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ABSTRACT This study proposes an early diagnosis model based on Machine Learning for liver cirrhosis classification using 

the Hepatitis C dataset, which is the leading cause of cirrhosis, from UCI ML. The classification is performed using the 

XGBoost algorithm because it provides high accuracy and time efficiency based on previous studies. However, these 

advantages depend on the combination of its hyperparameters set. XGBoost has a large number of hyperparameters, which can 

be time-consuming for researchers to manually configure. Therefore, this study proposes combining XGBoost with the Harris 

Hawks Optimization (HHO) algorithm for hyperparameter tuning. HHO is implemented with a hawk population of 40 and 

maximum iterations set at 25. The proposed XGBoost-HHO model provides an average performance of 99.34% for accuracy, 

MAR, MAP and 99.33% for Macro F1-score. These performances are achieved with the shortest processing time across 25 

experiments compared to other combination models. The performance of the XGBoost-HHO model shows more significant 

increase in performance and reduction in overfitting compared to the standard XGBoost, SVM, RF models, as well as several 

other combined models including RF-HHO, SVM-HHO, XGBoost-PSO, and XGBoost-BA. Additionally, based on the feature 

importance analysis of the XGBoost-HHO algorithm, Alanine Aminotransferase (ALT), Protein, and Gamma-

glutamyltransferase (GGT) contribute the most to the classification process, with gain values of 11.21, 9.51, and 7.98, 

respectively. Overall, the findings of this study show that the XGBoost-HHO algorithm combination provides competitive 

performance and can serve as an excellent alternative for liver cirrhosis classification in terms of both accuracy and time 

efficiency. 

INDEX TERMS XGBoost, Harris Hawk Optimizer, Hyperparameter Tuning, Liver Cirrhosis. 

I. INTRODUCTION 

A vital organ in the human body, the liver, is essential for 

controlling metabolism and preserving general health. Around 

two million people die each year from liver disease 

worldwide, and liver cirrhosis responsible for half of these 

fatalities, with the rest from hepatitis and liver cancer [1]. As 

the last stage of all chronic liver disorders, liver cirrhosis is 

typified by necrosis, or extreme destruction to the liver’s tissue 

[2]. Liver cirrhosis has several causes, including excessive 

alcohol consumption, hepatitis B (HBV) and hepatitis C 

(HCV) viral infections, non-alcoholic fatty liver disease, and 

autoimmune conditions. Globally, HCV infection is the 

leading cause of liver cirrhosis progression [3].  

Globally, liver cirrhosis is the eleventh most common 

cause of death [4]. Additionally, in the US, it ranks as the ninth 

most common cause of mortality, with a prevalence of 17% 

per 100,000 death cases [5]. The World Health Organization 

(WHO) reported that approximately 51.1% of men and 27.1% 

of women out of 100,000 global death cases in 2016 were 

caused by liver cirrhosis. Furthermore, the prevalence of 

deaths due to liver cirrhosis in South Asia and Southeast Asia 

is 44.9% [6]. However, the significant global impact of liver 

cirrhosis-related deaths is not yet matched by adequate 

preventive efforts. About 73% of patients who died from this 

disease were hospitalized for the first time only after reaching 
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the decompensated stage [7]. This is due to the lack of clearly 

visible symptoms in the early stages of liver damage, making 

timely identification difficult. Therefore, the development of 

early diagnostic methods is crucial to ensure appropriate 

treatment can be determined sooner, thereby increasing 

patients' life expectancy [4].  

The development of early diagnosis based on artificial 

intelligence technology has significantly helped improve the 

efficiency of medical professionals in determining patient care 

[8]. This aligns with the numerous studies that have tried to 

develop disease diagnosis models using clinical data 

supported by Machine Learning (ML). [8] developed a liver 

cirrhosis classification model using ML approaches with 

Support Vector Machine (SVM), Decision Tree (DT), and 

Random Forest (RF) algorithms. This study showed that SVM 

and RF algorithms produced the best accuracy. However, in 

2019, [9] developed a liver damage classification model and 

found that Extreme Gradient Boosting (XGBoost) 

outperformed DT, RF, k-Nearest Neighbor (kNN), SVM, and 

Artificial Neural Network (ANN). Additionally, a study by 

[10] on breast cancer diagnosis models showed that the 

performance of the XGBoost algorithm surpassed RF. 

Similarly, [11] compared several ML algorithms, including 

XGBoost, Logistic Regression (LR), Light Gradient Boosting 

Machine (LGBM), DT, and SVM, for hepatitis C disease 

prediction. The study found that XGBoost delivered the best 

results. This is consistent with research by [12], which 

developed a Chronic Kidney Disease (CKD) diagnosis model 

using XGBoost, LR, SVM, and Classification and Regression 

Tree (CART). That study concluded that XGBoost 

outperformed the other algorithms, achieving an accuracy, 

sensitivity, and specificity of 1.00 [12].   

The advantages of XGBoost in several studies are 

supported by the proper configuration of its parameters [13] 

[14]. However, XGBoost has a relatively large number of 

parameters, which makes manual tuning time-consuming. 

Therefore, this study will implement hyperparameter tuning to 

automatically find parameter combinations, making the 

process more effective.  

Hyperparameter tuning can be applied using various 

algorithms. Metaheuristic algorithms are effective for 

complex optimization, efficiently exploring large solution 

spaces and finding near-optimal solutions in fewer iterations. 

However, genetic algorithms take longer due to sequential 

crossover and mutation processes, while SI offers greater 

computational efficiency with large-scale parallelization 

support [15]. Therefore, this study employs one of the SI 

algorithms, namely the Harris Hawks Optimizer (HHO). The 

algorithm was chosen because it provides superior and more 

consistent performance in multi-dimensional problems 

compared to Genetic Algorithms, Particle Swarm 

Optimization (PSO), and Differential Evolution (DE) [16]. 

HHO has also demonstrated excellent performance in 

hyperparameter optimization for the RF algorithm in 

predicting pile setup parameters [17], as well as for XGBoost 

in predicting drill penetration rates [18]. Thus, this study 

proposes a combination of XGBoost optimized using the 

HHO algorithm for hyperparameter tuning to develop a more 

accurate and efficient classification model for liver cirrhosis 

patients as an early diagnosis method. The contributions of this 

study are as follows: 

1. This study proposes an early diagnosis model for liver 

cirrhosis based on clinical data classification using 

XGBoost optimized with the HHO algorithm for 

hyperparameter tuning to enhance classification 

performance and time efficiency.  

2. The XGBoost-HHO model is assessed and contrasted 

with alternative machine learning algorithms and 

hyperparameter optimization techniques to confirm its 

superior performance.  

II. METHODS 

This study examines the classification of liver cirrhosis 

disease using Hepatitis C data was sourced from the UC 

Irvine Machine Learning repository that can be accessed at 

https://archive.ics.uci.edu/ml/datasets/HCV+data. This data 

was chosen because HCV is the main factor in liver cirrhosis. 

The process begins with a preprocessing stage prepares the 
data for training and testing with the XGBoost classifier. 
This study highlights hyperparameter optimization 

performed using HHO and evaluates the model's 

classification performance using specific metrics. The 

research workflow is presented in FIGURE 1. 

 
FIGURE 1. Research workflow 

This study was conducted using Python within a Jupyter 

Notebook environment on a Windows 10 Pro 64-bit system, 

equipped with 8GB of RAM, a 256GB SSD, an AMD Ryzen 

3 2200U processor (2.1 GHz), and integrated Radeon Vega 

Mobile Graphics. The dataset analysis was conducted using 

Sklearn, Matplotlib, Pandas, and Numpy libraries. 

Additionally, model validation was performed using 

evaluation metrics from the Sklearn package, including 

classification_report. 
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A. DATA COLLECTION 

This study uses Hepatitis C data comprising 615 observations 

with 14 variables. These 14 variables include 13 features and 

1 target class. The target class in this classification is the 

'Category' variable, which consists of the classes 0 represents 

healthy, 1 indicates hepatitis, 2 correspond fibrosis, and 3 

denotes cirrhosis. Before being processed in the classification 

model, the dataset will undergo a descriptive statistical 

analysis to identify the necessary data preprocessing steps. All 

variables included in this study's dataset are presented in  

TABLE 1. 
TABLE 1 

Dataset variable 

Variable Description Data Type 

ID Patient ID Integer 

Age Patient age  Integer 

Sex Patient gender Categorical 

ALB Albumin  Continuous 

ALP Alkalin Phosphotase Continuous 

AST Aspartate Aminotransferase Continuous 

BIL Bilirubin Continuous 

CHE Cholinesterase  Continuous 

GGT Gamma-glutamyltransferase Continuous 

PROT Protein Continuous 

CHOL Cholesterol Continuous 

CREA Kreatinin Continuous 

ALT Alanine Aminotransferase Continuous 

Category 
0=Healthy, 1=Hepatitis, 

2=Fibrosis, 3=Cirrhosis 
Categorical 

Liver Function Tests (LFTs) assess liver health through 

various parameters. AST and ALT indicate hepatocyte injury, 

with an AST/ALT ratio >1 suggesting cirrhosis progression. 

