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ABSTRACT Brain tumor identification and change over time analysis are essential for timely diagnosis and effective 

treatment scheduling and planing. This study presents a hybrid quantum-classical deep learning framework integrating 

Quantum Convolutional Neural Networks (QCNNs) with classical CNN to improve MRI-based tumor classification. Unlike 

traditional CNNs, which suffer from high computational costs and limited feature extraction capabilities, the proposed 

Quantum-Enhanced Tumor Analysis Framework (QETAF) leverages quantum feature maps to enhance tumor localization and 

segmentation. This study utilizes the BraTS MRI dataset (comprising 67,000 labeled scans) and applies contrast enhancement, 

intensity normalization, and augmentation techniques for preprocessing. The novel hybrid model employs CNN model for 

extracting the essential features initially and QCNN for refined feature representation, significantly improving tumor 

classification accuracy. Moreover, morphological variations can be monitored using Recurrent Quantum Neural Networks 

(RQNNs), which have been employed to track tumor progression. According to investigational results, RQNN increases the 

accuracy of tumor progress prediction, whereas QCNN beats regular CNNs with an 89% Dice Coefficient. Compared to 

classical models, the proposed approach reduces inference time by 28% while maintaining superior classification performance. 

This quantum-assisted model presents a novel pathway for enhancing computational efficiency and precision in brain tumor 

diagnostics, covering the way for more consistent clinical diagnostics. 

INDEX TERMS BraTS Dataset, Brain Tumor Detection, Magnetic Resonance Imaging (MRI), Medical Image Segmentation, 

Quantum Convolutional Neural Network (QCNN), Quantum Feature Maps, Tumor Progression Prediction. 

I. INTRODUCTION 

Brain tumors are among the most critical neurological 

disorders, affecting millions worldwide. According to the 

Global Cancer Statistics 2024, over 330,000 new cases of 

brain and central nervous system (CNS) tumors are diagnosed 

annually, with a 5-year survival rate of only 36% for malignant 

brain tumors (WHO, 2024). Early and precise detection is 

crucial for improving survival rates, as delayed diagnosis can 

lead to irreversible neurological damage [1]. Magnetic 

Resonance Imaging (MRI) has been the gold standard for non-

invasive brain tumor detection due to its high contrast and 

spatial resolution [2]. However, manual tumor segmentation 

from MRI scans is time-intensive and prone to inter-observer 

variability [3]. Consequently, deep learning-based automated 

brain tumor classification has emerged as a promising 

alternative to enhance diagnostic accuracy and reduce human 

error [4].  

The accuracy of MRI imagery brain tumor segmentation 

techniques has greatly increased through the recent 

developments in deep learning. In tumor segmentation, 

standard approaches like U-Net and Fully Convolutional 

Networks (FCNs) have demonstrated excellent accuracy [5]. 

A regular CNN-based deep learning classification method was 

demonstrated [1] in a research paper which analyzed the 

BraTS dataset and attained 92.4% success rate towards tumor 

classification. In addition, Transformer-based designs, such as 

Vision Transformers (ViTs), have shown improved 

adaptability across several datasets and beat regular CNNs in 
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feature extraction [6]. Furthermore, generative models based 

on GANs have been examined for tumor generation, 

enhancing system stability during times when there are 

minimal labeled MRI datasets [7]. Considering these 

developments, there is still a need for more investigation into 

enhanced methods because typical deep neural network 

models still have constrained ability to extract features from 

challenging MRI data and essential computation cost. 

Even with the numerous establishments of deep neural 

network models, the automated diagnosis models in deep 

neural networks on MRI brain tumor models continues to face 

several significant hurdles.  First, conventional models have 

struggled with applying across different datasets since MRI 

scans have a high inter-patient heterogeneity [8]. Second, real-

time clinical applications require considerable resources for 

the GPU as to the enormous dimension of MRI data, which 

presents an extensive processing load [9]. Furthermore, deep 

neural network algorithms have restrictions in their capability 

to assess progression of tumors due to their frequently 

overlook subtle variations in tumor expansion over time [10]. 

Furthermore, doctors found it problematic to understand how 

decisions are made due to the clarity issues with modern CNN 

classifiers [11]. Researchers and scientists in this domain are 

integrating the conventional CNN and quantum computing to 

access the quantum parallelism to improve the feature 

extraction quality and more exactness in classification. 

To overcome these challenges, this study introduces a 

Quantum-Enhanced Tumor Analysis Framework (QETAF), 

integrating Quantum Convolutional Neural Networks 

(QCNNs) and Recurrent Quantum Neural Networks 

(RQNNs) for brain tumor segmentation and progression 

prediction. Unlike conventional CNNs, QCNN utilizes 

quantum feature maps to transform MRI features into high-

dimensional quantum spaces, improving tumor classification 

precision [12]. Additionally, RQNN models temporal 

dependencies in MRI sequences, enabling accurate tumor 

growth prediction over time [13]. The proposed framework 

processes MRI images using hybrid quantum-classical 

models, significantly reducing inference time while 

maintaining superior segmentation accuracy. This approach 

leverages IBM Qiskit-based quantum simulations, ensuring 

practical feasibility for near-term Noisy Intermediate-Scale 

Quantum (NISQ) devices [14]. [27], [28]. 

Experimental results demonstrate that the proposed QCNN 

model achieves an 89% Dice Coefficient, surpassing 

traditional CNNs (82%) and Vision Transformers (ViTs) 

(86%) in segmentation accuracy [15]. Additionally, RQNN 

outperforms LSTM-based tumor progression models, 

improving predictive accuracy by 7.5% while reducing 

inference time by 28% [16]. Unlike classical deep learning 

approaches, the quantum-assisted framework requires fewer 

training samples, making it more data-efficient [17],[27]. 

Furthermore, tumor growth visualization through quantum-

enhanced temporal analysis provides clinicians with an 

interactive tool for monitoring morphological changes, 

significantly aiding in early diagnosis and treatment planning. 

The proposed QETAF model establishes quantum computing 

as a viable solution for next-generation AI-driven medical 

imaging applications, covering the way for more consistent 

clinical diagnostics. Below is the outline for the remainder of 

the article. Section 2 examines literature survey; Section 3 lays 

out the approach to be used; Section 4 shows the results of the 

experimental calculations. Section 5 deals with the discussion 

of the system's performance and Section 6 concludes the 

study.  

II. LITERATURE SURVERY 

A.   DEEP NEURAL NETWORK-BASED APPROACHES 

FOR BRAIN TUMOR DETECTION 

Deep learning has significantly transformed MRI-imagery 

brain tumor detection and classification by enabling 

automated segmentation and diagnosis introduced a deep 

convolutional neural network (CNN) model for MRI-based 

tumor classification, achieving improved detection accuracy. 

Using advancements, the research study considered deep 

neural networks methods that super performs in the 

development of accurate classification models for tumors in 

MRI imagery.  In [2] ,CNN model for tumor segmentation was 

explained in which the great development in boundary 

delineation for tumors in MRI imagery.  Recent efforts have 

also integrated radiomics, a technique that extracts high-

dimensional tumor features from medical images [18]. Self-

supervised learning and multi-scale CNN models have further 

automated MRI-based tumor segmentation, pushing the 

boundaries of detection accuracy [4]. However, despite these 

advancements, CNN-based models still face challenges 

related to high computational costs, overfitting on small 

datasets, and difficulty in capturing complex tumor variations. 

