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Abstract Electroencephalography (EEG) is a technique used to measure electrical activity in the brain by 

placing electrodes on the scalp. EEG plays an essential role in analyzing a variety of neurological 

conditions, including autism spectrum disorder (ASD). However, in the recording process, EEG signals are 

often contaminated by noise, hindering further analysis. Therefore, an effective signal processing method 

is needed to improve the data quality before feature extraction is performed. This study applied the 

Butterworth Band-Pass Filter (BPF) as a preprocessing method to reduce noise in EEG signals and then 

used the Empirical Mode Decomposition (EMD) method to extract relevant features. The performance of 

this method was evaluated using three main parameters, namely Mean Square Error (MSE), Mean Absolute 

Error (MAE), and Signal-to-Noise Ratio (SNR). The results showed that EMD was able to retain important 

information in EEG signals better than signals that only passed through the BPF filtration stage. EMD 

produces lower MAE and MSE values than Butterworth, suggesting that this method is more accurate in 

maintaining the original shape of the signal. In subject 3, EMD recorded the lowest MAE of 0.622 compared 

to Butterworth, which reached 20.0, and the MSE value of 0.655 compared to 771.5 for Butterworth. In 

addition, EMD also produced a higher SNR, with the highest value of 23,208 in subject 5, compared to 

Butterworth, which reached only 1,568. These results prove that the combination of BPF as a preprocessing 

method and EMD as a feature extraction method is more effective in maintaining EEG signal quality and 

improving analysis accuracy compared to the use of the Butterworth Band-Pass Filter alone. 

Keywords Autism Spectrum Disorder; Electroencephalography; Empirical Mode Decomposition; Butterworth 
Band-Pass Filter. 

I. Introduction  

Autism is a comprehensive developmental disorder 
that results in obstacles in socialization, 
communication, and behavior. The disorder ranges 
from mild to severe. This autistic symptom generally 
appears before the child reaches the age of 3 years old 
[1]. Autism spectrum disorder (ASD) is a 
neurodevelopmental disorder characterized by 
impairment of sensory modulation. This sensory 
modulation deficit will eventually cause them to have 
difficulties in adaptive behavior and intellectual 
functioning. They also often show a tendency to 
perform consistent rituals or routines, as well as 

resistance to changes in their routines [2]. The disorder 
in people with ASD is related to functional changes in 
the frontal lobe and temporal lobe, generally showing 
increased activity in brain waves at the delta (δ) – theta 
(γ) frequency in the frontal area of the brain, which is 
associated with poor cognitive ability [3]. People with 
autism generally show lower brain wave activity at the 
Alpha (α) frequency, which is usually associated with a 
state of relaxation. Instead, they tend to have higher 
brainwave activity at the Beta (β) frequency, which is 
related to focus and concentration conditions. This 
indicates that patterns of brainwave activity may play a 
role in ASD's developmental disorder [4]. 
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Brain activity can be studied through research 
media in the form of functional images produced by 
measuring brain signals with EEG 
(electroencephalography). EEG is a technique used to 
measure the brain's spontaneous electrical activity, 
resulted from the transmission of electrical signals 
between neurons. The process of recording EEG 
signals is carried out over a short period of time, usually 
between 20 to 40 minutes. This data is obtained by 
placing electrodes at various points on the scalp [5]. 
This noise can come from various sources, both 
internal and external, that cause interference with the 
brain signals being measured. In this case, noise 
reduction (denoising) is an important and fundamental 
part of EEG signal processing, one method that can be 
used is the Butterworth band-pass filter (BPF) [6].  

EEG signals require an advanced processing 
process so that relevant data can be found and 
analyzed correctly by using the feature extraction 
method. The feature extraction method transforms the 
raw signal into a collection of highly important 
informative features. These features can be classified 
and analyzed in various applications, such as emotion 
recognition, brain-computer interface (BCI), seizure 
detection, and ASD detection. The feature extraction 
process typically involves several steps, including 
signal preprocessing, decomposition, and extraction of 
relevant features from the processed signal. A variety 
of techniques can be used for feature extraction, 
including statistical measurement, frequency-time 
analysis, and advanced signal decomposition methods 
such as Empirical Mode Decomposition (EMD) [7],[8]. 

Empirical Mode Decomposition (EMD) is a data-
driven method that breaks down complex signals into a 
limited number of intrinsic mode functions (IMFs). Each 
IMF represents a simple oscillation mode that reflects 
the underlying characteristics of the original 
signal. EMDs are particularly effective for analyzing 
non-stationary and nonlinear signals, such as EEGs, as 
they can adapt to data without requiring pre-defined 
basic functions [8]. 

Previous research with a different object i.e. on ERP 
signals, IMF from EMD was able to analyze non-
stationary ERP signals, with IMF1 providing the best 
classification results [9].  Other studies have suggested 
that EMD decomposition on EEG signals improves the 
accuracy, sensitivity, and specificity of the model by 
about 5%, 6%, and 5% respectively [10]. 

In this study, the main focus of the researcher was 
to measure the performance of feature extraction 
methods using EMD to determine how effective this 
method is for extracting important information from 
EEG signals. The measurement of the performance of 
the method was carried out with three calculation 
parameters, namely Mean Square Errors (MSE), Mean 

Absolute Errors (MAE), Signal to Noise Ratio (SNR) 
and Power Spectral Density (PSD).  