Increased bilirubin signals impaired excretion, while 

decreased albumin and PROT reflect reduced liver synthesis. 

Elevated ALP and GGT suggest cholestasis, often linked to 

cirrhosis. Low CHOL levels indicate advanced cirrhosis, 

whereas high levels suggest cholestasis or NAFLD. Reduced 

CHE serum and increased creatinine point to declining liver 

function and potential hepatorenal syndrome. Evaluating these 

markers alongside age helps classify disease severity into 

hepatitis, fibrosis, or cirrhosis [19]. 

B. DATA PREPROCESSING 

The data preprocessing in this study begins with data 

identification and label encoding for features with object data 

types into integers using the Label Encoding method to 

facilitate analysis in ML algorithm. Outlier detection follows, 

employing the Interquartile Range (IQR) method to detect 

anomalous data or input errors. The IQR, which is chosen for 

its flexibility and robustness against data distribution 

variations. The IQR method works by measuring how far data 

points deviate from the average [20]. Additionally, missing 

values are handled using median imputation, which replaces 

missing values with the median of the respective feature. This 

approach is preferred due to its stability, resistance to outliers, 

and ease of implementation [21]. 

Feature scaling is the next stage to preserve the original 

data distribution and convert the value range into a uniform 

scale [22]. The two common methods are normalization and 

standardization. Both reducing bias from varying feature 

ranges [23]. This study applies normalization to ensure that all 

numerical columns in the dataset are scaled uniformly without 

altering their distribution. This approach enhances the model’s 

training performance and maintains consistency [1]. This 

study uses the min-max normalization calculation as written 

in Eq. (1) [24],  

𝑥𝑖𝑛𝑜𝑟𝑚 =
𝑥𝑖 − 𝑥𝑖𝑚𝑖𝑛

𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑚𝑖𝑛
 

(1) 

where 𝑥𝑖𝑛𝑜𝑟𝑚 is the new value of the data sample 𝑥𝑖, 𝑥𝑖𝑚𝑖𝑛 

and 𝑥𝑖𝑚𝑎𝑥 are the smallest and largest values in the feature 

column, respectively [24].  
The normalization stage is crucial because this study 

requires handling data imbalance, because each class has an 

unequal sample size. This handling involves calculations 

sensitive to the distribution of data values. Imbalanced data 

can cause the model to perform well only on the majority class 

[25]. Therefore, resampling is necessary to balance the data. 

The resampling method used in this study is SMOTE-NC 

(Synthetic Minority Over-sampling Technique for Nominal 

and Continuous). This method can handle data with both 

nominal and continuous features, which aligns with this 

study's dataset that contains both types of data [26]. Although 

SMOTE-NC may generate less representative synthetic 

samples if the initial data distribution is suboptimal, this can 

be mitigated through distribution analysis and visualization. 

While alternatives like Borderline-SMOTE exist, SMOTE-

NC remains the preferred choice due to the presence of 

categorical features in this dataset. 

According to [27], SMOTE-NC is applied by identifying 

samples from the minority class. The median and standard 

deviation of each feature are used as benchmarks to measure 

the difference between these samples and their nearest 

neighbors. Synthetic samples for continuous features are 

constructed as described in Eq. (2) [28], 

𝑥𝑚𝑠𝑦𝑛 = 𝑥𝑚𝑖 + 𝜆(𝑥𝑚𝑗 − 𝑥𝑚𝑖) (2) 

where 𝑥𝑚𝑖  represents the 𝑚-th continuous feature value of 

sample 𝒙𝑖 , 𝑥𝑚𝑗 represents the same feature of sample 𝒙𝑗, and 

𝜆 is a random number within the range [0,1]. Nominal features 

are assigned the most frequent value among the nearest 

neighbors. 

C. EXTREME GRADIENT BOOSTING (XGBOOST) 

XGBoost is an enhanced version of the Gradient Boosting 

(GB) algorithm in terms of optimization and regularization. 

This algorithm combines several CART decision trees to 

build a more robust model [29]. The XGBoost algorithm 

adds 𝑓𝑡 as many as 𝑇 to predict the output as Eq. (3) [30],   

�̂�𝑖 =∑𝑓𝑡(𝒙𝑖)

𝑇

𝑡=1

, 𝑓𝑡 ∈ 𝐹 (3) 

where 𝐹 = {𝑓(𝒙) = 𝑤𝑞(𝒙)} (𝑞:ℝ → 𝐽,𝒘 ∈ ℝ
𝐽) represents 

the space of decision trees. 𝑞 represents the structure of the 
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decision tree that maps the dataset to the corresponding leaf 

index, 𝐽 is the number of leaves, and 𝑤𝑞(𝒙) is the weight of 

each leaf. Each 𝑓𝑡 corresponds to an independent tree 

structure, 𝑞, with leaf weights, 𝒘. The objective function in 

XGBoost is generally expressed as shown in Eq. (4) [31], 

𝑂𝑏𝑗(𝑡) =∑𝐿(𝑦𝑖 , �̂�𝑖) + Ω(𝑓𝑡)

𝑛

𝑖=1

 (4) 

where 𝑛 represents the number of data samples, 𝐿 represents 

the loss function that evaluates the model's performance on 

the training dataset, �̂�𝑖  is the predicted class of the 𝑖-th 

sample, 𝑦𝑖  is the actual class of the 𝑖-th sample, and Ω(𝑓𝑡) is 
the regularization term. Ω(𝑓𝑡) regulates the complexity of the 

training trees by applying a penalty. 𝑓𝑡 represents the 

functions of the constructed trees. The formula for the 

regularization term is written as shown in Eq. (5) [30], 

𝛺(𝑓𝑡) = 𝛾𝐽 +
1

2
𝜆∑𝑤𝑗

2

𝐽

𝑗=1

  (5) 

where 𝛾 and 𝜆 are hyperparameter, each leaf node is 

penalized by 𝛾, and 𝑤𝑗
2 defines the L2 regularization of leaf 

weights, controlled by the value of 𝜆.   

XGBoost applies Taylor series expansion to the loss 

function to approximate the objective function [13]. This 

approach allows the algorithm to more accurately approximate 

changes in the loss function [31]. The optimization of the 

objective function after applying the second-order Taylor 

series expansion is shown in Eq. (6) [31], 

𝑂𝑏𝑗(𝑡) ≈∑(𝐿(𝑦𝑖 , �̂�𝑖
(𝑡−1)) + 𝑔𝑖𝑓𝑡(𝒙𝑖)

𝑛

𝑖=1

+
1

2
ℎ𝑖𝑓𝑡

2(𝒙𝑖)) + Ω(𝑓𝑡) 

(6) 

where 𝑔𝑖  is the gradient or the first derivative of the loss 

function, and ℎ𝑖  is the second-order derivative of the gradient 

in the loss function, known as the Hessian. 

Based on the expansion result in Eq. (6), the constant term 

𝐿(𝑦𝑖 , �̂�𝑖
(𝑡−1)) does not depend on the new model 𝑓𝑡(𝒙𝑖) to be 

added, nor does it affect the gradient to be calculated during 

the optimization process. As a result, a simplified objective 

function for the ttt-th iteration is obtained, as shown in Eq. (7) 

[31].  

𝑂𝑏𝑗(𝑡) ≈∑(𝑔𝑖𝑓𝑡(𝒙𝑖)

𝑛

𝑖=1

+
1

2
ℎ𝑖𝑓𝑡

2(𝒙𝑖)) + Ω(𝑓𝑡). (7) 

If the set of 𝑗 leaves is defined as 𝐼𝑗 = {𝑖|𝑞(𝒙𝑖) = 𝑗}, then Eq. 

(7) can be written as Eq. (8) [32]. 

𝑂𝑏𝑗(𝑡) =∑[(∑𝑔𝑖
𝑖∈𝐼𝑗

)𝑤𝑗 +
1

2
(∑ℎ𝑖 + 𝜆

𝑖∈𝐼𝑗

)𝑤𝑗
2] + 𝛾𝐽.

𝐾

𝑗=1

 (8) 

The optimal value of a function can be found using the 

first derivative of the function. This can be applied to Eq. (8), 

resulting in the optimal weight for leaf 𝑗 based on Eq. (9) [32]. 

𝑤𝑗
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝑗

.  (9) 

The substitution of 𝑤𝑗
∗ yields the optimal value for the 

objective function in Eq. (10) [32]. This equation is used as 

a metric to evaluate the structure of the tree 𝑞(𝒙𝑖). 