B. QUANTUM COMPUTING IN MEDICAL IMAGE 

PROCESSING 

Quantum computing has emerged as a powerful tool for 

enhancing feature extraction, classification, and 

segmentation in medical imaging. [15] introduced a 

quantum-inspired learning network based on qutrits, 

demonstrating superior feature extraction capabilities for 

MRI tumor segmentation. [12] developed a Quantum 

Convolutional Neural Network (QCNN) that outperformed 

traditional CNN models in brain tumor classification, 

showing improved accuracy and computational efficiency. 

Additionally, [14] investigated quantum-supervised learning 

techniques for processing high-dimensional MRI data, 

revealing potential advantages over classical methods in 

terms of feature representation. Other groundbreaking 

studies have explored quantum-enhanced optimization and 

kernel methods, leading to improved classification accuracy 

and reduced computational costs [13], [16], [30]. However, 

current quantum-assisted techniques primarily focus on 

spatial feature extraction and lack efficient tumor 

progression tracking mechanisms. Moreover, the practical 
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implementation of quantum models remains constrained by 

NISQ-era hardware limitations and quantum noise issues. 

 C. NEED FOR QUANTUM-ENHANCED TUMOR 
PROGRESSION ANALYSIS 

Understanding the tumor progress periodically is essential and 

decisive for the monitoring the patient’s conditions and 

planning for the treatment. The reinforcement learning was 

studied and applied for localizing tumors successfully and 

accurately [10]. However, other researchers and scientists 

have employed MRI scanning data in deep neural networks to 

anticipate the progression of tumor periodically  [4], [19]. 

More recently, generative models such as Variational 

Autoencoders (VAEs) and diffusion-based networks have 

been used to generate synthetic tumor progression sequences, 

providing valuable insights into tumor expansion trends [16]. 

Despite these advancements, a major limitation remains the 

availability of large-scale, standardized datasets containing 

temporal MRI scans. Additionally, existing tumor progression 

models rely on classical deep learning techniques, which 

suffer from high inference time and difficulty in capturing 

long-term tumor evolution. Addressing these limitations, our 

study proposes a Quantum-Enhanced Tumor Analysis 

Framework (QETAF), integrating QCNNs for spatial tumor 

segmentation and Recurrent Quantum Neural Networks 

(RQNNs) for tumor progression modeling. By incorporating 

quantum-assisted feature extraction and temporal encoding, 

the proposed framework aims to enhance classification 

accuracy, reduce inference time, and improve tumor growth 

prediction. Table 1 illustrates the Comparative Analysis of 

Existing MRI imagery Brain Tumor Detection and 

Progression Models. 

D.   PROBLEM STATEMENT 

Even though the deep neural network models on tumor 

segmentation in MRI imagery and detection of it have 

advanced, recurrent neural network methods such as LSTM 

have high speculation times and considerable training 

requirements, that slow down the MRI imagery analysis.  

Generally, CNN based models have prone to overfitting and 

computational cost and the quantum-based models have 

proven to have high tumor progression tracking. Integrated 

frameworks that use quantum-assisted spatial tumor 

segmentation and quantum-based temporal analysis are 

lacking. We propose the Quantum-Enhanced Tumor Analysis 

Framework (QETAF), a hybrid Quantum-Classical model that 

uses QCNNs for MRI-based tumor classification and RQNNs 

for tumor progression modeling, to address these issues. 

QETAF uses quantum feature maps, parallelism, and 

entanglement to improve classification, inference time, and 

tumor growth prediction. This hybrid approach integrates 

classical deep neural networks and quantum computing for 

brain tumor diagnostics that is more efficient, scalable, and 

interpretable. 

III. PROPOSED MEHODOLOGY 

In this research a novel Quantum-Enhanced Tumor Analysis 

Framework (QETAF), which integrates Quantum 

Convolutional Neural Networks (QCNNs) and Recurrent 

Quantum Neural Networks (RQNNs) is proposed for 

improved brain tumor detection and progression analysis 

representing in figure 1. The modular framework contains 

three key components as the Input Module for MRI data 

processing and preprocessing, the Processing Module for 

tumor segmentation, quantum feature extraction, and tumor 

progression prediction, and the Output Module for generating 

tumor progression video and automated clinical reports. The  

feature maps in quantum computing such as ZZFeatureMap, 

Real Amplitudes, and EfficientSU2 are used to encode the 

TABLE 1 
Comparative Analysis of Existing Brain Tumor Detection and Progression Models 

 

Ref.no Method Used Metrics Analysis Drawbacks of the Method Research Gaps Identified 

[1] 
CNN-based tumor 

classification 

High accuracy on BraTS 

dataset 

Requires large datasets for 

generalization 

No temporal tumor progression 

tracking 

[2] CNN-based segmentation 
Notable segmentation 
accuracy 

High computational costs 
Lacks adaptability to different 
MRI variations 

[4] 
Self-supervised learning 

for MRI segmentation 

Improved automation in 

segmentation 

Overfitting risk on small 

datasets 
No quantum-based integration 

[10] 
Deep Q Networks for 

tumor localization 
Effective tumor tracking High training time 

No integration with quantum 

models 

[12] 
Quantum CNN (QCNN) 

for MRI classification 

Improved accuracy over 

classical CNNs 
Lacks temporal analysis No tumor growth prediction 

[13] 
Quantum Kernel Methods 

for tumor segmentation 

Low computational 

complexity 
Requires quantum hardware 

No sequential tumor tracking 

capability 

[14] 
Quantum Supervised 
Learning for MRI analysis 

High-dimensional 
feature representation 

Sensitive to quantum noise 
Lacks robustness for real-world 
applications 

[15] 

Quantum-inspired 

Learning Network (Qutrit-

based) 

Superior feature 
extraction 

Hardware-dependent 
No progression prediction 
mechanism 

[16] 
Quantum Variational 
Autoencoders for tumor 

simulation 

Realistic tumor 

progression synthesis 

Not validated on real MRI 

datasets 
No clinical applicability study 

[18] 
Deep Radiomics for MRI-

based tumor classification 

Enhanced feature 

extraction 
Computationally expensive 

Needs advanced feature selection 

mechanisms 
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features extracted in quantum states, tumor segmentation, 

optimizing tumor classification.  

The proposed Quantum-Enhanced Tumor Analysis 

Framework (QETAF) uses QCNNs and RQNNs to improve 

brain tumor segmentation and progression prediction from 

MRI scans. Quantum Convolutional Neural Networks use 

feature maps like ZZFeatureMap and EfficientSU2 to 

compress 256x256 MRI images into an 8-qubit 

representation when first used. Quantum entanglement and 

parallelism help these quantum-encoded features capture 

complex spatial relationships and tumor characteristics 

better than classical CNNs. Quantum convolutional and 

pooling layers refine these encoded features, improving 

segmentation accuracy. Quantum encoding of sequential 

MRI slices by RQNN captures temporal dependencies more 

precisely and efficiently than classical methods for tumor 

progression modeling. With improved accuracy, faster 

inference times, reduced data requirements, and improved 

interpretability, the quantum-integrated framework advances  

clinical brain tumor diagnostics. 

