVM without many 
kernel alternatives, QBG-QCNN applies Boruta and GA 
to choose features effectively and then uses 
RealAmplitudes, EfficientSU2, and ZZFeatureMap 
quantum feature maps to encode the selected data into 
quantum states. Because of this, the model can deal 
with difficult forms of nonlinear relationships using 
quantum entanglement and superposition. In terms of 
evaluation, QBG-QCNN achieves 95.2% precision, 
94.6% recall, and a F1-score of 93.0%. In contrast, 
EfficientSU2 obtains a higher F1-score of 0.946, 
surpassing BHHO–QKSVM’s 0.88. Because of the 
quantum convolution and pooling, the network can 
model patterns in space more effectively, showing a 
clear benefit in efficiency and design over past 
quantum-classical methods. The Breast Cancer 
Wisconsin (Diagnostic) Dataset with 569 instances and 
30 attributes was used to assess CCNN, QNN, VQNN, 
QKSVM, and QBG-QCNN in Table 4. All random forest 
models were established under the same settings, 
using the same preprocessing, divisions, and 
evaluation metrics to see how they compare. Similar 
results were obtained using the same data and 
computer setup for both methods. 

 
I. ROC Analysis 

The ROC curve in the figure shows how accurately the 
QBG-QCNN model can detect both benign and 
malignant cases of breast cancer. The ROC curve 
represents the sensitivity versus the false positive rate 
as the model’s classification threshold changes.  It can 
be seen from the curve that the QBG-QCNN performs 
well in this sense, achieving a strong rise toward the 
corner with the highest true positive values and the 
lowest false positive rates. 

Table 4. Performance comparison with existing 
studies 

Model Accuracy (%) 

CCNN[29] 89 

QNN [4] 87 

VQNN[4] 90 

QKSVM[33] 93 

QBG-QCNN 94.3 

 

Table 3. QBG-QCNN performance on Breast Cancer 
dataset using different Maps for 4-qubits 

Feature Map Precision Recall 
F1-

score 
Accuracy 

ZZFeatureMap 0.923 0.920 0.923 0.920 

RealAmplitudes 0.920 0.925 0.915 0.925 

EfficientSU2 0.943 0.952 0.946 0.930 
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Fig. 9 displays the QCNN model’s performance in 
identifying breast cancer via an ROC curve. The model 
includes Quantum Circuit Feature Maps and also relies 
on Boruta and GA-based feature selection to improve 
how features are represented. The ROC curve 
demonstrates how well the model distinguishes 
malignant from benign cases, and the orange curve 
reflects how the QCNN performs on its test data. The 
accuracy of the 4-qubit quantum model at identifying 
breast cancer is demonstrated by a high AUC value of 
0.94. AUC values close to 1.0 indicate a strong 
capacity to detect outliers and correctly classify new, 
unseen samples. An AUC higher than 0.90 usually 
means the machine learning model is highly effective 
at finding whether a sample is positive (malignant) or 
negative (benign). This matters a lot in medical tests, 
as spotting and excluding both false positive and false 
negative results is key to finding diseases correctly. 
The curved shape and sudden initial increase on the 
ROC indicate that the hybrid selection and quantum 
encoding methods boost the hybrid network’s accuracy 
and trustworthiness in medicine. 
 

V. Discussion 

The QBG-QCNN model marks a substantial leap 
forward in breast cancer classification by merging the 

computational strengths of quantum machine learning 
with the rigor of hybrid feature selection. The 
incorporation of Boruta and Genetic Algorithm (GA) 
facilitated the identification of the most relevant 
features, such as radius_mean, concavity_mean, and 
symmetry_mean, from the Breast Cancer Wisconsin 
(Diagnostic) dataset. These features are not only 
statistically significant but also medically interpretable, 
providing tangible markers associated with 
malignancy. Once selected, these features were 
encoded into quantum states using distinct feature 
maps, RealAmplitudes, ZZFeatureMap, and 
EfficientSU2. These quantum mappings were 
instrumental in transforming the input into high-
dimensional Hilbert spaces, where nonlinear data 
dependencies could be more effectively captured. 