The main contributions of this study include: 1) 
assessing the extent to which EMD can extract 
important information from EEG signals in order to 
improve classification accuracy, 2) evaluating the 
impact of using Butterworth band-pass filter (BPF) in 
improving signal quality before feature extraction, 3) 
measuring EMD performance with 3 evaluation 
parameters, namely Mean Square Errors (MSE), Mean 
Absolute Errors (MAE), Signal to Noise Ratio 
(SNR), and Power Spectral Density (PSD), to assess 
its effectiveness in EEG analysis for ASD studies, and 
4) comparing the performance of EMD methods with 
other methods. 

To achieve this goal, the collected EEG signals went 
through a pre-processing stage with BPF to reduce 
noise before being extracted using the EMD 
method. Furthermore, the resulting features were 
analyzed based on predetermined performance 
parameters. The study was further structured as 
follows: part II discusses the EEG datasets used as 
well as the methods of preprocessing and extraction of 
features; part III displays the results of BPF 
preprocessing and the results of the EMD method 
performance analysis based on the selected evaluation 
parameters; and part IV discusses the interpretation of 
the results, presenting conclusions that summarize the 
research objectives, key findings, and possible future 
developments. 

 

II.  Research Method 

In this section, Fig. 1 illustrates the methodology 
applied in this study, starting from the pre-processing 
stage, which uses a Butterworth Band Pass Filter to 
filter out unwanted frequencies so that the processed 
EEG signal becomes cleaner and more ready to be 
analyzed in the next stage. After going through the pre-
processing stage, the EEG signal was then processed 
at the feature extraction stage, where the Empirical 
Mode Decomposition (EMD) method was used to 
decompose the signal into its intrinsic components. 
This process aims to extract the main characteristics of 
the EEG signal so that the information obtained 
becomes more representative and easier to analyze at 
a later stage.  

After the features were extracted, this research 
continued with the next step of evaluating and 
analyzing the performance of the methods used by 
measuring the quality of the processed signal using 
three main parameters, namely Mean Squared Error 
(MSE), Mean Absolute Error (MAE), and Signal-to-
Noise Ratio (SNR). 

 In this research, Python version 3.13 was used to 
implement the signal processing circuit. The SciPy 
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library was utilized specifically for the scipy 
signal.butter function to design a 4th-order band-pass 
Butterworth filter, as well as scipy.signal.filtfilt to apply 
zero-phase filtering to avoid phase changes in the EEG 
signal. For the Empirical Mode Decomposition (EMD) 
process, the PyEMD library was used by implementing 
the original EMD algorithm. All preprocessing steps, 
including filtering and EMD, were performed using 
custom Python scripts developed in-house for this 
study. The scripts can be shared upon request to 
support transparency and reproducibility. All 
processing was performed on a standard workstation 
with 16 GB of RAM and an Intel i7 processor. The code 
structure is modular for easy reuse and adaptation to 
other EEG datasets.  

 

A. Material 

This study used the EEG dataset obtained from King 
Abdul-Aziz University (KAU), Jeddah, Saudi Arabia 
[11]. This dataset has also been used for previous 
research [12],[13]. This dataset is publicly available 
and can be obtained by sending a formal request via 
email to Dr. Mohammed Jaffer Alhaddad, as described 
[14]. In this study, we followed the same procedure to 
obtain the dataset, while ensuring participant 
confidentiality by not disclosing personally identifiable 
information. The data were recorded while the subjects 
were in a relaxed state to minimize artifacts, using a 
g.tec EEG cap equipped with Ag/AgCl electrodes, 
G.tec USB amplifiers, and BCI2000 software. During 
recording, the data was filtered online with a band-pass 
(0.1–60 Hz) and notch (60 Hz) filter and digitized at 256 
Hz. The recordings are 16-channel data sampled at 
256 Hz. It includes recordings from eight autistic 
children, all boys aged between 10 and 16 years old, 
with a total signal duration of 4104.2 seconds. The 
control group consisted of eight boys aged 9 to 16 
years old with no history of neurological disorders, 
contributing to a total signal duration of 4534.9 
seconds. All EEG recordings were conducted following 
the international 10–20 electrode placement system. 
[15], [16].  

These datasets were stored in file format with .dat 
extension, which generally contain binary or text data 
and are often automatically generated by the 
associated software. The original format may be 
difficult to read because it contains a large amount of 
data that supports various program 
functions. Therefore, in this study, the dataset was 
converted to a .xlsx format to make it easier to 
process. The following is an example of the display of 
EEG signals generated by the BCI2000Viewer (Fig. 
2). This view generally shows a standard 10-20 
electrode placement system, in which electrodes are 
placed at specific points on the scalp [17]. 

In this system, several main electrodes were used 
to record brain activity. On the front or front of the head, 
the electrodes used include Fp1, Fp2, F3, and F4. In 
the central or middle part of the head, there are 
electrodes C3, C4, and Cz. Meanwhile, the electrodes 
in the temporal side of the head include T3, T4, T5, and 
T6. In the parietal or upper back of the head, the 
electrodes used are P3, P4, and Pz. Finally, in the 
occipital or lower back of the head, there are O1 and 
O2 electrodes [18], [19], [20]. Each electrode records 
electrical activity in different areas of the brain, 
providing a comprehensive picture for analysis, 

especially in understanding conditions such as autism. 