𝑂𝑏𝑗∗ = −
1

2
∑

(∑ 𝑔𝑖𝑖∈𝐼𝑗
)
2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝑗

𝐽

𝑗=1

+ 𝛾𝐽. 
(10) 

If 𝐼 is the set of samples at a leaf node before the split such 

that 𝐼 = 𝐼𝐿𝑒𝑓𝑡 ∪ 𝐼𝑅𝑖𝑔ℎ𝑡 , in addition 𝐼𝐿𝑒𝑓𝑡 and 𝐼𝑅𝑖𝑔ℎ𝑡  are the sets 

of samples split to the left and right sides as a result of the 

partition, then both parts will be measured for their 

contribution to reduce the residual value. This calculation is 

used to measure the quality of the split, shown in Eq. (11) [32].  

𝑔𝑎𝑖𝑛 =
1

2
(
(∑ 𝑔𝑖𝑖∈𝐼𝐿𝑒𝑓𝑡

)
2

∑ ℎ𝑖+𝜆𝑖∈𝐼𝐿𝑒𝑓𝑡

+
(∑ 𝑔𝑖𝑖∈𝐼𝑅𝑖𝑔ℎ𝑡

)
2

∑ ℎ𝑖+𝜆𝑖∈𝐼𝑅𝑖𝑔ℎ𝑡

−
(∑ 𝑔𝑖𝑖∈𝐼 )2

∑ ℎ𝑖+𝜆𝑖∈𝐼
) − 𝛾  (11) 

Several hyperparameters of XGBoost that will be 

configured in this study are displayed in TABLE 2. The range 

of values and the default values for each hyperparameter are 

based on previous studies, including [31], [11], [33]. 

TABLE 2 
Hyperparameter of XGBoost 

Hyperpara 

meter 
Description Default Range 

Learning 

rate 

Reduces the weight 

of each step. 
0.3 [0,1] 

n_estimators Number of trees. 100 [1,1000] 

Max_depth 
Maximum tree 

depth. 
6 [1,10] 

Gamma  
Minimum error 

value reduction. 
0 [0,5] 

Reg_lambda L2 regularization. 1 [0,100] 

Subsample 

Distribution of 

random data 

samples.  

1 [0,1] 

Colsample_ 

Bytree 

Column subsample 

ratio. 
1 [0,1] 

D. HYPERPARAMETER TUNING  

Hyperparameters play a role in directly controlling the 

behavior of the algorithm during the training process in ML. 

Determining specific hyperparameter values is done before 

the model training process. The process of finding a 

combination of hyperparameters that provides the best 

performance on the data for an ML algorithm is called 

hyperparameter tuning. Hyperparameter optimization is 

expressed in Eq. (12) [31],  

𝒙∗ = argmin
𝒙∈𝑿

𝑓(𝒙) (12) 

where 𝑓(𝒙) represents the objective score to be minimized 

and is evaluated on the validation set, 𝒙 is the set of 

hyperparameters that yield the lowest score, and 𝒙 can take 

any value within the domain 𝑿. 

E. HARRIS HAWK OPTIMIZATION  
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HHO is a nature-inspired algorithm from the cooperative 

hunting strategies of Harris hawks, introduced by Heidari et 

al. in 2019 [34]. Hawks are among the most intelligent birds 

in nature. The hawks’ hunting process begins by perching in 

various locations around potential prey spots, usually rabbits, 

and then hunting the rabbits when the conditions are 

favorable. However, rabbits also exhibit survival behavior by 

escaping [35]. HHO has two phases in its hunting process: 

the exploration phase and the exploitation phase. These 

phases are controlled by the rabbit's energy to escape, 

𝐸𝑟𝑎𝑏𝑏𝑖𝑡. When |𝐸𝑟𝑎𝑏𝑏𝑖𝑡| ≥ 1, it indicates that the rabbit still 

has sufficient energy to escape, so the HHO algorithm 

operates in the exploration phase. When the rabbit's energy 

to escape is |𝐸𝑟𝑎𝑏𝑏𝑖𝑡| < 1, the algorithm is in the exploitation 

phase. The calculation of 𝐸𝑟𝑎𝑏𝑏𝑖𝑡 is shown in Eq. (13) [36], 

𝐸𝑟𝑎𝑏𝑏𝑖𝑡 = 2𝐸0 × (1−
𝑡

𝑡𝑚𝑎𝑥
) (13) 

where 𝑡 and 𝑡𝑚𝑎𝑥  refer to the current iteration and the total 

number of iterations, respectively, 𝐸0 is the initial energy of 

the rabbit, with its value randomly selected from the range 

(−1,1). 
 
1) EXPLORATION PHASE 

This phase describes the strategy of Harris hawks perching 
randomly in various locations while scanning for prey based 

on two distinct approaches. This phase consists of two 

strategies determined by the value of 𝑞, which is defined as 

the probability of the hawk catching the rabbit. The 

probability 𝑞 follows a uniform distribution within the range 

(0,1). If 𝑞 ≥ 0.5, the hawk has a high probability of catching 

the rabbit in its current position. Thus, it will perch based on 

the position of other hawks of the hunting group and the 

rabbit. If 𝑞 < 0.5, the hawk has a low probability, so it will 

choose to perch in another tree randomly to search for a more 

promising rabbit. If 𝑞 ≥ 0.5, the hawk's position is updated 

using Eq. (14) and Eq. (15) when 𝑞 < 0.5 [36]. 

𝑿(𝑡 + 1) = 𝑿𝑟(𝑡) − 𝑐1|𝑿𝑟(𝑡) − 2𝑐2𝑿(𝑡)| (14) 

𝑿(𝑡 + 1) = (𝑿𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑿𝑚𝑒𝑎𝑛(𝑡))

− 𝑐3(𝑳𝑩 + 𝑐4(𝑼𝑩 − 𝑳𝑩)) (15) 

Here, 𝑿(𝑡 + 1) represents the hawk's position in the next 

iteration, 𝑿(𝑡),𝑿𝑚𝑒𝑎𝑛(𝑡), 𝑿𝑟(𝑡), and 𝑿𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) are the 

current position of the hawk, the mean position of the 

population, the position of a randomly selected hawk, and the 

rabbit's position. The variable 𝑡 indicates the current iteration, 

𝑐1 , 𝑐2, 𝑐3, and 𝑐4 are random values within the range (0, 1). 
𝑳𝑩 and 𝑼𝑩 define the lower and upper boundaries of the 

search space. The population's mean position is calculated as 

shown in Eq. (16) [36], 

𝑿𝑚𝑒𝑎𝑛(𝑡) =
1

𝑃
∑𝑿𝑖(𝑡)

𝑃

𝑖=1

 
 

(16) 

where 𝑃 is the population size, and 𝑿𝑖(𝑡) represents the 

position of every individual within the population during the 

present iteration.  

 
2) EXPLOITATION PHASE  

The hawks employ four different strategies during exploitation 

phase. The selection of strategy is based on the rabbit's escape 

energy and also the probability of  its successfull escape. It is 

assumed that 𝑟 represents the rabbit's chance of escaping, 

where 𝑟 is a random variable that follows a uniform 

distribution between 0 and 1. If 𝑟 < 0.5, the rabbit 

successfully escapes, and if 𝑟 ≥ 0.5, the rabbit fails to escape. 

 
2.1) SOFT BESIEGE  

This phase begins when the rabbit’s energy satisfies 

|𝐸𝑟𝑎𝑏𝑏𝑖𝑡| ≥ 0.5 and 𝑟 ≥ 0.5. This condition indicates that the 

rabbit possesses sufficient energy and a strong likelihood of 

escape. The hawk's position will be updated as shown in Eq. 

(17) [36],  

𝑿(𝑡 + 1) = 𝑿𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑿(𝑡) − 𝐸𝑟𝑎𝑏𝑏𝑖𝑡|𝐽𝑿𝑟𝑎𝑏𝑏𝑖𝑡(𝑡)
− 𝑿(𝑡)| 

  (17) 

where hawk’s position is denoted by 𝑿, 𝐸𝑟𝑎𝑏𝑏𝑖𝑡 is the rabbit’s 

energy, 𝑡 current iteration, and 𝐽 signifies the jump strength 

determined using Eq. (18) [36], 

𝐽 = 2(1 − 𝑐5)  (18) 

where 𝑐5 is a randomly generated value within the range (0,1), 
which is updated at each iteration.  

 
2.2) HARD BESIEGE  

This phase occurs when |𝐸𝑟𝑎𝑏𝑏𝑖𝑡| < 0.5 and 𝑟 ≥ 0.5. This 

condition indicates that the rabbit is highly exhausted and also 

has low escape energy. However, it may still succeed in 

avoiding capture. The positions of the hawks are adjusted 

according to Eq. (19) [36]. 

𝑿(𝑡 + 1) = 𝑿𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸𝑟𝑎𝑏𝑏𝑖𝑡|𝑿𝑟𝑎𝑏𝑏𝑖𝑡(𝑡)
− 𝑿(𝑡)| 

  (19) 

2.3) SOFT BESIEGE WITH PROGRESSIVE RAPID DIVES  

This phase is happened when |𝐸𝑟𝑎𝑏𝑏𝑖𝑡| ≥ 0.5 and 𝑟 < 0.5. 