Among the feature maps, RealAmplitudes showed 
balanced performance with 92.5% in both accuracy 
and recall, demonstrating consistent classification 
ability with minimal bias towards false positives or false 
negatives. Meanwhile, the EfficientSU2 feature map 
achieved the highest F1-score (94.6%), indicating its 
superiority in harmonizing precision and recall, which is 
crucial in medical diagnostics where both false 
positives and negatives can have serious implications. 
Furthermore, the model’s learning behavior, as 

 
Fig 9. ROC analysis of QCNN on breast cancer prediction for 4 qubits 
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visualized in the loss and accuracy plots, showed rapid 
convergence during initial training epochs, followed by 
stabilization, a hallmark of robust training using the 
COBYLA optimizer. Furthermore,  the model's 
architecture, especially its quantum convolution and 
pooling layers, proved critical in capturing subtle 
localized patterns within the data, resembling textural 
and morphological variations seen in actual diagnostic 
imaging and are often missed by traditional CNNs due 
to limitations in representational capacity. 

The QBG-QCNN model were compared with those 
of popular recent quantum and hybrid models designed 
for breast cancer classification and medical  
diagnostics. In [4], the QSVM operating on IBM Q 
delivered a success rate of  approximately 91%. Since 
it includes convolutional layers and uses a blend of 
features, QBG-QCNN learned better and gave a higher 
accuracy of 94.3%. In [12], a standard QCNN was built 
to demonstrate that quantum convolution is realistic for 
classifying normal computer data. Still, the model 
lacked a thorough method for selecting important 
features. By uniting Boruta and Genetic Algorithm 
(GA), along with several quantum feature maps, QBG-
QCNN manages to produce more effective feature 
encoding and improve how well the model handles 
data. In [27], a QNN was used to classify breast cancer, 
and it achieved better outcomes than regular CNNs. 
While the original experiment was able to showcase 
quantum advantage, the QBG-QCNN was developed 
to scale more easily and ensure understanding of the 
results thanks to a modular structure and new 
optimization tools. The authors of [33] presented a 
Binary Harris Hawks Optimization (BHHO)-based 
Quantum Kernel SVM (QKSVM), which performed with 
an accuracy of 93% and an F1-score  of 0.88. QBG-
QCNN does better than the other methods, getting an 
accuracy of 94.3% and an F1-score of 0.946 by using 
expressive ansatz circuits and quantum pooling. 

A hybrid quantum-classical convolutional neural 
network tailored to image-based breast cancer 
diagnosis was introduced in [22]. While that model is 
image-centric, the QBG-QCNN effectively generalizes 
to tabular data using optimized feature reduction, thus 
enhancing adaptability. A Particle Swarm Optimization 
(PSO) and Decision Tree-based model achieving 
92.26% accuracy was presented in [30]. The QBG-
QCNN exceeds this with fewer selected features, 
emphasizing its computational efficiency. In [31], a 
Support Vector Machine optimized by Whale 
Optimization and Dragonfly Algorithm achieved 96% 
accuracy under ideal conditions. Although comparable 
in performance, the QBG-QCNN distinguishes itself 
through quantum-native optimization and deployment 
potential on NISQ devices. Lastly, [32] proposed a 
CNN model integrated with Quantum-Behaved Particle 
Swarm Optimization (QPSO) for multimodal medical 
image fusion. While their work emphasizes image-level 

fusion, the QBG-QCNN architecture provides a 
foundation for extending quantum feature encoding to 
similar multimodal datasets, which is a key direction in 
our proposed future work. 