B. Butterworth Band-Pass Filter 

  

Fig. 2. Visualization of EEG Dataset with 16 Channels 
Over Time in Microvolts 

 

 
Fig. 1. Flowchart of EEG Signal Processing Using Butterworth Bandpass and EMD Feature Extraction 

 
Fig. 1. The implementation of deep learning using two-dimensional convolution layer. (Arial 10, Bold, min 
10 words, justify): AUTHOR MUST USE A TEXT BOX FOR IMAGE AND TABLE 
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Butterworth band-pass filters are a type of signal 
processing filter designed to have a flat frequency 
response on the band-pass. It is also referred to as the 
maximum flat magnitude filter. The frequency response 
of the Butterworth filter is very flat at the bandpass and 
gradually decreases to zero at the band 
stop. Generally, a band-pass filter consists of a high-
pass filter (HPF) followed by a low-pass 
filter (LPF). High-pass filters (HPF) miss high-
frequency signals but attenuate frequencies lower 
than cut-off frequencies. Low-pass filters (LPF) miss 
low-frequency signals but attenuate frequencies higher 
than cut-off frequencies [21]. 

The two filters were then multiplied to form a band-
pass filter. This aims to allow the signal that has a 
frequency between the two cut-offs to pass through 
without experiencing a significant decrease in 
amplitude, while signals outside this range will be 
muffled [22]. The characteristic of the Butterworth 
band-pass filter is that it has a very even amplitude 
response within the permissible frequency range 
(band-pass). However, the phase response of these 
filters is non-linear, which means that the phase 
changes in the signal passing through these filters vary 
depending on the frequency of the signal [17]. 

The EEG signals used in this study were sampled 
with a frequency of 256 Hz to ensure coverage of the 
relevant spectrum of brain activity. As many as 16 
channels (all channels) were selected for analysis. 
Next, the EEG signals were filtered using a Butterworth 
band-pass filter with a cut-off frequency of 0.5-40 Hz in 
the preprocessing stage. The EEG signals were 
recorded with a sampling frequency of 256 Hz were first 
filtered using a Butterworth Band-Pass Filter (BPF) as 
illustrated in Fig. 3. This particular filter was selected 
because it had a flat frequency response to the 
passband, and was capable of preserving the original 
signal shape with minimal distortion. The filtering was 
applied to 16 EEG channels; the chosen frequency 
range was 0.5-40 Hz, covering all main EEG bands 
(delta, theta, alpha, beta, and a few low gamma bands). 
The resulted time series were filtered using a bandpass 

filter of cutoff 0.5 Hz and 40 Hz to eliminate very low-
frequency artifacts arising due to signal drift, slow body 
movements, and noise from muscle activity and 
environmental interference, respectively. We used a 
4th order filter,  which balances between sharp 
frequency selection and stability of the filter system. 
The selection of these parameters was adjusted to the 
characteristics of the EEG signal so that the process of 
feature extraction and further analysis can run 
optimally.  

C. Empirical Mode Decomposition 

The main concept of EMD is to find the right timescale 

to show the physical properties of the signal [23].  Then, 

using functions, the signal was converted to an intrinsic 

mode, known as Intrinsic Mode Functions (IMF) [9]. The 

IMF must meet two conditions with the first condition, the 

maximum value of the signal amplitude is equal to the 

number of zero crossings across the signal time domain, 

or the maximum difference is 1, and the average value 

of the envelope formed by the maximum and minimum 

 

Fig. 4. Flowchart of Empirical Mode 
Decomposition (EMD) Process for Signal 
Decomposition 

 

Fig.  3. Diagram of EEG Signal Processing Using 
Butterworth Band-Pass Filter with 0.5–40 Hz 
Cutoff Frequency 
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amplitude of the signal is zero [10]. The specific steps of 

EMD are as follows in Fig. 4: 

a. Identifying the maximum and minimum values of the 

𝑥(𝑡) signal, namely the upper envelope and lower 

envelope values. 

b. Calculating the mean value between the value of the 

upper envelope and the lower envelope which is 

defined as 𝑚1 as explained in Eq. (1) [24]. The 

difference between the data (initial signal) and m1 

results in the ℎ1 component, which is also known as 

the first IMF 

ℎ1 = 𝑥(𝑡) − 𝑚1  (1) 
The first IMF from the data can also be defined as 
Eq. (2) [24]: 

𝑐1 = ℎ1𝑟  (2) 
c. Removing c1 from the residue can be done using 

the Eq. (3) [24]: 

         𝑟1 = 𝑥(𝑡) − 𝑐1  (3) 
So that the equation is obtained Eq. (4) [24]: 

      

𝑥(𝑡) = ∑ 𝑐𝑖

𝑛

𝑖=1
+ 𝑟𝑖  

(4) 
The signal was broken down into n-empirical 
modes and residues (rn), which, if all the results of 
decomposition and residues are recombined, it will 
form the original signal. 

d. By repeating the process in the second step, 

several stable IMFs were formed, and eventually, a 

constant or convergent residue was obtained [24]. 

EMD is preferred in EEG signal analysis due to its 
ability to adaptively extract intrinsic mode functions 
(IMF) without relying on predefined basis functions, 
unlike traditional methods such as Fourier Transform 
(FT) or Discrete Wavelet Transform (DWT). This 
approach is particularly effective for non-stationary and 
nonlinear signals, as it preserves local signal 
characteristics and excels in noise reduction. These 
advantages make EMD more accurate and flexible 
compared to conventional decomposition techniques 
[25], [26]. 