This condition implies that the rabbit has enough energy to 

evade the attack but has a low probability of escaping 

successfully. The hawk continues to build a soft siege under 

these conditions. The hawks’ positions are updated using Eq. 

(20) [36]. 

𝒀 = 𝑿𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸𝑟𝑎𝑏𝑏𝑖𝑡|𝐽𝑿𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑿(𝑡)|   (20) 

Then, the hawks evaluate the potential outcomes of their 

actions by comparing them with previous movements If the 

outcomes are not beneficial, they will begin making abrupt, 

unpredictable, and swift movements. The hawks' positions are 

updated using Eq. (21) [36], 

𝒁 = 𝒀 + 𝑺 × 𝑳𝒆𝒗𝒚(𝑑𝑖𝑚)   (21) 
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where 𝑑𝑖𝑚 represents the number of dimensions in the 

optimization problem, 𝑺 is a randomly generated vector of size 

1 × 𝑑𝑖𝑚, and the operation 𝑺 × 𝑳𝒆𝒗𝒚(𝑑𝑖𝑚) is defined as the 

element-wise multiplication of 𝑺 and 𝑳𝒆𝒗𝒚(𝑑𝑖𝑚). 𝐿𝑒𝑣𝑦 

denotes the Levy flight function, which is computed using Eq. 

(22) [36], 

𝐿𝑒𝑣𝑦(𝒙) = 0.01 ×
𝒖 × 𝜎

|𝝊|
1
𝛽

 (22) 

where 𝒖 and 𝝊 is a random value within the range (0,1), 𝛽 is 

a constant set to 1.5, and 𝜎 is calculated based on Eq. (23) [36]. 

𝜎 =

(

 
 Γ(1 + 𝛽) × 𝑠𝑖𝑛 (

𝜋𝛽
2 )

Γ(
1 + 𝛽
2 × 𝛽 × 2

(
𝛽−1
2 )
)
)

 
 

 (23) 

In this situation, the hawk's position is updated based on Eq. 

(24) [36], 

𝑿(𝑡 + 1) = 𝑨, 𝑗𝑖𝑘𝑎𝐹(𝑨) < 𝐹(𝑿(𝑡)) (24) 

where 𝑨 includes 𝑌 and 𝑍 in Eq. (20) and Eq. (21) [36]. 

 
2.4) HARD BESIEGE WITH PROGRESSIVE RAPID DIVES 

This stage is happened when |𝐸𝑟𝑎𝑏𝑏𝑖𝑡| < 0.5 and 𝑟 < 0.5. 

This condition signifies that the rabbit has extremely low 

energy to evade the attack, prompting the hawks to execute a 

hard siege simultaneously. At this stage, the situation 

resembles a soft siege with progressive motion, but this time,  

the hawks strive to minimize the gap between their average 

position and the escaping rabbit as part of a tight siege effort. 

A new solution is calculated based on Eq. (25) [36]. If this 

solution does not yield good results, Eq. (21) will also be 

computed,  

𝒀 = 𝑿𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸𝑟𝑎𝑏𝑏𝑖𝑡|𝐽𝑿𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑿𝑚𝑒𝑎𝑛(𝑡)| (25) 

where 𝑿𝑚𝑒𝑎𝑛(𝑡) denotes the average position of the hawks in 

the current population. The hawks' positions are updated based 

on Eq. (24) [36]. 

F. EVALUATION METRICS  

This study uses a confusion matrix to evaluate the model's 

effectiveness. A confusion matrix is a 𝐾 × 𝐾 table (with 𝐾 

being the number of classes) that illustrates how well the 

classification model performs. The entries in the confusion 

matrix are devided into four categories: True Positive (TP), 

when the model accurately identifies the positive class, False 

Positive (FP), when the model mistakenly classifies a 

negative instance as positive, True Negative (TN), when the 

model correctly identifies the negative class, and False 

Negative (FN) when the model fails to identify a positive 

instance [37]. In multi-class classification, an index 𝑘 is 

introduced in 𝑇𝑃𝑘 , 𝑇𝑁𝑘 , 𝐹𝑃𝑘 , and 𝐹𝑁𝑘 to indicate the 

evaluation for a specific class. Since multi-class 

classification requires a balanced assessment, a macro-

averaging approach is used, ensuring that each class 

contributes equally to the final evaluation, regardless of class 

distribution disparities [38][39]. The confusion matrix 

includes various evaluation metrics, such as accuracy, 

precision, recall, and F1-score can be derived as follows. The 

overall effevtiveness of the model is measured by accuracy, 

which calculates the percentage of correctly classified 

instances out of the total test data. Accuracy can be 

calculated as Eq. (26) [38]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑘 =
𝑇𝑃𝑘+𝑇𝑁𝑘

𝑇𝑃𝑘+𝐹𝑃𝑘+𝑇𝑁𝑘+𝐹𝑁𝑘
.   (26) 

Macro precision is an evaluation metric that calculates the 

average precision for each class. Precision is a performance 

evaluation measure that determines how many positive classes 

are correctly classified. Macro precision can be calculated as 

Eq. (27) [38] . 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 =
𝑇𝑃𝑘

𝑇𝑃𝑘+𝐹𝑃𝑘
,  

𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑔𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑀𝐴𝑃) =
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘
𝐾
𝑘=1

𝐾
. (27) 

Macro recall is an evaluation metric that calculates the average 

recall for each class. Recall, or sensitivity, measures the 

model’s effectiveness in correctly identifying’s all actual 

positive instances within the dataset. Macro recall can be 

calculated as Eq. (28) [38]. 

𝑅𝑒𝑐𝑎𝑙𝑙𝑘 =
𝑇𝑃𝑘

𝑇𝑃𝑘+𝐹𝑁𝑘
,  

𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑔𝑅𝑒𝑐𝑎𝑙𝑙(𝑀𝐴𝑅) =
∑ 𝑟𝑒𝑐𝑎𝑙𝑙𝑘
𝐾
𝑘=1

𝐾
. (28) 

The Macro F1-score is used to obtain the optimal 

combination of both precision and recall metrics. Macro F1-

score can be calculated as Eq. (29) [38]. 

𝑀𝑎𝑐𝑟𝑜𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑀𝐴𝑃×𝑀𝐴𝑅

𝑀𝐴𝑃+𝑀𝐴𝑅
. (29) 

I. FEATURES IMPORTANCE 

This study will also present the most important features of 

the dataset that significantly influence the classification 

process of liver disease indications in an individual. The 

determination of important features will also be conducted 

using the XGBoost algorithm. This algorithm can identify 

the best features based on the gain value of each feature 

produced during the training process. Features with high gain 

values indicate they are highly informative and make a 

significant contribution to improving the model's 

performance [40]. The calculation of gain is outlined in Eq. 

(11). 

III. RESULT 

This section contains the results of the applied data 

preprocessing, the evaluation of the proposed model, and its 

comparison with other models. Additionally, this section will 

also highlight the features that have the most influence in 

classifying the stages of liver disease in an individual.  

A. DATA PREPROCESSING 

https://jeeemi.org/index.php/jeeemi/index


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 7, No. 2, April 2025, pp: 508-519;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                              514               

Data preprocessing began with the removal of the 'ID' 

feature, as the patient number does not impact the liver 

condition in the classification process. Next, label encoding 

was applied to the categorical feature, "Sex" and “Category”, 

this was done so that the data in the categorical feature could 

be used in the classifier model. Additionally, The outlier 

detection results show that eight features in the dataset 

contain outliers, including ALB and ALP (3 each), ALT (19), 

AST (45), BIL (26), CREA (5), GGT (29), and PROT (4). 

Further analysis revealed that these outliers still hold 

relevant information about medical data variations. 

Therefore, they were retained in this study to preserve 

valuable insights into high and low value characteristics in 

medical data. missing values handling was applied to the 

'ALB,' 'ALP,' 'AST,' 'CHOL,' and 'PROT' features. In 

addition, this study applies median imputation due to its 

robustness against outliers. The affected features are ‘ALB’, 

‘ALP’, ‘AST’, ‘CHOL’, and ‘PROT’, with missing values 

distributed as follows: 1 in ‘ALB’, ‘ALT’, and ‘PROT’; 18 

in ‘ALP’; and 10 in ‘CHOL’.  