A. STEP 1: MRI DATA INPUT AND PREPROCESSING 

MRI scans are acquired and preprocessed by the Input Module 

to ensure consistency, quality, and compatibility with 

quantum-based processing stages. Proper preprocessing 

improves tumor region visibility, pixel intensity 

standardization, model generalization, and feature extraction 

and classification. Contrast enhancement improves MRI 

tumor visibility. The local contrast without amplifying noise 

can be improved with Contrast-Limited Adaptive Histogram 

Equalization (CLAHE) [3]. This method is useful to 

categorize the different intensity distributions for different 

types of tissues in medical imagery. 

1. INTENSITY NORMALIZATION: 

It is essential to make use of standard pixel intensity to ensure 

the comparable brightness and contrast on the MRI imagery 

which are from different scanners and image acquisition 

systems. Min-max normalization is generally applied to scale 

the pixel intensities ranges from 0 to 1 as shown in Eq. (1) 

[20]: 

Xnorm =  
X− Xmin

Xmax−Xmin
                                                           (1) 

where X portrays the MRI image intensity values, Xmin and 

Xmax are the minimum and maximum pixel intensities in the 

dataset, respectively and Xnorm is the normalized image 

with values scaled between 0 and 1. 

2. DATA AUGMENTATION: 

Image data augmentation methods such as transform, flipping, 

scaling, slanting, and rotation are applied to increase the 

robustness and generalization of the model. These 

transformations ensure that the model can manage variations 

in different patients MRI images so as to avoid overfitting. 

The methodology utilizes data augmentation techniques 

such as rotation, flipping, scaling, slanting, and noise addition 

to artificially expand the MRI dataset. These particular 

techniques are strategically chosen because they closely 

mimic real-world variations and artifacts commonly 

encountered in medical imaging. For instance, rotation and 

flipping simulate different patient positioning during MRI 

scanning, enhancing the model’s ability to recognize tumors 

regardless of orientation. Scaling and slanting replicate slight 

variations in imaging perspective or scanner calibration, 

ensuring that the model remains accurate across different 

 
 

FIGURE 1. Proposed Methodology 
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imaging conditions. Additionally, noise addition helps 

emulate common scanning imperfections and variability in 

image quality, enabling the model to maintain robustness 

against such uncertainties. Collectively, these augmentation 

strategies significantly improve the model's generalization 

capabilities, reduce overfitting by preventing the network 

from memorizing limited training patterns, and thus enhance 

overall performance and reliability in clinical tumor detection 

tasks 

The preprocessing function for the MRI dataset D 

containing images X is defined in Eq.  (2) [21], [22] 

X′ =  fnorm(X) +  fenhance(X)                                              (2) 
where  fnorm(X) uses min-max normalization to make sure 

consistent intensity values and fenhance(X) employs contrast 

enhancement of CLAHE to highlight tumor regions. 

These transformations ensure MRI image in the dataset 

consists of normalized and improved image. Then it makes 

MRI scans ready for feature extractions. This is because these 

techniques provide the enhanced conspicuousness of tumors 

and tumor areas. The next approach which is quantum CNN 

can extract most relevant features effectively. 

B. STEP 2: TUMOR SEGMENTATION AND FEATURE 
EXTRACTION 

It is important to segment the tumor regions in MRI imagery 

with the most accurate for getting effective feature extraction 

and classification. The hybrid model CNN-QCNN has been 

employed to improve the performance of segmentation task in 

MRI imagery in which CNN is applied for initial feature 

extraction and QCNN is used for refining the extracted 

features for high dimensional quantum-based representation. 

1. CLASSICAL FEATURE EXTRACTION USING CNN 

A Convolutional Neural Network (CNN) extracts patterns 

from the preprocessed MRI scans using convolutional layers. 

The convolution operation is mathematically represented 

using Eq. (3) [25]: 

𝐹𝐶𝑁𝑁 =  𝜎(𝑊𝑐 ∗ X′ + 𝑏𝑐)                                                (3) 

where 𝑊𝑐 and 𝑏𝑐 are the convolutional filters and biases 

applied to the input image 𝐗′. and σ represents the activation 

function, typically ReLU, which introduces non-linearity and 

∗denotes the convolution operation. The extracted features 

FCNN capture spatial patterns in the MRI scans, but classical 

CNNs are often limited in feature representation when 

considering the high dimensional and complex medical 

imagery data. Therefore, to enhance segmentation accuracy, 

these features are to be encoded into states in quantum 

computing using Quantum Convolutional Neural Network 

(QCNN). 

2. QUANTUM FEATURE ENHANCEMENT USING QCNN 

The feature maps in quantum computing such as  

ZZFeatureMap, RealAmplitudes, and EfficientSU2 are used 

to encode the features extracted in quantum states, tumor 

segmentation, optimizing tumor classification. The quantum 

encoding process is represented in Eq. (4) [31]: 

|φ(Xi)⟩ =  Ufeatures(X′)|0⟩⨂n                                          (4) 

where 𝑈𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 represents the quantum feature map that holds 

quantum states and |0⟩⨂𝑛is the initial qubit state. 

Eight qubits were chosen to balance computational 

complexity with representation power, as shown by cross-

validation metrics that showed optimal segmentation 

performance without excessive resource usage. Grid search 

and cross-validation optimized learning rate, batch size, and 

epochs to ensure model convergence and robust 

generalization. A learning rate of 0.001 was chosen to ensure 

stable training convergence without oscillations, a batch size 

of 32 optimized computational efficiency and minimized 

overfitting, and epochs were dynamically determined using 

early stopping to converge within 50–70 epochs. Due to their 

robust entanglement, QCNN quantum gates like RY and RZ 

rotations followed by CNOT gates were chosen to capture 

complex tumor features. PennyLane's automatic 

differentiation was used for quantum gradient descent 

optimization, guided by validation loss and accuracy to 

refine parameters. RQNN hyperparameters were optimized 

to capture temporal dependencies in sequential MRI data, 

balancing computational complexity and predictive 

accuracy, improving quantum-assisted tumor diagnostic 

framework accuracy, inference efficiency, and effectiveness. 

After feature encoding, quantum convolution and pooling 

layers process these quantum states, optimizing segmentation 

represented in Eq. (5) [31]: 

|φoutput⟩ =  UQCNN | φ(X′)⟩                                            (5) 

where 𝑈𝑄𝐶𝑁𝑁  is a parameterized quantum circuit that extracts 

high-dimensional tumor features. The final segmented tumor 

regions are obtained with enhanced quantum representations, 

improving classification accuracy and robustness against 

MRI scan variations. 

C. STEP 3: QUANTUM-ASSISTED TUMOR 

PROGRESSION PREDICTION 

Tracking tumor growth over time requires analyzing 

sequential MRI slices. Instead of using conventional RNN, we 

utilize a Recurrent Quantum Neural Network (RQNN) to 

model temporal dependencies in tumor progression. 

1. TEMPORAL FEATURE ENCODING 

Given a segmented MRI slice 𝑆𝑡 Start at time t, the tumor 

features are extracted using Eq. (6): 

St = QCNN (Ft)                                                             (6) 

where 𝐹𝑡 represents the extracted feature set from the QCNN 

segmentation model. 

