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Abstract The electroencephalogram (EEG) stands out as a promising non-invasive tool for assessing 

depression. However, the efficient selection of channels is crucial for pinpointing key channels that can 
differentiate between different stages of depression within the vast dataset. This study outcome a 
comprehensive strategy for optimizing EEG channels to classify Major Depressive Disorder (MDD) using 
machine learning (ML) and deep learning (DL) approaches, and monitor effect of central lobe channels. A 
thorough review underscores the vital significance of EEG channel selection in the analysis of mental 
disorders. Neglecting this optimization step could result in heightened computational expenses, 
squandered resources, and potentially inaccurate classification results. Our assessment encompassed a 
range of techniques, such as Asymmetric Variance Ratio (AVR), Amplitude Asymmetry Ratio (AAR), 
Entropy-based selection employing Probability Mass Function (PMF), and Recursive Feature Elimination 
(RFE) where, RFE exhibited superior performance, particularly in pinpointing the most pertinent EEG 
channels while including central lobe channels like Fz, Cz, and Pz. With this accuracy between 97 to 99% 
is recorded by Electroencephalography Neural Network (EEGNet). Our experimental findings indicate that, 
models using RFE achieved enhancement in accuracy to classifying depressive disorders across diverse 
classifiers: EEGNet (96%), Random Forest (95%), Long Short-Term Memory (LSTM: 97.4%), 1D-CNN with 
95%, and Multi-Layer Perceptron (98%) irrespective of central lobe incorporation. A pivotal contribution of 
this research is the development of a robust Multilayer Perceptron (MLP) model trained on EEG data from 
382 participants, achieved accuracy of 98.7%, with a perfect precision score of 1.00, F1-Score of 0.983, and 
a Recall-Score of 0.966, to make it an enhanced technique for depression classification. Significant 
channels identified include Fp1, Fp2, F7, F4, F8, T3, C3, Cz, T4, T5, and P3, offering critical insights about 
depression. Our findings shows that, optimized EEG channel selection via RFE enhances depression 
classification accuracy in the field of brain-computer interface. 
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1.  Introduction 
Mental health encompasses emotional, social, and 

psychological well-being, affecting thoughts, feelings, 

and behaviors. Maintaining good mental health is crucial 

for functioning effectively across life stages, So, making 

early detection of mental disorders essential for 

balanced mental health [1]. Non-invasive technologies 

use external headgear to measure brain signals without 

the need for surgery, leading to increased popularity [2]. 

The widespread application of digital processing for 

electroencephalography (EEG) signals spans diverse 

fields, including mental task and emotion classification. 

Given the multitude of EEG channels available, the 

necessity for efficient channel selection algorithms has 

become evident, with varying relevance across 

applications. The primary objectives of the channel 

selection process encompass: (i) Diminishing 

computational complexity in EEG signal processing by 

pinpointing pertinent channels for extracting crucial 

features, (ii) Curbing overfitting arising from 

unnecessary channels to enhance overall performance, 

and (iii) Trimming setup time in specific applications. The 

crux of insightful information concerning the functional 

state of the human brain resides in five distinct brain 

waves, characterized by different frequency bands: delta 
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(0–4 Hz), theta (3.5–7.5 Hz), alpha (7.5–13 Hz), beta 

(13–26 Hz), and gamma (26–70 Hz). Delta waves 

correlate with deep sleep, theta waves with the profound 

reflective state (body sleeping/mind wakeful), alpha 

waves with dreaming and relaxation, beta waves with 

heightened waking attention, and gamma waves with 

the brain's decision-making mode. Mental illnesses 

introduce unexpected disruptions in brain waves, 

necessitating substantial signal processing efforts for 

abnormal state diagnosis [3]. Typically, acquired EEG 

signals manifest as multi-channel data. When classifying 

these signals, two options emerge working on a subset 

of channels selected based on specific criteria or 

working on all channels [4]. Fig. 1 provides an overview 

of the general 

based on Optimized Vs All EEG channel 

EEG signal classification process, emphasizing channel 
selection. Within this signal-processing context, the 
imperative to reduce channel numbers arises from the 
time-intensive setup process associated with a large 
channel count, causing inconvenience to subjects. EEG 
channel selection algorithms are needed with varying 
importance from one application to another[5]. Various 
techniques are contributed by researchers in optimizing 
the channels such as normalized mutual information 
(NMI) to optimally select EEG channels, achieving high 
accuracy in emotion detection while reducing channel 
count [6]. The correlation coefficient method can 
effectively determine the best channel combination, 
enhancing motor imagery decoding accuracy for both 
healthy individuals and ALS patients [7]. The 
suggested sparse common spatial pattern algorithm for 
EEG channel selection can be tailored to achieve 
optimal classification accuracy by filtering out noisy and 
irrelevant channels [8]. A method that optimizes EEG 
channel selection for brain-computer interfaces by 
using regularized common spatial patterns (CSP) and 
multi-band signal decomposition, achieving high 
accuracy with fewer channels [9]. Another study 
examines EEG channel selection methods for motor 
imagery in brain-computer interfaces, revealing that 
using a subset of channels (10-30% of total) can offer 
comparable performance to using all channels, 
highlighting efficiency in signal processing and system 
performance [10]. StEEGCS demonstrates superior 
performance compared to various cutting-edge EEG 
channel selection methods when tested on real-world 