Data imbalance was addressed using the SMOTE-NC 

method after data normalization. The resampled data is 

presented in TABLE 3. After resampling, the dataset was 

divided into two subsets: 80% for training and 20% for testing 

using Sklearn’s train_test_split function, chosen after testing 

ratios like 90:10 and 85:15 on XGBoost, SVM, and RF 

baseline model, with 80:20 yielding the best performance. The 

ratio selection based on baseline models ensures fair and 

consistent comparisons. Each model, whether baseline or 

combined, was run 25 times to assess stability based on its 

mean and standard deviation.     
TABLE 3 

Data resampling 

Class 
Amount of data Percentage 

Original Resampling Original Resampling 

0 540 540 87.80% 25% 

1 30 540 4.88% 25% 

2 24 540 3.90% 25% 

3 21 540 3.42% 25% 

B. XGBOOST-HHO PARAMETER SETTING 

The XGBoost algorithm was optimized with HHO for 

hyperparameter tuning. The process began by defining the 

accuracy of the XGBoost model as the objective function for 

HHO. In the tuning process, the maximum iterations were set 

to 25, and the hawk population was initialized to 40. The 

hawk population was selected based on the average best 

accuracy from 25 model repetitions. The outcomes are 

presented in TABLE 4.  

As observed in TABLE 4, an increase in population size 

leads to noticeable changes, the computation time for the 

XGBoost-HHO algorithm also increases. The model was able 

to classify the data with the best accuracy when the population 

was initialized at 40 and 100. However, with a hawk 

population of 100, the computation time was longer. 

Therefore, this study applied a hawk population initialization 

of 40. The relatively low standard deviation at this point 

indicates a small range of data variation and a stable 

distribution around the average.  

TABLE 2 
XGBoost-HHO Accuracy with Various Hawk Population 

Hawks 
Avg. 

Accuracy (%) 

Std. 

Accuracy 

Avg. Time 

Computation 

10 0.9480 0.0063 27s 

20 0.9745 0.0084 45s 

30 0.9907 0.0066 66s 

40 0.9934 0.0021 70s 

50 0.9930 0.0009 109s 

60 0.9927 0.0021 118s 

70 0.9928 0.0009 180s 

80 0.9930 0.0011 194s 

90 0.9931 0.0013 211s 

100 0.9934 0.0021 240s 

C. RESULT OF XGBOOST-HHO 

Each best fitness from the HHO algorithm provides a different 

hyperparameter combination for XGBoost. Several 

hyperparameter combinations were able to deliver optimal 

performance, one of which is listed in TABLE 5. The 

performance of the XGBoost-HHO model with these 

hyperparameters during the testing phase is detailed in 

TABLE 6.  
TABLE 5 

Hyperparameter chosen by XGBoost-HHO 

Hyperparameter Value 

Learning rate 0.8 

n_estimators 680 

Max_depth 3 

Gamma  0.1 

Reg_lambda 0.5 

Subsample 0.9 

Colsample_bytree 0.75 

 
TABLE 6 

XGBoost-HHO evaluation performance 

Phase Accuracy MAP MAR 
Macro 

F1-score 

Training 1.0000 1.0000 1.0000 1.0000 

Testing 0.9977 0.9976 0.9956 0.9977 

 
D. COMPARATIVE RESULT WITH OTHER MODELS 

A comparative analysis of the proposed XGBoost-HHO 

model’s performance with various other models is conducted 

using the average accuracy, MAP, MAR, and Macro F1-score 

over 25 runs, as presented in TABLE 7. Additionally, the 

standard deviation of all evaluation metrics and the average 

computation time for various models are presented in TABLE 

8 to illustrate the spread of performance values from their 

averages.  

This study compares two other ML algorithms, RF and 

SVM. These models were chosen due to their strong 

performance in previous studies on similar datasets and their 

frequent use as optimal models in various disease diagnosis 

cases [8], [41]. Both models were also trained on the dataset 

that underwent the same preprocessing phase and optimized 

with HHO for hyperparameter tuning. One of the optimal 

hyperparameter configurations for the RF model was obtained 

in the 12th iteration, which includes n_estimators = 250, 
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max_depth = 14, min_samples_split = 2, min_samples_leaf = 

1, and max_features = 0.1. An optimal hyperparameter 

configuration for the SVM model was obtained in the 14th 

iteration, consisting of 𝐶 = 77, 𝛾 = 0.58, 𝑟 = 0.35, and 

degree = 4.  

In addition, several other algorithms were also applied for 

hyperparameter optimization on XGBoost, including Particle 

Swarm Optimization (PSO) and Bat Algorithm (BA). PSO 

and BA were applied for XGBoost hyperparameter 

optimization to benchmark HHO’s performance in accuracy 

and stability. While PSO relies on velocity updates and BA 

mimics echolocation, HHO uses adaptive escaping and rapid 

dives, making convergence analysis essential [42], [43], [44]. 

All algorithms shared the same population size and maximal 

iterations. Each model was run 25 times, and the average 

accuracy, MAP, MAR, and Macro F1-score were calculated 

to validate effectiveness and consistency. 

TABLE 7 
Evaluation Model Comparison using accuracy, MAP, MAR, Macro F1-

score 

Classifier Accuracy MAP MAR 
Macro 

F1-Score 

SVM 0.8402 0.8445 0.8397 0.8388 

RF 0.9902 0.9901 0.9901 0.9899 

XGBoost 0.9897 0.9899 0.9908 0.9902 

SVM-HHO 0.9836 0.9838 0.9839 0.9833 

RF-HHO 0.9910 0.9911 0.9913 0.9911 

XGBoost-

PSO 
0.9915 0.9916 0.9919 0.9916 

XGBoost-

BA 
0.9512 0.9524 0.9512 0.9508 

XGBoost-

HHO 
0.9934 0.9934 0.9934 0.9933 

 

Based on TABLE 7, it can be seen that XGBoost-HHO 

improves the performance of standard XGBoost that applied 

with default hyperparameters from TABLE 1. XGBoost-HHO 

achieved an increase of 0.0037 in accuracy, 0.0035 in MAP, 

0.0026 in MAR, and 0.0031 in F1-score compared to standard 

XGBoost. Hyperparameter optimization using the HHO 

algorithm applied to XGBoost, RF, and SVM successfully 

improved the average performance in terms of accuracy, 

MAP, MAR, and Macro F1-score for each standard model. 

The proposed XGBoost-HHO model also outperformed the 

performance of other combined models in all four evaluation 

metrics. The higher accuracy indicates that more instances 

were correctly classified. An increase in MAP reflects the 

model’s ability to prioritize relevant classes, reducing false 

positives. A higher MAR shows improved sensitivity in 

detecting all instances of each class, minimizing missed cases. 

The improved Macro F1-Score confirms a balanced 

performance between precision and recall across all classes.   

The training phase performance results of each standard model 

and comparison combinations yielded a 100% score. These 

results demonstrate that hyperparameter optimization using 

the HHO algorithm not only enhanced predictive accuracy but 

also improved the fairness and consistency of classification 

outcomes, with the XGBoost-HHO model achieving the best 

overall performance and lower overfitting risk. 

TABLE 8 
Std. Comparison of Testing Performance 

Classifier 

Std. of Testing 

Accuracy MAP MAR 
Macro 

F1-Score 

SVM 0.0266 0.0251 0.0268 0.0268 

RF 0.0066 0.0068 0.0067 0.0069 

XGBoost 0.0047 0.0047 0.0043 0.0040 

SVM-HHO 0.0173 0.0171 0.0172 0.0172 

RF-HHO 0.0028 0.0028 0.0028 0.0028 

XGBoost-

PSO 
0.0012 0.0012 0.0012 0.0012 

XGBoost-

BA 
0.0379 0.0362 0.0385 0.0388 

XGBoost-

HHO 
0.0021 0.0024 0.0023 0.0025 

 

Based on the comparison of the standard deviation of the 

average testing performance in TABLE 8, XGBoost-PSO 

yields the most consistent performance with the smallest 

standard deviation across all evaluation metrics. On the other 

hand, the largest variation is observed in the SVM-HHO 

combination model. The proposed XGBoost-HHO model 

shows the second-highest performance consistency after 

XGBoost-PSO. This indicates that HHO optimization with 

XGBoost also contributes to maintaining performance 

stability across all evaluators. 
TABLE 9 

Time Computation 

Classifier 
Avg. Time 

Computation (s) 

Std. Time 

Computation 

SVM 0.1099 0.0356 

RF 0.5025 0.2603 

XGBoost 0.4216 0.1083 

SVM-HHO 111.4031 19.8744 

RF-HHO 233.2904 202.312 

XGBoost-PSO 76.1101 106.7995 

XGBoost-BA 149.4891 143.7964 

XGBoost-HHO 70.2252 14.7185 

Based on the computation time for each model shown in 

TABLE 9, SVM has the fastest average processing time at 

0.1099, followed by XGBoost at 0.4216 seconds, and RF at 

0.5025 seconds. Combined models with optimization 

algorithms require much longer computation times compared 

to the base models. It can be seen that the RF-HHO model has 

the highest average computation time, around 233 seconds. 

Meanwhile, XGBoost-HHO has the lowest average 

computation time among the other combined models, around 

70 seconds. This demonstrates its efficiency as an 

optimization model.  