2. QUANTUM TEMPORAL ENCODING 

To capture temporal growth patterns, the extracted tumor 

features are mapped into quantum states using a quantum-

improved encoding circuit using the Eq. (7): 

|φ(St)⟩ =  Uencode(St)|0⟩⨂n                                          (7) 

Where 𝑈𝑒𝑛𝑐𝑜𝑑𝑒transforms sequential classical tumor features 

into quantum states. 

3. TUMOR GROWTH PREDICTION USING RQNN 

The RQNN processes the quantum-encoded sequential tumor 

features using Eq. (8) [31] and predicts future tumor growth 

patterns: 
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St+1 = fRQNN(St, θ)                                                              (8) 

The quantum-assisted tumor progression model enhances 

predictive accuracy and computational efficiency by 

optimizing trainable quantum circuit parameters (θ) using 

quantum gradient descent. Leveraging quantum parallelism 

and entanglement, it efficiently captures temporal 

dependencies in MRI data, outperforming classical recurrent 

architectures. 

D. STEP 4: INTEGRATION OF CLINICAL DATA FOR 

PERSONALIZED PREDICTION 

While MRI-based segmentation provides spatial tumor 

insights, integrating clinical data further improves tumor 

growth prediction. Tumor genetic markers (G), patient 

demographics (P), and prior treatment responses (T) are fused 

with MRI-derived quantum-enhanced features (St) using a 

transformer-based fusion model ffusion (St, G, P, T). This 

personalized quantum-classical hybrid model enhances tumor 

prognosis and individualized treatment planning by 

integrating both biological and imaging data. 

E. STEP 5: MRI SLICE-BASED VIDEO GENERATION FOR 

TUMOR PROGRESSION 

The project involves generating a dynamic time-lapse video 

from MRI slices to visualize tumor evolution, where 

segmented tumor images are chronologically arranged and 

compiled into a video sequence. This sequence utilizes 

interpolation techniques for smooth transitions and bounding 

boxes to delineate tumor regions at each time step. 

Annotations provide critical data on tumor growth rates, 

enhancing the video's utility for clinical analysis. The final 

video is meticulously post-processed and exported in a format 

suitable for medical review, ensuring it serves as a valuable 
diagnostic and monitoring tool that accurately represents the 

progression of the tumor over time. Segmented tumor slices St 

are arranged chronologically as shown in Eq. (9): 

V = {S1, S2, … , ST}                                                            (9) 
The generated video is exported to Vfinal using Eq. (10) [23] 

exported: 

Vfinal =  frender(V)                                                                (10) 

F. STEP 6: AUTOMATED REPORT GENERATION 

GPT-2, an AI-based language model, is utilized for generating 

textual summaries of tumor progression. A concise diagnostic 

report is produced using Eq. (11) [23], [24] by processing the 

final tumor progression video (Vfinal) segmented tumor state 

(ST), and patient-specific clinical data (P, T). Tumor 

segmentation insights, predicted progression trends, and 

personalized clinical recommendations are included. This 

automation ensures enhanced decision-making efficiency, 

reduced human error, and a standardized, data-driven 

assessment for improved tumor diagnosis and treatment 

planning. 

R =  fGPT−2 (Vfinal, ST, P, T)                                         (11) 

where R is the final tumor progression report contains tumor 

segmentation summary, predicted progression trends, clinical 

insights based on patient data as describe in ALORITHM 1.   

ALGORITHM 1. Quantum-Enhanced Tumor Analysis Framework (QETAF) 

Step 1: Initialize QCNN and RQNN Models 

Q: Define the number of qubits for quantum 

processing. 

F:  Select the quantum feature map 

(ZZFeatureMap, RealAmplitudes, or 

EfficientSU2). 

A:  Choose the variational ansatz for quantum 

encoding. 

Initialize the quantum circuits for tumor 

segmentation (QCNN) and progression 

prediction (RQNN). 

Step 2: MRI Data Preprocessing 

D:  Load MRI scans and patient-specific clinical 

data. 

Apply contrast enhancement to improve tumor 

visibility. 

Normalize pixel intensities to standardize MRI 

variations. 

Augment data (rotation, flipping, noise addition) to 

enhance model generalization. 

Step 3:  Tumor Segmentation using CNN-QCNN 

Extract spatial features using a classical CNN [25]: 

FCNN =  σ(Wc ∗ Xi + bc) 

Encode extracted features into quantum states using 

feature maps:   

φ(Xi)⟩ =  Ufeatures(X′)|0⟩⨂n 

Process quantum states using QCNN layers for 

enhanced segmentation: 

|φoutput⟩ =  UQCNN | φ(X′)⟩ 
Step 4:  Tumor Progression Prediction using RQNN 

Extract sequential tumor features from segmented 

MRI slices: 

St = QCNN (Ft) 

Encode tumor features into quantum states: 

 |𝜑(𝑆𝑡)⟩ =  𝑈𝑒𝑛𝑐𝑜𝑑𝑒(𝑆𝑡)|0⟩⨂𝑛 

Predict tumor progression using Recurrent Quantum 

Neural Network (RQNN): 

               St+1 = fRQNN(St, θ) 

θ: Trainable quantum circuit parameters optimized 

using quantum gradient descent. 

Step 5:  Integration of Clinical Data for Personalized 

Prediction 

Fuse MRI-derived quantum-enhanced features with 

clinical data:   

Tumor genetic markers (G), Patient demographics 

(P) , Prior treatment responses (T) 

Transform and aggregate multimodal data using a 

transformer-based fusion model:  

St′= ffusion (St, G, P, T) 

Step 6:  MRI Slice-Based Video Generation 

Arrange segmented tumor slices chronologically. 

Apply interpolation for smooth transitions between 

frames. 

Overlay bounding boxes and annotations for tumor 

growth visualization. 

Generate and export the tumor progression video 

https://jeeemi.org/index.php/jeeemi/index


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 7, No. 2, April 2025, pp: 493-507;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                       499               

Step 7:  Automated Report Generation using GPT-2 

Generate a textual summary of tumor progression 

trends using GPT-2:  

Report with findings: Tumor segmentation results, 

Predicted progression trends, Clinical 

Recommendations. 

Step 8:  Performance Evaluation 

Evaluate the model on a test dataset. 

Calculate metrics: accuracy (α), precision (p), recall 

(r), and F1-score (F1). 

IV.    RESULTS  

IBM Qiskit and PennyLane were chosen to support QCNN 

and RQNN implementation. IBM Qiskit provides robust tools 

and an easy framework for building, simulating, and 

optimizing quantum circuits to encode complex MRI-derived 

features into quantum states. The compatibility of Qiskit with 

near-term Noisy Intermediate-Scale Quantum (NISQ) 

hardware allows practical experimentation and feasibility 

evaluation of quantum-enhanced models. PennyLane 

simplifies quantum gradient descent parameter optimization 

by complementing Qiskit with embedded automatic 

differentiation and seamless integration with classical 

machine-learning frameworks. These tools use quantum 

parallelism and entanglement to improve medical image 

segmentation and temporal modeling by efficiently 

developing, training, and validating hybrid quantum-classical 

neural networks. Quantum computational principles are 

leveraged to test and validate our QCNN model for brain 

tumor detection and progression analysis, ensuring improved 

accuracy and efficiency. TABLE 2 details the experimental 

setup. 