 

D. Selection of IMF 

In the Empirical Mode Decomposition (EMD) process, 
the EEG signal is split into a number of Intrinsic Mode 
Functions (IMFs) representing different frequency 
components. However, not all IMFs are relevant for 
further analysis, so an IMF selection stage is required 
to ensure that only significant components of the 
original signal are used. In this study, five relevant IMFs 
were used based on their level of relevance to the 
original signal. This IMF selection was done using the 

energy-based, correlation-based, and PSD distance-
based selection methods. 

1. Energy-based selection method 

The energy of each IMF is calculated according to 
Eq. (5) [23]. Since higher energy IMF is considered the 
best representation of the original signal, they are 
arranged in descending order of energy [27]. 

𝐸 IMF𝑖 = ∑|IMF𝑖[𝑛]|2

𝑝−1

𝑛=

 
(5) 

Eq. (5) [23] calculates the energy of the 𝑖 th IMF as 

the sum of squares of the absolute values of that IMF 
at each point in time. Where IMF𝑖[𝑛] is the value of the 

𝑖 th IMF at index 𝑛, and 𝑝 is the total number of 

samples. This energy, 𝐸 IMF𝑖, reflects the contribution 

of the IMF to the original signal-the higher the energy, 
the more significant the IMF. 

 

2. The correlation-based selection method 

 The correlation coefficient for each MFI was 
calculated according to Eq. (6) [23]. The IMF which has 
a high correlation coefficient is considered a good 
representation of the original signal [28].  Therefore, 
the IMF is ranked from the one with the highest 
correlation coefficient to the lowest [23],[29]. 

𝑝𝑥,IMF𝑖 =
𝐶𝑥, IMF𝑖

𝜎𝑥𝜎IMF𝑖
 

(6) 
Eq. (6) [23] calculates the correlation coefficient 

between the original signal 𝑥 and the 𝑖 IMF. Where 

𝐶𝑥, IMF𝑖 is the covariance of the two 𝜎𝑥  and 𝜎IMF𝑖 are 

their standard deviations. A high coefficient value 
indicates that the IMF is most similar to the original 
signal.  

 

3. The PSD distance-based selection method 

Other IMF selection methods, based on power 
spectrum density (PSD), were also used using the 
power spectrum density of the original signal and the 
IMF [30]. The distances between the estimated PSDs 
were calculated using the Kullback Liebler (KLD) 
distance method, as shown in Eq. (7) [23]. An IMF was 
deemed the most representative of the original signal 
when its PSD closely matches that of the original, 
minimizing the difference between the two. Therefore, 
the IMF was ranked from the lowest to the highest IMF 
PSD range [23],[31]. 

 𝑑𝑖𝑠𝑘𝐿𝐷(𝑥, 𝐼𝑀𝐹𝑖) = ∑ 𝑙𝑜𝑔𝑆𝐼𝑀 𝐹𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑆𝑥(𝜔𝑘)

𝜔𝑘 ,

𝑁−1

𝑛=0

=
2𝜋

𝑁
𝑘 

(7) 
Eq. (7) [23] calculates the Kullback-Leibler 

distance (KLD) between the PSD of the original signal 
𝑥 and the 𝑖 -th IMF, using the respective PSD values at 
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frequency 𝜔𝑘 =
2𝜋

𝑁
𝑘, with 𝑁 as the number of points. 

Here, 𝑆𝑥(𝜔𝑘) and 𝑆𝐼𝑀 𝐹𝑖(𝜔𝑘) are the PSD of the original 

signal and the IMF. The smaller the KLD value, the 
more similar the IMF is to the original signal. 

 

E. Performance Analysis 

The results of EEG signal processing that has gone 
through the decomposition stage using the Empirical 
Mode Decomposition (EMD) method was then 
calculated, analyzed, and compared based on three 
evaluation parameters, namely mean squared error 
(MSE), mean absolute error (MAE), and signal-to-noise 
ratio (SNR). 

1. Mean Squared Errors (MSE) 

MSE is used to evaluate measurement models, such 
as regression models or other forecasting methods 
[32]. The equations of MSE in mathematics are as 
follows: 

𝑀𝑆𝐸 =
∑ [(𝑥𝑖) −   (𝑦𝑖)]2𝑁

𝑖=1

𝑁
 

(8) 
Eq. (8) [32], (𝑥𝑖) is the original value of the experiment 

result or the recorded value of the EEG signal, while 
(𝑦𝑖) is the predictive value or signal created after the 

filtration process and 𝑁 is the amount of data or 

samples used for analysis. This is important in the 
context of ASD because the brains of individuals with 
ASD exhibit distinctive and complex activity patterns, 
so preservation of the original signal dynamics is 
essential to accurately detect such patterns [33].  

2. Mean Absolute Errors (MAE) 

Mean Absolute Error (MAE) is an evaluation metric that 
is widely used to measure the average magnitude of 
errors in a series of predictions, regardless of 
direction. It is defined as the average of the absolute 
difference between the predicted and actual values. 
[34]. The MAE equations in mathematics are as 
follows:  

𝑀𝐴𝐸 =
1

𝑁
∑|𝑥𝑖 −  𝑦𝑖|

𝑁

𝑖=1

 

(9) 
In Eq. (9) [34], (𝑥𝑖) represents true value, (𝑦𝑖) is the 

predictive value, and 𝑁 is the number of 

observations. This metric provides a clear indication of 
the average error in the predictions made by a model 
[35]. A small MAE value indicates high reliability in 
preserving the important characteristics of the signal, 
which in turn increases the accuracy in identifying 
typical ASD indicators or biomarkers [36].  