Based on the provided accuracy in TABLE 7, the 

XGBoost-HHO model demonstrates the best performance 

compared to other models. To ensure that this difference is not 

merely due to chance or random variation, a Wilcoxon test was 

conducted as a statistical significance analysis presented in 
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TABLE 10. The test results show that all models compared to 

XGBoost-HHO have a 𝑝-value of less than 0.05, indicating 

that the performance difference is statistically significant. 

Additionally, the comparison between XGBoost-HHO and the 

SVM, XGB, and XGB-BA models yields a 𝑊-statistic of 0, 

which indicates that in every comparison, XGBoost-HHO 

consistently outperforms the other models without a single 

case where another model achieves higher accuracy. Thus, this 

difference can be categorized as highly significant. 

TABLE 10 
Wilcoxon Signed Rank Test Results 

Compared 

Models 

𝑊-

statistic 
𝑍-value 𝑝-value Significance 

SVM 0 -4.6212 0.0000 𝑝 < 0.01 

RF 22 -3.0853 0.0010 𝑝 < 0.05 

XGBoost 0 -4.6212 0.0000 𝑝 < 0.01 

SVM-

HHO 
1 -4.4753 0.0000 𝑝 < 0.01 

RF-HHO 36 -2.3951 0.0083 𝑝 < 0.05 

XGBoost-

PSO 
20 -3.1915 0.0007 𝑝 < 0.05 

XGBoost-

BA 
0 -4.6212 0.0000 𝑝 < 0.01 

Overall, base models provide higher stability and time 

efficiency compared to combination models because 

optimization algorithms require more time to search for 

optimal hyperparameter configurations. This is reflected in the 

superior performance of each evaluation metric provided by 

the combined models. The proposed XGBoost-HHO model 

offers a good compromise between computation time and 

hyperparameter exploration ability, delivering the highest 

performance and shortest processing time compared to other 

combined models. 

G. FEATURE IMPORTANCE  

The important features that have a significant impact on the 

classification process based on their gain values from the 

XGBoost-HHO algorithm are presented in FIGURE 2. Based 

on FIGURE 2, the most influential feature in classifying the 

stages of liver disease in the given dataset is ALT, with the 

highest Feature score (F score). This suggests that ALT plays 

a crucial role in distinguishing between different liver disease 

stages. The next most important features are PROT, CGT, 

CREA, and CHOL, indicating their strong relevance in the 

classification process. These features contribute significantly 

to the model’s decision-making.  

Furthermore, features such as CHE, BIL, AST, ALP, and 

ALB also have notable influence but to a lesser extent than the 

top-ranked features. Meanwhile, Sex and Age show the lowest 

F-score values, with Age being the least impactful feature in 

the classification task. This implies that demographic factors 

like Age and Sex have minimal influence compared to 

biochemical indicators. 

 
FIGURE 2. Gain of each Feature 

IV. DISCUSSION 

This study aims to develop an early diagnosis model for an 

individual's liver condition, with the hope of reducing the high 

mortality rate caused by chronic liver disease, specifically 

cirrhosis. The model is built using one of the Machine 

Learning algorithms, XGBoost, with a focus on optimizing the 

algorithm to improve classification accuracy and efficiency. 

The optimization is performed on the hyperparameter tuning 

process using the HHO algorithm.  

The study uses the Hepatitis C dataset, which is the 

leading cause of cirrhosis, obtained from the Kaggle 

repository. The dataset consists of 615 observations, 14 

features, and four target classes. Before the classification 

process, the dataset is preprocessed through several steps, 

including label encoding for categorical features, enabling the 

classification algorithm to interpret the observation values 

properly. Data normalization is then applied to maintain its 

distribution, followed by resampling with SMOTE-NC to 

handle imbalanced data.  

Based on the results presented in TABLE 7, 

hyperparameter optimization can improve the classification 

performance of the standard models for every evaluation 

metric. This is evident as the combinations of SVM-HHO and 

RF-HHO improve the performance of standard SVM and RF 

models based on MAP, MAR, and Macro F1-score 
evaluations. Similarly, all combinations of XGBoost with 

various hyperparameter optimizations also enhance the 

performance of standard XGBoost. The most superior 

improvement in performance is achieved by the XGBoost-

HHO model. The smallest average difference in training and 

testing accuracy is also provided by XGBoost-HHO, 

indicating that the proposed model has the lowest overfitting 

level among the others. This suggests that the XGBoost-HHO 

model can generalize well to new data, which in this study is 

represented by the test data. These findings align with studies 

[31], [45], which applied hyperparameter tuning to XGBoost. 

The optimization of hyperparameters in those studies also 

improved model performance and reduced the overfitting 

level of standard XGBoost.  
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TABLE 3 
Some previous studies with HCV dataset comparison 

Author and 

reference 
Year Method 

Accuracy 

(%) 

Li et. al. [41] 

2022 

Cascade RF-LR 

(optimized by 

ABC algorithm) 

96.19% 

Singh et. al. 

[11] 

2022 

XGBoost 

optimized with 

Monotonic 

Cosntraints and 

feature 

interaction 

constraints 

98.60% 

Alizargar et. 

al. [21] 
2023 XGBoost 98.40% 

Proposed 

model 
- XGBoost-HHO 99.34% 

 

In addition, this study presents a comparison with 

previous research that applied similar datasets using various 

different models. Li et. al. employed a cascade two-stage 

method combining RF and Logistic Regression (LR) 

algorithms. In addition, ABC algorithm was used to optimize 

searches to obtain the essential threshold value to separate 

both models. The new component of this research is its 

examination of the unbalanced data that exists in clinical data 

[41]. Singh et. al. proposed an optimization method for 

XGBoost algorithm using monotonic cosntraints and feature 

interaction constraints. The proposed method achieving a 

prediction accuracy of 98.6%, outperforms LR, Light Gradient 

Boosting Machine (LGBM), DT, and SVM-RBF [11]. 

Besides, Alizargar et. al. (2023) employ various ML to predict 

hepatitis, including SVM, KNN, LR, DT, XGBoost and ANN. 

The results showed that XGBoost and SVM achieving the 

highest accuracy of 95% and Area Under the Curve (AUC) of 

98.4%.    

As shown in TABLE 11, the XGBoost-HHO model 

achieves the highest accuracy (99.34%), surprassing previous 

studies on this dataset. The 0.74%–3.15% improvement in 

accuracy suggests that HHO effectively optimizes 

hyperparameters to enhance model generalization and 

minimize classification errors. Overall, XGBoost-HHO 

proves to be one of the superior solutions for improving 

cirrhosis classification performance with the given dataset. 

From a clinical perspective, this improvement is crucial, as 

higher accuracy ensures more precise classification of liver 

cirrhosis stages, enabling timely interventions for severe cases 

and reducing complications. The proposed model 

demonstrates the potential for more reliable early diagnosis, 

leading to better treatment planning and patient outcomes. In 

a longitudinal context, periodic retraining is necessary to 

ensure that the model remains relevant to the latest patterns in 

the data for maintaining model accuracy and adaptability. 

Monitoring performance metrics can help optimize the 

retraining for long-term effectiveness. 

However, the XGBoost-HHO model still has limitations, 

including potential dataset bias that may affect generalization. 

The dataset that used in this study may not fully represent the 

diversity of liver cirrhosis cases. Diverse datasets with 

variations in medical records and differences in diagnostic 

equipment are needed to ensure model reliability across 

different conditions. Moreover, broader validation strategies 

such as cross validation may improve the  roubstness of the 

model. Besides that, although HHO improves accuracy, it 

increases computational complexity and risks premature 

convergence, which can contribute to overfitting. 

Implementing Opposition-Based Learning (OBL) or 

Brownian Mutation can enhance convergence and efficiency 

without compromising accuracy, helping to further mitigate 

overfitting and improve model generalization [36], [44].  

Algorithm-based models can rapidly analyze large 

datasets, reduce subjectivity, and detect complex patterns that 

humans may overlook, thereby improving clinical assessment 

efficiency [8]. However, external validation and clinical 

testing are crucial for widespread adoption. This is necessary 

because the interpretability of the model must be improved for 

clinical use. This model has the potential to assist physicians 

in decision-making, enhance diagnostics, and support Clinical 

Decision Support System (CDSS). Additionally, Integrating it 

into Electronic Health Records (EHR) allows direct access to 

cirrhosis severity predictions.   

V. CONCLUSION 

This study aims to build an early diagnosis model based on 

Machine Learning using Hepatitis C data from the Kaggle 

repository, consisting of 615 observations and 14 variables. 

The data provides blood test results, which in this study are 

mapped into four classes representing stages of liver 

condition: healthy, hepatitis, fibrosis, and cirrhosis. 

Classification is performed using the XGBoost algorithm. 

The numerous hyperparameters in XGBoost would require 

significant time if determined manually. Therefore, this 

study proposes optimization using the HHO algorithm for 

hyperparameter tuning. The research results show that 

XGBoost-HHO achieved an average accuracy, MAP and 

MAR of 99.34% and achieved an average macro f1-score 

performance of 99.33% for 25 trials. This performance 

outperformed other models compared in this study and is 

competitive with previous research using similar datasets. 