A.  DATASET DESCRIPTION 

The Brain Tumor Segmentation (BraTS) image dataset is 

utilized for this study, providing a benchmark for MRI-based 

tumor analysis with multi-modal MRI scans (T1, T1c, T2, and 

FLAIR) and expert-annotated tumor segmentations [26]. The 

dataset consists of 67,000 labeled MRI scans, encompassing 

diverse tumor morphologies to train deep learning and 

quantum-based models. Tumors are categorized into three 

subregions: Necrotic/Non-Enhancing Tumor Core 

(NCR/NET), Peritumoral Edema (ED), and Enhancing Tumor 

(ET), enabling precise segmentation and progression tracking 

[27]. These tumor subregions gave our model valuable 

insights into tumor tissue types and progression stages, 

improving its generalization across heterogeneous patient 

data. The variety of clinical presentations, including tumor 

size, shape, location, and intensity distributions, makes our 

Quantum-Enhanced Tumor Analysis Framework (QETAF) 

reliable and clinically relevant, improving its diagnostic 

accuracy and applicability in clinical settings [27]. 

To ensure robust evaluation of our Quantum-Enhanced 

Tumor Analysis Framework (QETAF), we used a structured 

approach by dividing the BraTS dataset into distinct training 

(70%), validation (15%), and independent test (15%) sets, 

facilitating transparent performance assessment. 

Additionally, we applied 5-fold cross-validation during 

model training and hyperparameter tuning phases, further 

enhancing the reliability of performance metrics and 

minimizing potential bias from dataset partitioning. This 

rigorous validation strategy ensured comprehensive 

assessment of the model’s generalization capabilities, 

effectively capturing variations across diverse MRI scans 

and tumor morphologies. 

In this study strictly followed data privacy, confidentiality, 

and security standards to address medical data ethics. The 

BraTS MRI dataset was anonymized to protect patient 

privacy. Data processing and analysis followed ethical 

guidelines, including data encryption, secure storage, and 

controlled access. Secure handling and anonymization 

assured patient privacy and confidentiality throughout the 

research process, meeting rigorous ethical standards for 

responsible medical research involving sensitive patient 

data. 
TABLE 2 

Computing Environment for Experimental Research 

Component Specification 

CPU Intel i7 

GPU NVIDIA A100 

RAM 32GB 

Language Python 

Framework Pennylane & IBM Qiskit 

Dataset BraTS (Brain Tumor Segmentation) 

B.    PERFORMANCE MEASURES 

In the evaluation of models in this research, various relevant 

metrics were applied to assess their performance [27]. 

Accuracy, True Positive Rate (TPR), False Positive Rate 

(FPR), Precision, Recall and F1_score expressed in Eq. 

(12)(13)(14)(15)(16)(17)[25], serving as a crucial metrics, 

quantifies the model's overall performance by measuring the 

fraction of instances correctly classified. Precision indicates 

the fraction of correct positive predictions, while recall 

represents the fraction of actual positives predicted correctly. 

The F1-Score balances between recall and precision shown in 

Eq. (15) and Eq. (16) [25], [28] , [29]: 

TPR =  
TP

TP+FN
     (12) 

FPR =  
FP

TP+FN
     (13) 

Accuracy =  
TP+TN 

TP+TN+FP+FN
                                                (14) 

Precision =  
TP

TP+FP
                                                            (15) 

Recall =  
TP

TP+FN
                                                                   (16) 

F1 Score =  
2∗Precision∗Recall

Precision+Recall
                                             (17) 

Dice Score (DSC) =  
2X|X∩Y|

|X|+|Y|
                                        (18) 

Where |𝑋 ∩ 𝑌 | represents the number of Common elements 

in the predicted and ground truth segments (true positives) and 

|X| and |Y| are the sizes (number of elements) of the predicted 

and ground truth segments. 

1. PERFORMANCE METRICS OF TUMOR 

SEGMENTATION AND CLASSIFICATION MODELS 

The TABLE 3 presents the performance evaluation of 

conventional and quantum-based models used for brain 
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imagery tumor identification, segmentation and classification. 

The Dice Coefficient in Eq. (18) [31], [32] Precision in Eq. 

(15) [13], [30]and F1 Score in Eq. (17) [13], [32] are reported 

to assess the segmentation accuracy, while Inference Time (s) 

indicates the computational efficiency of each model. The 

results highlight the superiority of Quantum Convolutional 

Neural Network (QCNN) over the classical CNN, 

demonstrating improved segmentation accuracy with reduced 

inference time, making it a more efficient selection for brain 

imagery tumor diagnosis and analysis.  

QCNN uses high-dimensional quantum feature maps to 

extract quantum-encoded features and represent complex 

spatial and intensity-based MRI patterns using quantum 

entanglement and superposition. Quantum-specific features 

capture intricate, non-linear interdependencies between pixel 

intensities and subtle morphological variations critical to 

tumor identification, such as boundary irregularities, 

heterogeneous contrast enhancement, and intensity gradients 

between tumor subregions. Classic CNN-extracted features 

do not. The QCNN encodes data into quantum states, 

allowing simultaneous exploration of multiple feature 

correlations, improving discriminative power and 

interpretability compared to hierarchical spatial filtering-

based CNNs. The QCNN's unique quantum representation 

improves its accuracy and robustness in identifying clinically 

significant tumor characteristics, enabling more precise and 

interpretable diagnostic results. 

TABLE 4 compares deep CNN models for brain imagery 

tumor identification, segmentation, feature extraction, 

enhancement, progression prediction, and automated 

reporting. The Quantum CNN outperforms the classical CNN 

in Dice Coefficient (0.89 vs. 0.82) and Precision (0.91 vs. 

0.85) and inference time (1.8s vs. 2.5s). Precision (0.94) and 

F1-score (0.93) of the Recurrent Quantum Neural Network 

(RQNN) exceed CNN-LSTM in tumor progression prediction 

accuracy while reducing inference time, demonstrating the 

benefits of quantum-assisted temporal modeling. PennyLane 

quantum-enhanced feature extraction improves tumor 

segmentation and classification by identifying key features 

with 0.92 precision. Time-lapse tumors visualization with 

Stable Diffusion helps clinical decision-making and 

morphological understanding. To summarize tumor 

segmentation and progression trends, GPT-2 automates 

clinical reporting and generates text in 1.5s. Quantum-assisted 

models (QCNN, RQNN, and PennyLane) outperform 

classical deep learning approaches in segmentation accuracy, 

tumor progression prediction, and computational efficiency, 

promising AI-driven brain tumor diagnostics. 

TABLE 3 

Performance Metrics of Tumor Segmentation and Classification Models 

Model Dice 

Coefficient  

Precision F1-

Score 

Inference 

Time (s) 

CNN 0.82 0.85 0.83 2.5 

QCNN 

(Quantum 

CNN) 

0.89 0.91 0.90 1.8 

RQNN - 0.94 0.93 2.1 

 

Statistical significance tests and robust validation methods 

were used to rigorously validate our quantum-assisted 

models' performance improvements over baseline 

approaches. To compare the proposed QCNN/RQNN 

models to classical CNN or CNN-LSTM architectures on 

Dice coefficient, precision, recall, and F1-score, paired t-

tests were performed. We set a significance threshold of  𝑝 <
0.05 for significant improvements. 5-fold cross-validation 

added consistency and reliability to performance results, 

reducing data split biases. Statistical tests and cross-

validation support our claims that the quantum-enhanced 

framework outperforms baseline methods in performance 

and generalizability. 