3. Signal To Noise Ratio (SNR) 

This metric is particularly useful in clinical settings and 
studies involving EEG, as it allows for an assessment 
of the model's performance in predicting outcomes 

associated with brain activity [37]. The SNR equation in 
mathematics is as follows 

𝑆𝑁𝑅 = 10 log10 {
∑ [𝑥(𝑛)]2𝑁

𝑛=1

∑ [𝑥(𝑛) − �̂�(𝑛)]2𝑁
𝑛=1

} 
(10) 

In Eq. (10) [37], 𝑥(𝑛) represents true value, �̂�(𝑛) is the 

predicted value, and 𝑁 is the amount of data or sample 

used for analysis. In the context of EEG signals, higher 
SNR indicate clearer and more interpretable EEG 
signals, which are critical for accurate analysis and 
interpretation in a wide range of applications, 
including brain-computer interfaces (BCIs) and clinical 
diagnostics [38]. EEG signals with high SNR allow for 
more precise identification of neural patterns specific to 
ASD, thus supporting the diagnosis process and 
development of more effective interventions [39].  

4. Test Statistics 

In the performance evaluation of EEG signal denoising 
methods, inferential statistical analysis often utilizes 
paired t-test to determine whether the performance 
difference between two methods is statistically 
significant. Theoretically, this test considers the 
difference in metric values (such as MAE, MSE, or 
SNR) of each pair of observations derived from two 
different methods. The formula for the paired t-test can 
be expressed as follows Eq. (11) [40]: 

𝑡 =
�̅�

𝑠𝑑 ∕ √𝑛
′ 

(11) 
where �̅�, is the mean of the differences between pairs, 
𝑠𝑑  is the standard deviation of the differences, and 𝑛 

denotes the number of sample pairs as in Eq. (11) [40]. 
The obtained t value was compared with the critical 
value of the 𝑡 distribution (𝑑𝑓 = 𝑛 - 1) to calculate the 𝑝 

value, which is the probability that the observed 
difference occurred by chance. Mathematically as in 
Eq. (12) [40]: 

𝑝 = 2(1 − 𝑇(|𝑡|, 𝑑𝑓)) (12) 
with  𝑇 as the cumulative distribution function of 𝑡 , 
representing cumulative probability under 𝑡 distribution 

[40]. 

 

III. Result  

There are several results obtained from the raw 
processing of EEG signals, the first result is the result 
of the signal from the butterworth band pass filter. The 
signal of the butterworth band pass filter results then 
becomes an input for the empirical method of 
decomposition mode, the results obtained are in the 
form of an IMF which is then reconstructed into one 
IMF. The IMF was analyzed for performance using 
three parameters, namely Mean Square Errors (MSE) 
using Eq. (8) [32], Mean Absolute Errors (MAE) using 
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Eq. (9) [34] and Signal to Noise Ratio (SNR) using Eq. 
(10) [37]. 

 

A. Butterworth Band-Pass Filter Result 

The butterworth bandpass filter was used to maintain the 

EEG signal within a certain frequency range, which is 

between 0.5 Hz to 40 Hz, with the main purpose of 

filtering and removing frequency components that are 

outside these limits. The working principle of this filter is 

based on the characteristics of the Butterworth 

frequency response, which is known to have a smooth 

frequency response without ripples in the passband 

band, resulting in optimal filtering without excessive 

distortion of the desired signal. 

Fig. 5 shows the application of the Butterworth 

bandpass filter to the 16-channel EEG signal of 

individuals with autism. Before filtering, the raw EEG 

signal (blue) shows large fluctuations due to artifacts, 

which cause instability. After the filtering process using 

butterworth band pass (yellow), the signal quality 

improves, with a more stable frequency and 

amplitude. This filter maintains a signal in the range 0.5 

- 40 Hz while reducing amplitudes outside of that limit. 

 

B. Empirical Mode Decomposition (EMD) Method 
Results 

After going through the initial filtering process, the EEG 

signal was then further processed using Empirical Mode 

Decomposition (EMD). The results of the analysis 

shown in Fig. 6 reveal that the application of EMD can 

effectively improve the quality of EEG signals in 

individuals with autism. This method significantly refines 

the signal on each channel by extracting more relevant 

intrinsic components. By applying EMD after the initial 

screening stage, any disturbances or small fluctuations 

that remain in the EEG signal can be further reduced, 

resulting in a cleaner and more representative signal of 

actual brain activity.  

C. Method Performance Accuracy Analysis Results 

To assess the performance of filters on EEG signals, this 

study used three main evaluation parameters, namely 

Mean Squared Error (MSE), Mean Absolute Error 

(MAE), and Signal-to-Noise Ratio (SNR). These three 

parameters were used to measure the extent to which 

the filtering method applied can improve signal quality by 

reducing interference and retaining relevant information. 

 

(a) Channel Fp1 

 

(b) Channel Fp2 

Fig. 5. Result of butterworth band-pass filter of 
autism EEG signal 

 
(a) Channel Fp1 

 
(b) Channel Fp2 

Fig. 6. Result of empirical mode decomposition 
method of autism EEG signal 
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Based on the results of the analysis, the methods used, 
namely the Butterworth bandpass filter and Empirical 
Mode Decomposition (EMD), proved to be effective in 
improving the quality of EEG signals. Butterworth's 
bandpass filters help maintain the required frequency 
components, while EMDs play a role in separating the 
signal components so that interference can be reduced 
and important information in the EEG signal is 
maintained. 