The XGBoost-HHO model also achieved the lowest 

overfitting rate among the other models. The average 

processing time for XGBoost-HHO is 70.2252 seconds, 

which is competitive compared to other models. This 

processing time was achieved with the population size and 

maximum iterations initialized at 40 and 25, respectively. 

Feature importance analysis showed that the features ALT, 

PROT, and GGT contributed the most to the classification, 

with gain values of 11.21, 9.51, and 7.98, respectively. Based 

on the results, it can be concluded that the proposed 

XGBoost-HHO model is capable of improving the 

classification quality of the standard XGBoost model in this 

case, both in terms of accuracy and time efficiency. The 

performance of this model also outperformed other models 

compared in this study and several previous studies. In the 

future, the proposed XGBoost-HHO model can still be 

developed by enhancing the HHO algorithm’s search quality 

for better performance. However, dataset bias and 
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computational complexity remain challenges. Broader 

validation and techniques like OBL can improve reliability. 

Enhancing interpretability supports clinical use, CDSS, and 

EHR integration for cirrhosis severity prediction. 

REFERENCES 
[1] R. Islam, A. Sultana, and M. N. Tuhin, “A comparative analysis of 

machine learning algorithms with tree-structured parzen estimator for 

liver disease prediction,” Healthc. Anal., vol. 6, no. August, p. 

100358, 2024, doi: 10.1016/j.health.2024.100358. 

[2] D. Badvath, A. safali Miriyala, S. chaitanya K. Gunupudi, and P. V. 
K. Kuricheti, “ONBLR: An effective optimized ensemble ML 

approach for classifying liver cirrhosis disease,” Biomed. Signal 

Process. Control, vol. 89, no. January, p. 105882, 2024, doi: 

10.1016/j.bspc.2023.105882. 

[3] H. Enomoto et al., “Transition in the etiology of liver cirrhosis in 
Japan: a nationwide survey,” J. Gastroenterol., vol. 55, no. 3, pp. 

353–362, 2020, doi: 10.1007/s00535-019-01645-y. 

[4] Z. Wang et al., “Clinical prediction of HBV-associated cirrhosis 

using machine learning based on platelet and bile acids,” Clin. Chim. 

Acta, vol. 551, no. July, p. 117589, 2023, doi: 
10.1016/j.cca.2023.117589. 

[5] CDC, “Underlying Cause of Death, 2018-2022,” 2024. 

[6] World Health Organization (WHO), “Liver Cirrhosis, age-

standardized death rates (15+), per 100.000 population,” 2024. 

[7] X. Kuang et al., “Transcriptomic and Metabolomic Analysis of Liver 
Cirrhosis,” pp. 922–932, 2024, doi: 

10.2174/1386207326666230717094936. 

[8] I. Hanif and M. M. Khan, “Liver Cirrhosis Prediction using Machine 

Learning Approaches,” 2022 IEEE 13th Annu. Ubiquitous Comput. 

Electron. Mob. Commun. Conf. UEMCON 2022, no. 2019, pp. 28–
34, 2022, doi: 10.1109/UEMCON54665.2022.9965718. 

[9] R. Bhardwaj, R. Mehta, and P. Ramani, “A Comparative Study of 

Classification Algorithms for Predicting Liver Disorders BT  - 

Intelligent Computing Techniques for Smart Energy Systems,” A. 
Kalam, K. R. Niazi, A. Soni, S. A. Siddiqui, and A. Mundra, Eds., 

Singapore: Springer Singapore, 2020, pp. 753–760. 

[10] Y. Shinde, A. Kenchappagol, and S. Mishra, “Comparative Study of 

Machine Learning Algorithms for Breast Cancer Classification BT  - 

Intelligent and Cloud Computing,” D. Mishra, R. Buyya, P. 
Mohapatra, and S. Patnaik, Eds., Singapore: Springer Nature 

Singapore, 2022, pp. 545–554. 

[11] K. R. Singh, R. Gupta, R. K. Kadian, and R. Singh, “An Optimized 

XGBoost approach for Predicting Progression of Hepatitis C using 

Hyperparameter Tuning and Feature Interaction Constraint,” 2022 
2nd Asian Conf. Innov. Technol. ASIANCON 2022, pp. 1–8, 2022, 

doi: 10.1109/ASIANCON55314.2022.9909086. 

[12] A. Ogunleye and Q. G. Wang, “XGBoost Model for Chronic Kidney 

Disease Diagnosis,” IEEE/ACM Trans. Comput. Biol. Bioinforma., 

vol. 17, no. 6, pp. 2131–2140, 2020, doi: 
10.1109/TCBB.2019.2911071. 

[13] P. Zhang, Y. Jia, and Y. Shang, “Research and application of 

XGBoost in imbalanced data,” Int. J. Distrib. Sens. Networks, vol. 

18, no. 6, 2022, doi: 10.1177/15501329221106935. 

[14] B. Bischl et al., “Hyperparameter optimization: Foundations, 
algorithms, best practices, and open challenges,” Wiley Interdiscip. 

Rev. Data Min. Knowl. Discov., vol. 13, no. 2, pp. 1–43, 2023, doi: 

10.1002/widm.1484. 

[15] L. Yang and A. Shami, “On hyperparameter optimization of machine 

learning algorithms: Theory and practice,” Neurocomputing, vol. 
415, pp. 295–316, 2020, doi: 10.1016/j.neucom.2020.07.061. 

[16] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. 

Chen, “Harris hawks optimization: Algorithm and applications,” 

Futur. Gener. Comput. Syst., vol. 97, pp. 849–872, 2019, doi: 

10.1016/j.future.2019.02.028. 
[17] L. Duan, M. Wu, and Q. Wang, “Predicting the CPT-based pile set-

up parameters using HHO-RF and WOA-RF hybrid models,” Arab. 

J. Geosci., vol. 15, no. 7, 2022, doi: 10.1007/s12517-022-09843-4. 

[18] M. M. K. Kazemi, Z. Nabavi, and D. J. Armaghani, “A novel Hybrid 

XGBoost Methodology in Predicting Penetration Rate of Rotary 
Based on Rock-Mass and Material Properties,” Arab. J. Sci. Eng., 

vol. 49, no. 4, pp. 5225–5241, 2024, doi: 10.1007/s13369-023-

08360-0. 

[19] M. A. Kalas, L. Chavez, M. Leon, P. T. Taweesedt, and S. Surani, 
“Abnormal liver enzymes: A review for clinicians,” World J. 

Hepatol., vol. 13, no. 11, pp. 1688–1698, 2021, doi: 

10.4254/wjh.v13.i11.1688. 

[20] K. Sumwiza, C. Twizere, G. Rushingabigwi, P. Bakunzibake, and P. 

Bamurigire, “Enhanced cardiovascular disease prediction model 
using random forest algorithm,” Informatics Med. Unlocked, vol. 41, 

no. July, p. 101316, 2023, doi: 10.1016/j.imu.2023.101316. 

[21] A. Alizargar, Y. L. Chang, and T. H. Tan, “Performance Comparison 

of Machine Learning Approaches on Hepatitis C Prediction 

Employing Data Mining Techniques,” Bioengineering, vol. 10, no. 4, 
2023, doi: 10.3390/bioengineering10040481. 

[22] S. Raschka, Y. (Hayden) Liu, and V. Mirjalili, Machine Learning 

with PyTorch and Scikit Learn. 2022. 

[23] M. Ahmed Ouameur, M. Caza-Szoka, and D. Massicotte, “Machine 

learning enabled tools and methods for indoor localization using low 
power wireless network,” Internet of Things (Netherlands), vol. 12, 

p. 100300, 2020, doi: 10.1016/j.iot.2020.100300. 

[24] H. Benhar, A. Idri, and J. L Fernández-Alemán, “Data preprocessing 

for heart disease classification: A systematic literature review.,” 

Comput. Methods Programs Biomed., vol. 195, 2020, doi: 
10.1016/j.cmpb.2020.105635. 

[25] E. Pusporani, S. Qomariyah, and I. Irhamah, “Klasifikasi Pasien 

Penderita Penyakit Liver dengan Pendekatan Machine Learning,” 

Inferensi, vol. 2, no. 1, p. 25, 2019, doi: 

10.12962/j27213862.v2i1.6810. 
[26] Q. H. Doan, S. H. Mai, Q. T. Do, and D. K. Thai, “A cluster-based 

data splitting method for small sample and class imbalance problems 

in impact damage classification[Formula presented],” Appl. Soft 

Comput., vol. 120, p. 108628, 2022, doi: 

10.1016/j.asoc.2022.108628. 
[27] E. C. Gök and M. O. Olgun, “SMOTE-NC and gradient boosting 

imputation based random forest classifier for predicting severity level 

of covid-19 patients with blood samples,” Neural Comput. Appl., vol. 