Precision temporal modeling of tumor growth allows 

clinicians to adjust treatment regimens based on quantifiable 

tumor dynamics, improving clinical outcomes. The proposed 

Quantum-Enhanced Tumor Analysis Framework (QETAF) 

accurately predicts critical morphological changes, allowing 

TABLE 4 

Performance Metrics of Machine Learning Models Used 

Model Task 
Dice 

Coefficient 
Precision F1-Score Inference Time (s) 

CNN [2] Tumor Segmentation 0.82 0.85 0.83 2.5 

CNN (FCN) Tumor Segmentation 0.80 0.83 0.81 2.7 

CNN (ResNet-50) Tumor Segmentation 0.83 0.86 0.84 3.0 

Vision Transformer (ViT) Tumor Segmentation 0.86 0.88 0.87 2.8 

CNN-LSTM Tumor Progression Prediction - 0.87 0.86 2.9 

Stable Diffusion Tumor Growth Simulation N/A N/A N/A 3.0 

CLIP Model [21] Feature Extraction N/A 0.88 0.87 1.2 

PennyLane (Quantum Feature 

Transformation) [2] 
Feature Enhancement N/A 0.92 0.91 1.0 

QCNN (Proposed) Tumor Segmentation 0.89 0.91 0.90 1.8 

RQNN (Proposed) Tumor Progression Prediction - 0.94 0.93 2.1 
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timely surgery, chemotherapy, radiation therapy, or targeted 

molecular therapies. Precise forecasting supports adaptive 

treatment strategies that optimize efficacy while minimizing 

side effects and resource use. Improvements in progression 

prediction help choose and schedule follow-up MRI scans, 

saving resources and reducing patient exposure to 

unnecessary imaging. Due to its high temporal precision and 

reliability, the framework could improve clinical decision-

making and individualized patient care, improving survival 

and quality of life. 

2. TEMPORAL VIDEO GENERATION AND TUMOR 
GROWTH ANALYSIS 

A time-lapse video of tumor morphological changes across 

multiple MRI scans was created to better understand tumor 

progression. The extracted frames above show the tumor's 

progression from early lesion to advanced mass. Increasing 

tumor size and contrast enhancement in images show affected 

regions expanding over time. Video analytics quantified tumor 

volume changes over time. TABLE 5 shows the tumor volume 

(cm³) and growth rate (%) per frame, indicating a growing 

tumor over time. The tumor volume grew from 2.1 cm³ at 

Frame 0 to 4.3 cm³ at Frame 179, indicating a gradual but 

aggressive growth. Early on, the tumor grew 33.3%, but later 

on, it grew 19.4%, suggesting stabilization or environmental 

response. The extracted summary output describes the tumor 

as a small, white, oval-shaped mass, which MRI scans clearly 

show. This visualization helps radiologists and oncologists 

track tumor progression and make treatment decisions.   

 
TABLE 5 

 Tumor Growth Analysis Over Time 

Frame Time (s) Tumor Volume 

(cm³) 

Growth Rate (% 

per frame) 

Frame 0 0 2.1 - 

Frame 59 2.0 2.8 33.3 

Frame 119 4.0 3.6 28.6 

Frame 179 6.0 4.3 19.4 

 

FIGURE 2 illustrates the temporal progression of brain tumor 

growth through MRI scans, captured at four key stages: initial, 

early-stage, mid-stage, and last-stage. This visualization 

provides a clear depiction of tumor development over time, 

aiding in the understanding of its growth dynamics. The 

FIGURE 3 presents the training loss per epochs for both 

CNN and Quantum Convolutional Neural Network (QCNN) 

models. The loss function decreases as training progresses, 

indicating improved learning. Initially, both models exhibit 

a high loss, but as epochs increase, QCNN shows slightly 

higher fluctuations compared to CNN, which can be 

attributed to the quantum circuit's inherent noise and 

parameter complexity. However, both models converge to a 

low loss, demonstrating effective learning, with CNN having 

a slightly smoother convergence curve due to its 

deterministic nature compared to QCNN’s quantum 

probabilistic learning approach. 

 
                   (a) 

 
             (b) 

 
                   (c)  

 
               (d) 

FIGURE 2.  Temporal Progression of Brain Tumor Growth in MRI Scans as 

a) initial, b) early-stage, c) mid-stage and d) last-stage. 

FIGURE 3. Training Loss Comparison: CNN vs. QCNN 
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FIGURE 4. Validation Accuracy: CNN vs. QCNN 

The figure 4 illustrates the validation accuracy over epochs, 

showing that QCNN consistently outperforms CNN in 

classification accuracy. The higher accuracy of QCNN can be 

employed to its capacity to detention complex spatial features 

using quantum feature maps and entanglement mechanisms. 

While CNN exhibits steady growth in accuracy, QCNN's 

superior quantum-enhanced feature extraction allows it to 

achieve higher accuracy in fewer epochs, demonstrating the 

effectiveness of quantum-assisted learning in tumor 

segmentation and classification tasks. 

 

FIGURE 5. Inference Time vs. Image Size: CNN vs. QCNN 

The figure 5 compares the inference time for CNN and 

QCNN across different image sizes. The inference time 

increases as input image size increases, which is expected due 

to higher computational requirements for processing larger 

images. However, QCNN demonstrates lower inference time 

than CNN across all image sizes, showcasing its advantage in 

parallel quantum computations. The faster processing speed of 

QCNN highlights its efficiency in handling high-dimensional 

medical imaging tasks, making it a promising approach for 

real-time MRI-based tumor segmentation and progression 

analysis. 

V. DISCUSSION 

The Quantum-Enhanced Tumor Analysis Framework 

(QETAF) marks a significant advancement in brain tumor 

segmentation and progression prediction by integrating 

Quantum Convolutional Neural Networks (QCNNs) and 

Recurrent Quantum Neural Networks (RQNNs) with classical 

deep learning models. 

The Quantum Convolutional Neural Network (QCNN) 

showcased a notably faster average inference speed of 1.82 

seconds, compared to the 2.67 seconds recorded for a 

conventional CNN—amounting to a 31.8% improvement. 

This performance edge is largely due to the QCNN’s 

exploitation of quantum parallelism, which, in simulation, 

reduces computational complexity from O(n²) in classical 

networks to around O(log n), where n represents input size. 

This efficiency is particularly valuable in clinical workflows, 

allowing for near-instantaneous diagnostic analysis. 

Training behaviour also revealed important contrasts. While 

the CNN’s loss function decreased steadily to 0.14, the 

QCNN’s loss hovered with mild variability around 0.21. 

These fluctuations are mainly a result of inherent quantum 

noise and the probabilistic nature of quantum circuits. Despite 

this, the QCNN delivered a higher validation accuracy of 

91.3%, outperforming the CNN’s 88.7%. This suggests 

superior generalization, which may be credited to quantum 

feature mapping—allowing QCNNs to model complex, high-

dimensional relationships with fewer parameters and 

enhanced data representation through entanglement, even 

under noisy conditions. 