While QBG-QCNN delivers impressive results, there 
are still some limitations that need to be mentioned. It 
was primarily trained and validated using the Breast 
Cancer Wisconsin (Diagnostic) dataset, which is not 
large but well-balanced. Often, these datasets differ 
from the  real world, showing only a small amount of 
bias and complexity. When the data does not have 
diversity, the model may not generalize well. 
Broadening the model to deal with more and different 
types of data will be required for greater impact. 
Working with simulated quantum environments such as 
Pennylane and IBM Qiskit, also presents a further 
limitation. On these devices, quantum noise, 
decoherence, and gate infidelity are not as realistically 
represented as in actual quantum hardware. Even 
though the model appears suitable for simulations, its 
results must be tested on a noisy quantum machine. 
The design of the model only used four qubits, 
preventing more features from being processed at one 
time. Since feature selection chose the key attributes, 
additional potentially valuable features were discarded 
due to hardware constraints. Compared to other 
models, EfficientSU2 scored the best and is more 
susceptible to errors in the current NISQ computers 
due to its complexity. It remains unknown how to 
design a system that expresses quantum information 
efficiently yet tolerates noise well. Besides, the model 
depends on perfect feature representation and flawless 
circuit components. These points might not work in all 
cases or for different programming platforms. 

The implication of this work shows that the proposed 
framework can serve as a standard for advancing 
clinical models and is especially suited for running on 
emerging quantum devices. It proves that it is possible 
to use predictive algorithms such as Boruta and 
Genetic Algorithm in conjunction with ZZFeatureMap, 
RealAmplitudes, and EfficientSU2 among quantum 
approaches. Because of this, we can easily use 
features and learn exactly under the rules of Noisy 
Intermediate-Scale Quantum (NISQ) computers. In 
healthcare settings, QBG-QCNN appears to be 
suitable as a guidance tool  for early breast cancer 
diagnosis because it achieves a precise 95.2% score 
and a recall score of 94.6% which lowers the risk of 
both missing a diagnosis and giving a diagnosis where 
there is none. Because it is highly modular, the tool 
helps bridge multi-omics and multimodal data so that 
future applications in personalized and precision 
oncology will be better supported. When quantum 
circuits are added to diagnostic pipelines, the model 
can help decisions be made faster in areas where 
computing resources are scarce and quantum co-
processors are used. Furthermore, the system allows  
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to add on topics such as monitoring over time, multi-
class cancer detection, and cross-domain diagnostics 
in healthcare by means of transfer learning. As new 
developments occur in quantum technology, the QBG-
QCNN helps us prepare for quantum applications here 
and now, as well as for future, reliable, and easily 
understood diagnostic systems in healthcare. 
 

 

VI. Conclusion 

This study aimed to develop a quantum-enhanced 
hybrid deep learning model for accurate and scalable 
breast cancer classification. To achieve this, we 
proposed the QBG-QCNN framework, which integrates 
Boruta and Genetic Algorithm (GA) for robust feature 
selection with a Quantum Convolutional Neural 
Network (QCNN) utilizing advanced quantum feature 
maps ZZFeatureMap, RealAmplitudes, and 
EfficientSU2. Experimental results conducted on the 
Breast Cancer Wisconsin (Diagnostic) Dataset 
demonstrated the effectiveness of the proposed model. 
The QBG-QCNN model achieved up to 94.3% 
accuracy, 95.2% precision, 94.6% recall, and a 93.0% 
F1-score, outperforming both classical CNNs and other 
hybrid quantum-classical models. Among the tested 
quantum feature maps, EfficientSU2 delivered the 
highest F1-score, indicating its superior classification 
balance. Furthermore, the model achieved a ROC-
AUC  score of 0.94, confirming strong discriminative 
capability and generalization. Future work will focus on 
extending the model to multi-modal cancer datasets 
such as TCGA and METABRIC, which  include 
genomic, histopathological, and imaging data. 
Additionally, the model will be tested on real quantum 
hardware under noise constraints, with adaptations for 
noise-resilient quantum error mitigation. We also plan 
to explore federated quantum learning, transfer 
learning across cancer types, and real-time 
deployment on NISQ devices to improve clinical 
applicability and scalability further. 
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