1. Butterworth Band Pass Filter 

Fig. 7 presents an analysis of the Butterworth band-pass 

filter's performance based on three key parameters: 

Mean Absolute Error (MAE), Mean Squared Error 

(MSE), and Signal-to-Noise Ratio (SNR). The MAE 

graph highlights differences in error values across 

subjects, where the highest MAE (227.7) is marked in 

red, while the lowest (20.0) is shown in green. This 

indicates notable variations in the filter’s impact on EEG 

signals across different subjects. 

Furthermore, the MSE values reveal a significant 

disparity between the filtered signal and the original 

signal, with the maximum error reaching 160,770.5 and 

the minimum at 771.5, reflecting different levels of 

deviation caused by the filtering process. The SNR 

results also demonstrate the filter's noise reduction 

effectiveness, with values ranging from a maximum of 

1.6578 dB to a minimum of 0.0416 dB. These variations 

indicate that while the Butterworth band-pass filter 

enhances signal clarity, its performance may vary 

depending on the characteristics of individual EEG 

recordings. 

2. Empirical Mode Decomposition 

Fig. 8 part shows the comparison of Mean Absolute 

Error (MAE), Mean Square Error (MSE), and Signal-to-

Noise Ratio (SNR) values in the performance analysis of 

the Empirical Mode Decomposition (EMD) method on 

 
(a) 

(b) 

 
(c) 

Fig. 7. Comparison of (a) MAE, (b) MSE, and (c) 
SNR values for the Butterworth bandpass filter 
across different subjects 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Comparison of (a) MAE, (b) MSE and (c) SNR 
values for EMD across different subjects 
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EEG signals. In Fig. 8 part (a), a variety of MAE values 

are shown with red, indicating the highest value (7.2328 

in subject 8), and green signifying the lowest value 

(0.6222 in subject 3). Lower MAE values indicate the 

effectiveness of the filter in maintaining the 

characteristics of the original signal. Fig. 8 part (b) 

illustrates the difference in MSE values, which indicates 

the extent to which the filtered signal deviates from the 

original signal. The highest MSE value was found in 

subject 8 (529.6491), while the lowest value was found 

in subject 3 (0.6548). This significant difference confirms 

that the effectiveness of the EMD method in filtering out 

noise may vary between subjects. Fig. 8 part (c) displays 

the SNR, which indicates the quality of the signal after 

applying the EMD method. The highest SNR value was 

recorded in subject 5 (23.2083 dB), while the lowest 

SNR was found in subject 8 (9.4630 dB), which is 

marked in green. The higher the SNR value, the better 

the quality of the signal produced after processing. 

3. Comparison results of butterworth band pass filter 

method with empirical mode decomposition (EMD) 

method Comparison results of butterworth band pass 

filter method with empirical mode decomposition 

(EMD) method 

Fig. 9 shows the comparison of Mean Absolute Error 
(MAE), Mean Square Error (MSE), and Signal-to-Noise 
Ratio (SNR) values in the performance analysis of 
Butterworth Band-Pass Filter and Empirical Mode 
Decomposition (EMD) on EEG signals. Fig. 9 part (a) 
illustrates that EMD maintains a lower MAE value 
compared to Butterworth Band-Pass Filter in most 
subjects, indicating that this method is more effective in 
maintaining the original shape of the EEG signal after 
processing. The highest MAE value for Butterworth 
was found in subject 8 (227.7 ), while the highest value 
for EMD was only 7.233. The lowest MAE value was 
achieved by EMD in subject 3 with a value of 0.622, 
which is lower compared to the lowest value of 
Butterworth (20.0).  

Fig. 9 part (b) shows a comparison of the MSE 
values, which measures the extent to which the filter 
result deviates from the original signal. EMD has a 
lower MSE value compared to the Butterworth Band-
Pass Filter, especially in subject 3 (0.655 for EMD 
versus 771.5 for Butterworth). However, in subject 8, 
EMD has an MSE of 529.649, which is still much 
smaller than the Butterworth value (160770.5). This 
shows that EMD is more stable in maintaining the 
accuracy of the signal compared to Butterworth.  

Fig. 9 part (c) displays the SNR value, which 
indicates the signal quality after filtration. EMD 
produced higher SNR values than Butterworth, 
especially in subject 5, where EMD recorded the 
highest SNR value of 23.208, while Butterworth only 
produced 1.568. However, in subject 8, EMD recorded 

an SNR of 9.463, which although lower compared to 
other subjects, was still much higher than Butterworth 
(0.096). Overall, the Empirical Mode Decomposition 
(EMD) method showed better performance compared 
to the Butterworth Band-Pass Filter in maintaining 
cleaner and more accurate EEG signals. With lower 
MAE and MSE values and higher SNR, EMD proved 
superior in removing noise without deforming the 
original signal too much, making it a more effective 
method for EEG signal processing. 

IV. Discussion 

This study aims to evaluate the effectiveness of the 
Butterworth Band Pass Filter and Empirical Mode 
Decomposition (EMD) methods in the EEG signal 
denoising process, based on three main parameters 
namely Mean Absolute Error (MAE), Mean Squared 
Error (MSE), and Signal-to-Noise Ratio (SNR). 