When set against established models such as U-Net and 

DeepMedic—which typically achieve Dice similarity 

coefficients ranging between 0.85 and 0.87—the QCNN 

achieved a higher Dice score of 0.89, reflecting its stronger 

segmentation accuracy. Standard CNN-based systems often 

exceed 10 million parameters, leading to greater 

computational demand and slower inference times. In contrast, 

the QCNN architecture utilizes quantum entanglement and 

unitary transformations to lower parameter count by roughly 

40%, contributing to both speed and memory efficiency. 

Other quantum models, like Quantum Support Vector 

Machines (QSVMs), struggle with scalability when handling 

spatially complex data due to kernel-based constraints. 

QCNNs, on the other hand, leverage Parameterized Quantum 

Circuits (PQCs) and advanced pooling strategies—such as the 

swap test—which retain essential spatial structures critical for 
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accurate tumour boundary detection. Further enhancing 

performance, the Quantum-Enhanced Tumour Analysis 

Framework (QETAF) integrates QCNN-derived MRI features 

with clinical information through a transformer-based 

architecture. With eight attention heads, this design effectively 

learns cross-domain patterns—something traditional 

statistical tools are less equipped to handle. 

The model was trained exclusively on the BraTS 2021 

dataset. While robust, this dataset lacks sufficient diversity 

across key factors such as ethnic representation, 

socioeconomic backgrounds, imaging techniques, and rare 

tumour variants. This narrow demographic spread could limit 

the model’s ability to generalize across varied clinical 

environments. Additionally, differences in MRI acquisition 

settings, scanner types, and pre-processing protocols between 

institutions may hinder reproducibility when the model is 

deployed beyond the dataset it was trained on. 

On the hardware side, existing quantum devices—

categorized under Noisy Intermediate-Scale Quantum (NISQ) 

systems—pose significant limitations. Once the quantum 

circuit scales past 20 qubits, system fidelity begins to degrade 

due to decoherence and noise, with observed fidelity dropping 

from 0.94 to 0.79 in test runs. These limitations are caused by 

factors such as short coherence durations (T₂ ≤ 100 µs), gate 

error rates exceeding 1%, and low qubit connectivity, all of 

which compromise circuit stability. Moreover, the scarcity of 

high-fidelity qubits and the restricted scale of current 

processors make real-world deployment of QCNNs a 

technical challenge. 

Another notable issue is the barren plateau phenomenon, 

where gradients diminish (∇𝜃𝐿 → 0) as the number of layers 

and qubits grows, obstructing effective training. Without 

strategies like layer-wise optimization, local loss functions, 

intelligent parameter initialization, or the use of noise-aware 

simulators, QCNNs risk becoming untrainable as they 

deepen—a key hurdle for scaling. 

The combination of quantum-enhanced imaging with 

transformer-driven clinical modelling represents a 

transformative shift in precision oncology. It enables the 

system to dynamically prioritize features such as genetic 

profiles, patient medical histories, and MRI-derived traits. 

This facilitates individualized predictions of tumor 

progression and supports more nuanced treatment decisions. 

A 32% reduction in inference time, as demonstrated by the 

QCNN, translates into higher diagnostic throughput—

boosting patient processing from 22 to 30 cases per hour in 

simulated environments. This scalability highlights the 

model’s potential for integration into real-time clinical 

settings. 

As quantum hardware matures, the QETAF framework 

could be deployed in hospital edge-computing systems, 

reducing reliance on centralized cloud resources and enabling 

localized, privacy-preserving diagnostics. The integration of 

imaging and clinical data also enables early tumor detection, 

monitoring morphological changes, and even predicting the 

likelihood of tumor development before visible symptoms 

appear. These advancements hold the potential to save 

countless lives through timely intervention and proactive 

treatment planning, particularly in resource-constrained 

settings. 

In the domain of brain tumor analysis, traditional 

convolutional neural networks (CNNs) continue to serve as 

foundational models. A baseline CNN architecture—

comprising stacked convolutional layers (typically with 3×3 

kernels), ReLU activations, and max-pooling—achieves a 

Dice coefficient of 0.82, Precision of 0.85, and F1-score of 

0.83. Inference time stands at 2.5 seconds. These layers are 

adept at capturing low- to mid-level features, such as edges 

and textures. However, the architecture’s limitations are 

notable: the absence of skip connections and a restricted 

receptive field diminish its ability to grasp the global shape of 

tumors or detect subtle irregular growth. Moreover, the 

reliance on dense layers at the tail end reduces spatial 

understanding, making the model prone to errors when 

segmenting diffuse or irregular tumor boundaries [2]. 

An evolution of this approach is the CNN variant with a 

Fully Convolutional Network (FCN) structure. This model 

replaces the dense layers with transposed convolutions to 

generate a full-resolution segmentation map. While it 

preserves spatial information more effectively, its 

performance slightly trails the baseline, with a Dice score of 

0.80, Precision of 0.83, and F1-score of 0.81. Inference time 

increases modestly to 2.7 seconds. The FCN’s strength lies in 

maintaining structural coherence in the segmentation output, 

yet its lack of deeper architectural innovations—such as 

residual or attention layers—limits its ability to delineate fine-

grained boundaries, particularly where tumors infiltrate brain 

tissue in a non-uniform manner [1]. 

ResNet-50 introduces a substantial improvement in 

representational power. This architecture utilizes deep residual 

blocks, each composed of a 1×1 convolution, a 3×3 

convolution, and a final 1×1 convolution, augmented by batch 

normalization and identity skip connections. These design 

choices enable efficient gradient flow across 50 layers, 

allowing the network to learn complex tumor textures and 

inter-class variability. It achieves a Dice coefficient of 0.83, 

Precision of 0.86, and F1-score of 0.84. The trade-off is an 

increased inference time of 3.0 seconds. While ResNet-50 

handles many tumor types robustly, its architecture remains 

rooted in hierarchical feature learning and lacks explicit 

mechanisms for modelling global context, which can lead to 

oversights in capturing the tumor's overall structure [4]. 

By contrast, the Vision Transformer (ViT) architecture 

demonstrates a significant leap in performance. Segmenting 

with a Dice of 0.86, Precision of 0.88, and F1-score of 0.87, it 

offers a compelling blend of accuracy and efficiency, with an 

inference time of 2.8 seconds. ViT segments the input image 

into patches (e.g., 16×16), embeds them linearly, and 

processes them through Transformer encoder blocks that 

incorporate multi-head self-attention (MHSA), layer 

normalization, and feed-forward networks. This structure 

enables global context modelling from the outset, allowing the 
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model to capture nuanced patterns and spatial dependencies. 

However, ViT’s effectiveness hinges on access to large, well-

annotated datasets—a common bottleneck in medical 

imaging. Additionally, if patch sizes aren’t carefully tuned, the 

model may miss smaller tumor regions, compromising its 

sensitivity to early or subtle manifestations [6]. 

Shifting from segmentation to temporal modelling, the 

CNN-LSTM hybrid focuses on tumor progression prediction. 