33, no. 22, pp. 15693–15707, 2021, doi: 10.1007/s00521-021-06189-
y. 

[28] A. Al Ahad, B. Das, M. R. Khan, N. Saha, A. Zahid, and M. Ahmad, 

“Multiclass liver disease prediction with adaptive data preprocessing 

and ensemble modeling,” Results Eng., vol. 22, no. February, p. 

102059, 2024, doi: 10.1016/j.rineng.2024.102059. 
[29] R. Valarmathi and T. Sheela, “Heart disease prediction using hyper 

parameter optimization (HPO) tuning,” Biomed. Signal Process. 

Control, vol. 70, no. March, p. 103033, 2021, doi: 

10.1016/j.bspc.2021.103033. 

[30] S. Li and X. Zhang, “Research on orthopedic auxiliary classification 
and prediction model based on XGBoost algorithm,” Neural Comput. 

Appl., vol. 32, no. 7, pp. 1971–1979, 2020, doi: 10.1007/s00521-019-

04378-4. 

[31] K. Budholiya, S. K. Shrivastava, and V. Sharma, “An optimized 

XGBoost based diagnostic system for effective prediction of heart 
disease,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 7, pp. 

4514–4523, 2022, doi: 10.1016/j.jksuci.2020.10.013. 

[32] S. Singh, S. K. Patro, and S. K. Parhi, “Evolutionary optimization of 

machine learning algorithm hyperparameters for strength prediction 

of high-performance concrete,” Asian J. Civ. Eng., vol. 24, no. 8, pp. 
3121–3143, 2023, doi: 10.1007/s42107-023-00698-y. 

[33] D. A. Anggoro and S. S. Mukti, “Performance Comparison of Grid 

Search and Random Search Methods for Hyperparameter Tuning in 

Extreme Gradient Boosting Algorithm to Predict Chronic Kidney 

Failure,” Int. J. Intell. Eng. Syst., vol. 14, no. 6, pp. 198–207, 2021, 
doi: 10.22266/ijies2021.1231.19. 

[34] K. D. Chaudhuri and B. Alkan, “A hybrid extreme learning machine 

model with harris hawks optimisation algorithm: an optimised model 

for product demand forecasting applications,” Appl. Intell., vol. 52, 

no. 10, pp. 11489–11505, 2022, doi: 10.1007/s10489-022-03251-7. 
[35] S. Gupta, K. Deep, A. A. Heidari, H. Moayedi, and M. Wang, 

“Opposition-based learning Harris hawks optimization with 

advanced transition rules: principles and analysis,” Expert Syst. 

Appl., vol. 158, p. 113510, 2020, doi: 10.1016/j.eswa.2020.113510. 

[36] H. Kang, R. Liu, Y. Yao, and F. Yu, “Improved Harris hawks 
optimization for non-convex function optimization and design 

optimization problems,” Math. Comput. Simul., vol. 204, pp. 619–

https://jeeemi.org/index.php/jeeemi/index


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 7, No. 2, April 2025, pp: 508-519;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                              519               

639, 2023, doi: 10.1016/j.matcom.2022.09.010. 

[37] K. Ali, Z. A. Shaikh, A. A. Khan, and A. A. Laghari, “Multiclass skin 
cancer classification using EfficientNets – a first step towards 

preventing skin cancer,” Neurosci. Informatics, vol. 2, no. 4, p. 

100034, 2022, doi: 10.1016/j.neuri.2021.100034. 

[38] C. A. D. Lestari, S. Anam, and U. Sa’adah, Tomato Leaf Disease 

Classification with Optimized Hyperparameter: A DenseNet-PSO 
Approach, no. Icamsac 2023. Atlantis Press International BV, 2024. 

doi: 10.2991/978-94-6463-413-6_23. 

[39] M. Grandini, E. Bagli, and G. Visani, “Metrics for Multi-Class 

Classification: an Overview,” pp. 1–17, 2020, [Online]. Available: 

http://arxiv.org/abs/2008.05756 
[40] Z. Jiang, J. Che, M. He, and F. Yuan, “A CGRU multi-step wind 

speed forecasting model based on multi-label specific XGBoost 

feature selection and secondary decomposition,” Renew. Energy, vol. 

203, no. November 2022, pp. 802–827, 2023, doi: 

10.1016/j.renene.2022.12.124. 
[41] T. H. S. Li, H. J. Chiu, and P. H. Kuo, “Hepatitis C Virus Detection 

Model by Using Random Forest, Logistic-Regression and ABC 

Algorithm,” IEEE Access, vol. 10, no. August, pp. 91045–91058, 

2022, doi: 10.1109/ACCESS.2022.3202295. 

[42] L. Abualigah, “Particle Swarm Optimization: Advances, 
Applications, and Experimental Insights,” Comput. Mater. Contin., 

vol. 82, no. 2, pp. 1539–1592, 2025, doi: 

10.32604/cmc.2025.060765. 

[43] M. Z. Rehman, M. Aamir, N. M. Nawi, A. Khan, S. A. Lashari, and 

S. Khan, “An Optimized Neural Network with Bat Algorithm for 
DNA Sequence Classification,” Comput. Mater. Contin., vol. 73, no. 

1, pp. 493–511, 2022, doi: 10.32604/cmc.2022.021787. 

[44] M. Shehab et al., “Harris Hawks Optimization Algorithm: Variants 

and Applications,” Arch. Comput. Methods Eng., vol. 29, no. 7, pp. 

5579–5603, 2022, doi: 10.1007/s11831-022-09780-1. 
[45] S. Dalal, E. M. Onyema, and A. Malik, “Hybrid XGBoost model with 

hyperparameter tuning for prediction of liver disease with better 

accuracy,” World J. Gastroenterol., vol. 28, no. 46, pp. 6551–6563, 

2022, doi: 10.3748/wjg.v28.i46.6551. 
 

AUTHOR BIOGRAPHY 

 
Lista Tri Nalasari was born in Kediri, East 

Java, Indonesia in 2000. She received her 

bachelor degree in Mathematics Education from 
State University of Malang, Indonesia, in 2023. 

She is continuing his studies at the Mathematics 

Department, Faculty of Mathematics and Natural 

Sciences, Brawijaya University, since 2023. 

Currently, she dedicates his efforts to conducting 
in the field of data science that aligns with his 

academic interests, with a focus on exploring 

how data can be utilized to solve real-world problems. Involvement in 

research has provided valuable experience in working with data, especially 

in contexts that support societal benefits. She can be contacted at email: 
listatrinalasari@gmail.com. 

 

 

Syaiful Anam received a Doctor of Natural 

Science and Mathematics degree from 
Yamaguchi University, Japan in 2015. He also 

received his Bachelor’s Degree in Mathematics 

from Brawijaya University, Indonesia in 2001 

and his Master Degree from Sepuluh Nopember 

Institute of Technology, Indonesia in 2006. He 
is currently an assistant professor at 

Mathematics Departmen, Brawijaya University, 

Malang, Indonesia. His research includes span 

across various fields including data science, 

computational intelligence, machine learning, digital image processing, and 
computer vision. He has actively contributed to scientific research, with 

published over 35 papers in international journals and conferences. He can 

be contacted at email: syaiful@ub.ac.id.  

 

 

Nur Shofianah was born in Gresik, East Java, 

Indonesia in 1984. She received the Ph.D. degree 
in Mathematics from Graduate School of Natural 

Science and Technology, Kanazawa University, 

Japan, in 2014. She received the bachelor and 

master degree in 2007 and 2009 from Sepuluh 

Nopember Institute of Technology, Indonesia.  
Since 2010, she is a lecturer in the Faculty of 

Mathematics and Natural Sciences, Brawijaya 

University, Indonesia. Her research interests are in numerical methods for 

PDE, dynamical analysis and optimal control of mathematical models. She 

is the author of about 20 articles. Nur Shofianah Ph.D. is member of IndoMS 
(Indonesian Mathematical Society) and IBMS (Indonesian Bio-

Mathematical Society). 
. 

 

 

https://jeeemi.org/index.php/jeeemi/index

	I. INTRODUCTION
	II. METHODS
	A. DATA COLLECTION
	B. DATA PREPROCESSING
	C. EXTREME GRADIENT BOOSTING (XGBOOST)
	D. HYPERPARAMETER TUNING
	E. HARRIS HAWK OPTIMIZATION
	F. EVALUATION METRICS
	I. FEATURES IMPORTANCE

	III. RESULT
	A. DATA PREPROCESSING
	B. XGBOOST-HHO PARAMETER SETTING
	C. RESULT OF XGBOOST-HHO
	D. COMPARATIVE RESULT WITH OTHER MODELS
	G. FEATURE IMPORTANCE

	IV. DISCUSSION
	V. CONCLUSION
	REFERENCES
	AUTHOR BIOGRAPHY