 
(a) Comparison of Mean Absolute Errors (MAE) 

 
(b) Comparison of Mean Squaed Errors (MSE) 

 
(c) Comparison of Signal to Noise Ratio (SNR) 

 
Fig. 9 Comparison of MAE, MSE and SNR values 
between Butterworth band-pass filter and EMD in 
eeg signal processing  
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The analysis showed that the Butterworth Band 
Pass Filter method produced considerable variation in 
MAE values between subjects, with the highest value 
of 227.7 and the lowest value of 20.0. This shows that 
how well this filter works, it relies a lot on the special 
traits of each EEG signal, and that the noise is not 
always fully removed for all people. Also, the big MSE 
number (biggest 160770.5) points out a large 
difference between the filtered signal and the real 
signal, hinting that this way might lead to big signal 
errors sometimes. The small SNR numbers (highest 
1.6578 dB and lowest 0 0416 dB) support the idea that 
a filter's skill to make signal better is small. 

In contrast, the EMD method shows a more stable 
and superior performance compared to Butterworth. 
The highest MAE value produced by EMD is only 
7.2328 (in subject 8), while the lowest value is 0.6222 
(in subject 3), which is much lower than that of 
Butterworth. The MSE values obtained are also much 
smaller, ranging from 0.6548 to 529.6491, indicating 
that the EMD-generated signal is closer to the original 
signal. The highest SNR value of 23.2083 dB (in 
subject 5) shows a significant improvement in signal 
quality compared to the Butterworth. 

The technical performance of denoising methods 
greatly affects the accuracy of diagnosis, especially in 
the case of Autism Spectrum Disorder (ASD) which 
depends on EEG signal details such as spectral power, 
brain connectivity, and rhythm patterns. If the signal is 
still contaminated with noise, important features can be 
hidden. The EMD method proved to be better at 
preserving signal quality, as seen in subject 3 with low 
MAE and MSE values, indicating the signal is clean and 
still resembles its original shape. In contrast, the 
Butterworth filter on subject 8 produced large 
distortions (MAE = 227.7; MSE = 160770.5), risking 
obscuring the typical EEG patterns that are important 
in detecting important ASDs. High SNR values on EMD 
also indicate the signal is clearer and easier to analyze. 
Therefore, metrics such as MAE, MSE and SNR not 
only assess technical performance, but also support 
more accurate and reliable EEG diagnosis in ASD.  

Direct comparison between the two methods shows 
a significant advantage of EMD over Butterworth in all 
evaluation parameters. In almost all subjects, EMD was 
able to produce lower MAE and MSE, as well as higher 
SNR. For example, in subject 3, EMD produced MAE = 
0.622 and MSE = 0.655, while Butterworth produced 
MAE = 20.0 and MSE = 771.5. Meanwhile, in subject 
5, EMD showed the highest performance with an SNR 
of 23.208 dB, far ahead of Butterworth which only 
produced an SNR of 1.568 dB. 

To find out if the performance gaps between 
Butterworth Band-Pass Filter and Empirical Mode 
Decomposition (EMD) are essential, a statistical test 
using a matched t-test (using Eq. (11) [40] was done on 

MAE, MSE, and SNR values. The results showed a big 
important difference in MAE (p = 0.0257, where p < 
0.05), showing that EMD keeps the EEG signal form 
better. For MSE the difference was not big important (p 
= 0. 1195, where p is more than 0. 05), hinting that the 
difference might be caused by luck. This p value was 
calculated using Eq. (12) [40]. 

On the other hand, the SNR change was very 
important (p = 0. 00000725, where p is less than 0. 
001), proving that EMD makes much clearer signals 
trust ranges backed these findings, the ranges for MAE 
and SNR did not have zero, strengthening the 
importance of the difference, while the MSE range did 
have zero, in agreement with its not important p-value. 
On the whole, these results show that EMD gives solid 
boosts in signal quality and clearness for EEG 
denoising. 

The higher SNR in the EMD method means that the 
EEG signal is cleaner and easier to distinguish from 
noise. In autism diagnosis, this is important as it helps 
capture brain activity patterns that are typical in 
individuals with ASD, such as alpha or gamma waves. 
With a clearer signal, the analysis results become more 
accurate, and the risk of misinterpretation is reduced. 
This finding is in line with previous studies on EEG 
applications [41]. So, the higher the SNR, the better the 
data quality to support proper diagnosis. 

These results indicate that the EMD method is more 
consistent in maintaining the original shape of the EEG 
signal and more effective in removing noise. This is 
also supported by the results of previous studies in 
EEG signal processing, one of which is research for 
Depth of Anesthesia (DOA) estimation using the 
Multivariate Empirical Mode Decomposition (MEMD) + 
Sample Entropy method resulted in a Mean Square 
Error (MSE) of 142.31 ± 85.52 and Mean Absolute 
Error (MAE) of 8.44 ± 2.37, where the Empirical Mode 
Decomposition (EMD) method shows much better 
performance in the EEG signal denoising process. The 
lowest MSE value obtained using EMD is 0.655, and 
the lowest MAE value of EMD is 0.622 [42]. 

In another similar study, the Kalman Filter method 
was used as a denoising technique on EEG signals. 
Kalman Filter has advantages in dynamic system 
estimation, but its performance is limited for non-linear 
and non-stationary signals such as EEG. The research 
using Kalman Filter resulted in an SNR of 4.34 dB. In 
contrast, in this study, the Empirical Mode 
Decomposition (EMD) method produces the highest 
SNR of 23.208 dB, which is significantly higher than the 
Kalman Filter [43].  