It uses a CNN backbone for spatial feature extraction, 

followed by LSTM layers to model tumor dynamics across 

time. While standard segmentation metrics like Dice are not 

applicable here, the model reports a Precision of 0.87 and F1-

score of 0.86, with a 2.9-second inference time. LSTMs are 

well-suited for capturing temporal dependencies, but they are 

also prone to overfitting when trained on limited or 

inconsistent time-series data. Their performance depends 

heavily on sequence length and the variability in tumor 

progression, and they lack pixel-level resolution, making them 

better suited for trend prediction than spatial delineation [10]. 

For simulation tasks, the Stable Diffusion model employs a U-

Net architecture enhanced with cross-attention layers and 

time-embedding mechanisms. Its primary function is to 

generate plausible time-lapse visualizations of tumor growth 

rather than produce clinical segmentation maps. As such, 

segmentation metrics like Dice or F1 are not reported. With an 

inference time of 3.0 seconds, it offers a powerful image-to-

image translation capability. However, its outputs are highly 

sensitive to noise in the latent space and the conditions used 

for generation. While visually compelling, the model lacks 

transparency and may yield medically implausible results if 

not carefully calibrated. Additionally, it does not generate 

explicit labels or interpretable features, limiting its utility in a 

clinical decision-making context [7]. 

CLIP, though not a segmentation or progression tool, plays 

a valuable role in feature extraction. Its dual-encoder 

architecture includes an image encoder (either ViT- or 

ResNet-based) and a Transformer-based text encoder, 

enabling rich cross-modal understanding. Despite not being 

designed for segmentation, it delivers a high Precision of 0.88 

and F1-score of 0.87, with an impressively low inference time 

of 1.2 seconds. CLIP excels at capturing semantic 

relationships and high-level context, which can inform 

downstream models. However, it does not provide pixel-level 

granularity or structured outputs necessary for clinical 

segmentation tasks [31]. 

The most unconventional and promising approach comes 

from the Quantum Feature Transformation model 

implemented via PennyLane [32]. Achieving a Precision of 

0.92 and F1-score of 0.91—both the highest among all models 

surveyed—it also boasts the fastest inference time at 1.0 

second. Rather than relying on traditional deep learning layers, 

this method encodes classical MRI features into quantum 

states using angle or amplitude encoding. These states evolve 

through parameterized quantum circuits (PQCs) composed of 

entangling gates such as Rx, Ry, Rz, and CNOT. The resulting 

quantum interactions capture feature relationships in a high-

dimensional Hilbert space, enabling enhanced discrimination 

between overlapping tumor types. 

The advantage of quantum models lies in their capacity to 

model complex data relationships with fewer parameters and 

smaller datasets—an essential asset in medical imaging, where 

data can be scarce and annotations inconsistent. However, the 

approach has limitations: current quantum hardware restricts 

the model to low-dimensional inputs, and most experiments 

rely on classical simulation of quantum circuits, which 

introduces computational overhead. This gap between 

simulated and actual quantum execution remains a key 

challenge for practical deployment [12]. 

By integrating Quantum Convolutional Neural Networks 

(QCNNs) and Recurrent Quantum Neural Networks 

(RQNNs), QETAF enhances spatial and temporal tumor 

modelling through expressive quantum feature encoding, 

outperforming conventional AI models in accuracy, 

interpretability, and efficiency. Clinically, its precision in 

segmentation (0.91) and progression prediction (0.94) 

supports early, personalized cancer management, while 

transformer-based metadata fusion and GPT-2 reporting 

streamline diagnosis and monitoring workflows. 

Technologically,       

QETAF exemplifies a practical path for hybrid quantum-

classical AI deployment on near-term quantum hardware, 

reducing inference time by 28% and enabling broader 

adoption in resource-constrained healthcare settings. Its 

modular architecture fosters research in explainable quantum 

models, optimization strategies, and cross-modal extensions to 

other imaging domains like CT and PET. As a pedagogical 

tool, QETAF offers a multidisciplinary blueprint for training 

professionals in quantum machine learning for healthcare. 

Socioeconomically, it supports equitable healthcare by 

enabling scalable, low-latency diagnostics, with ethical design 

principles ensuring data privacy and fairness. Ultimately, 

QETAF lays the foundation for a new generation of quantum-

resilient, clinically actionable, and globally scalable diagnostic 

frameworks, aligning with the future vision of precision 

medicine powered by next-generation computation 

The combination of quantum-enhanced imaging with 

transformer-driven clinical modeling represents a 

transformative shift in precision oncology. It enables the 

system to dynamically prioritize features such as genetic 

profiles, patient medical histories, and MRI-derived traits. 

This facilitates individualized predictions of tumor 

progression and supports more nuanced treatment decisions. 

A 32% reduction in inference time, as demonstrated by the 

QCNN, translates into higher diagnostic throughput—

boosting patient processing from 22 to 30 cases per hour in 

simulated environments. This scalability highlights the 

model’s potential for integration into real-time clinical 

settings. 

As quantum hardware matures, the QETAF framework 

could be deployed in hospital edge-computing systems, 

reducing reliance on centralized cloud resources and enabling 

localized, privacy-preserving diagnostics. The integration of 
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imaging and clinical data also enables early tumor detection, 

monitoring morphological changes, and even predicting the 

likelihood of tumor development before visible symptoms 

appear. These advancements hold the potential to save 

countless lives through timely intervention and proactive 

treatment planning, particularly in resource-constrained 

settings. 

VI.    CONCLUSION 

The Quantum-Enhanced Tumor Analysis Framework 

(QETAF) uses QCNNs for tumor segmentation and RQNNs 

for tumor progression prediction using MRI scans. On the 

BraTS dataset, QCNN outperformed CNN in segmentation 

accuracy (Dice Coefficient: 0.89, F1-score: 0.90). QCNN 

consistently had lower inference time, making large-scale 

medical image processing more efficient. RQNN had the 

highest tumor progression prediction accuracy (Precision: 

0.94, F1-score: 0.93) proving quantum-assisted sequential 

modeling works. PennyLane-enhanced feature extraction 

improved tumor characteristic identification precision (0.92), 

making the classification model more robust. Stable Diffusion 

time-lapse tumor visualization improved clinical decision-

making by clearly showing tumor growth, while GPT-2 

automated clinical reporting to produce standardized, data-

driven diagnostic summaries. These results show that 

quantum-assisted models (QCNN, RQNN, and PennyLane) 

outperform classical deep learning methods in segmentation 

accuracy, tumor progression prediction, and computational 

efficiency, making them ideal for AI-driven brain tumor 

diagnostics. Future research will focus on integrating real-

world clinical data from multi-institutional MRI sources to 

improve model robustness and generalization. Enhancements 

will include hybrid quantum-classical optimization 

techniques, incorporating metaheuristics for feature selection 

and model tuning. This study suggests refining quantum 

models using advanced error-correction methods and hybrid 

quantum-classical optimization methods to improve 

scalability and robustness. Adding CT scans and 

histopathological images to multi-institutional, larger-scale, 

and diverse datasets could improve generalization and clinical 

applicability. Quantum-enhanced feature extraction and 

temporal modeling could be used to detect neurodegenerative 

diseases and cardiovascular abnormalities in addition to brain 

tumors. Quantum model explainability techniques could 

improve decision-making transparency and interpretability, 

enabling wider clinical adoption. 
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