Previous studies have evaluated two methods for 
reducing EOG artifacts in EEG signals, namely 
Discrete Wavelet Transform–Least Mean Square 
(DWT-LMS) and Discrete Wavelet Transform–
Minimum Error Entropy (DWT-MEE). Both approaches 
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utilize the Discrete Wavelet Transform (DWT) to isolate 
the signal components containing artifacts, which were 
then processed using Adaptive Noise Cancellation 
techniques with the Least Mean Square (LMS) and 
Minimum Error Entropy (MEE) algorithms. Based on 
the test results, the DWT-LMS method produced an 
average Signal-to-Noise Ratio (SNR) of 3.32 dB, while 
DWT-MEE provided an improvement in signal quality 
with an SNR value of 4.72 dB.On the other hand, this 
study uses the Empirical Mode Decomposition (EMD) 
approach and achieves superior results, with an SNR 
value of 23.208 dB, far exceeding the achievements of 
the previous two methods [44]. 

In another study, the Variational Mode 
Decomposition (VMD) method was used to improve 
EEG signal quality by decomposing the signal into 
band-limited intrinsic mode functions and utilizing a 
zero-crossing threshold to detect muscle artefacts. This 
method successfully increased the SNR value by up to 
9.0 dB in simulated data. Although effective and 
computationally efficient, VMD still depends on the 
careful selection of decomposition parameters such as 
the number of modes and penalty factor. Meanwhile, in 
this study, the Empirical Mode Decomposition (EMD) 
method produced an SNR of 23.208 dB, much higher 
than VMD, demonstrating its effectiveness in handling 
non-linear and non-stationary EEG signals [45]. 

In another study, a hybrid denoising method 
combining Empirical Mode Decomposition (EMD), 
Detrended Fluctuation Analysis (DFA), and Wavelet 
Packet Decomposition (WPD) was applied to EEG 
signals and produced an SNR of 20.24 dB and an MAE 
of 12.24. In contrast, in this study, the Empirical Mode 
Decomposition (EMD) method achieved a higher SNR 
of 23.208 dB and a lower MAE of 0.622, demonstrating 
more effective denoising performance in preserving the 
quality of EEG signals [46].   

Although the results show that the Empirical Mode 
Decomposition (EMD) method performs better than the 
Butterworth Band-Pass Filter based on MAE, MSE, and 
SNR values, there are some important limitations to 
note. Technically, Butterworth has the potential to 
cause signal distortion, especially at low frequencies 
important for EEG analysis, such as delta and theta 
waves. Meanwhile, EMD faces challenges in the 
Intrinsic Mode Function (IMF) extraction process, 
including the risk of generating artifactual components 
if the number of IMFs is not optimally determined. In 
addition, performance differences between subjects-for 
example, the high MAE and MSE values in subject 8-
indicate that the effectiveness of the method is strongly 
influenced by individual signal characteristics. With a 
limited sample size, the generalizability of these 
findings to a wider population still needs to be tested. 
Therefore, further studies with a larger number of 
subjects and more diverse characteristics, as well as 

exploration of adaptive or hybrid filtration methods, are 
urgently needed to improve the consistency and validity 
of the results. 

The Empirical Mode Decomposition (EMD) method 
was shown to produce cleaner EEG signals-with lower 
MAE and MSE and higher SNR than Butterworth. This 
improved signal quality is very important in a clinical 
context, particularly for autism spectrum disorders 
(ASD), as it enables more accurate identification of 
brain activity patterns and supports the application of 
machine learning in ASD classification. In addition to 
improving the accuracy of early diagnosis, EMD also 
helps evaluate therapy response more precisely. The 
superiority of EMD in reducing noise without changing 
the original shape of the signal makes it a highly 
recommended denoising method, both for 
neurophysiology research, spectrum analysis, and 
system development such as Brain-Computer Interface 
(BCI).  

 

V. Conclusion 

This study aims to compare the effectiveness of 
Butterworth Band-Pass Filter and Empirical Mode 
Decomposition (EMD) in EEG signal processing. The 
analysis results show that EMD consistently provides 
superior performance in maintaining the original shape 
of the signal and reducing noise interference. On the 
Mean Absolute Error (MAE) metric, EMD produces the 
lowest value of 0.6222 and the highest of 7.2328, while 
Butterworth records the lowest MAE value of 20.0 and 
the highest of 227.7. For Mean Square Error (MSE), 
EMD has a range of values between 0.6548 and 
529.6491, much smaller than Butterworth, which shows 
the lowest value at 771.5 and the highest at 160,770.5. 
In terms of Signal-to-Noise Ratio (SNR), EMD 
managed to improve the signal quality with the highest 
value of 23.2083 dB and the lowest of 9.4630 dB, much 
better than Butterworth, which only reaches the highest 
value of 1.6578 dB and the lowest of 0.0416 dB.  
Complementing the analysis, a paired t-test showed a 
significant difference in MAE (p = 0.0257) and highly 
significant in SNR (p = 0.00000725), confirming the 
superiority of EMD. The difference in MSE was not 
significant (p = 0.1195) and was supported by 
confidence intervals that included zero. Thus, EMD is 
proven to be more effective in minimizing distortion and 
maintaining the clarity of EEG signals. For further 
development, research can be directed towards 
optimizing the selection of Intrinsic Mode Functions 
(IMF) or integration with other filtration methods to 
improve the accuracy of EEG signal analysis in clinical 
applications and neuroscience research. 
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