EEG datasets [11]. The study introduces an EEG 
channel selection method utilizing a Gumbel-softmax 
concrete selector layer, which optimizes both channel 
selection and neural network parameters 
simultaneously. It shows better performance across 
two EEG tasks compared to traditional task-specific 
benchmarks. Contributed research by various authors 
is tremendous support to propose enhanced approach 
for EEG channel selection and to understand its effect 
on classification and analysis of time for EEG data [12]. 
In this paper author presents a comprehensive survey 
of various channel selection techniques for EEG signal 
processing in a wide range of applications, with the key 
purpose of reducing computational complexity, 
mitigating overfitting, and reducing setup time [5]. A 
latest study recommended an optimal channel 
selection method kernel-target alignment (KTA) to 
improve the viability and effectiveness of EEG-based 
assessments for depression [13]. One more study 
compared various single-channel EEG measures and 
found that a combination of linear and nonlinear 
measures could achieve up to 92% classification 
accuracy in discriminating between depressive and 
control subjects, demonstrating that single-channel 
EEG analysis can provide depression detection at the 
level of multichannel EEG analysis. EEG recordings 
from 13 depressive patients and 13 matched controls 
examination of 30-channel EEG using linear and 
nonlinear methods. Logistic regression analysis, paired 
with leave-one-out cross-validation, was used to 
determine classification accuracy for each individual 
EEG channel. Solo-channel electroencephalographic 
study can provide insight of depression at the level of 
multiple electroencephalographic channel analysis 
[14]. One of the study aimed to find a simple method 
for detecting depression using single-channel EEG 
signals, and found that a combination of linear (SASI) 
and nonlinear (DFA) analysis of a single EEG channel 
(Pz) can provide high accuracy (91.2%) in 
differentiating depressive and healthy individuals [15]. 
The proposed method uses EEG signals and a 
stochastic search algorithm to recognize major 
depressive disorder with high accuracy, providing a 
possible solution for an intelligent, computer-aided 
diagnostic tool to aid clinicians in early MDD diagnosis 
[16]. Traditional methods for identifying depression 
often rely on subjective scales, which can lack 
objectivity and precision. Addressing these limitations, 
recent advancements in EEG-based depression 
recognition have shown promise in providing more 
accurate and objective assessments [17]. The 
researchers investigated the use of EEG data and 
machine learning methods to detect mild depression, 
finding that the beta frequency band and left 
parietotemporal lobe region were most relevant, and a 
combination of the GSW feature selection method and 
KNN classifier performed best [18]. The research 
proposes an adaptive channel fusion method using 

 

Fig. 1. General process of EEG signal classifification
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improved focal loss functions for improved depression 
recognition from EEG signals [19]. Another study, 
presents a machine learning-based framework for 
detecting depression using EEG signals from a publicly 
available dataset, achieving a high classification 
accuracy of 96.36% using a BF-Tree classifier and a 
feature vector length of 12, outperforming existing 
state-of-the-art approaches [20]. The study used 3-
channel EEG signals and linear/nonlinear features to 
classify depression patients and healthy controls, 
achieving 72.25% accuracy and suggesting the 
potential for early depression diagnosis. Collected EEG 
signals from 3 electrodes (Fp1, Fpz, Fp2)e extracted 3 
linear features (Min-Max-Center Value)) and 3 
nonlinear features (correlation-dimension, Renyi-
entropy, C0-complexity) from the 

electroencephalograms [21]. Author used single-
channel EEG signals and machine learning to 
discriminate between major depressive disorder 
patients and healthy controls with 97.28% accuracy 
[22]. One of the study used a combination of 
Independent Component Analysis (ICA) and sLORETA 
methods to analyze the resting EEG data [23]. The 
major finding is that, theta & alpha action in depressed 
subjects at parietal & occipital positions may redirect a 
diminished neural activation in these regions of 
brain[24]. The emotional and physical symptoms 
significantly hinder an individual's ability to perform at 
work or in social settings. Depression frequently 
presents as chronic sorrow, a lack of interest in once-
enjoyable activities of interest, and more [25]. 
Traditional methods for diagnosis which rely on the 

 

 
 

Fig. 2. Architecture of proposed methodology to classify Major Depressive Disorder (MDD) 
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symptoms reported by people, can make accurate 
diagnosis challenging. It can result in false diagnosis or 
delayed treatment [26]. The timely detection of 
depression can greatly improve treatment plans and 
help prevent serious consequences like the alarmingly 
high risk of suicide among young adults [27]. 

2.  Methodology 

After the systematic review, it is been clearly noted that, 

without optimum channel selections w.r.t specific mental 

illness there is no sense in proceeding for classification 

of subjects undertaken for mental illness (MDD) 

analysis. We have proposed and implemented the 

“Hybrid technique Power Spe ctrum Analysis 

(AVR+AAR), Entropy Calculation using Probability 

mass Function (PMF) & deep learning approaches to 

MDD using EEG data by channel optimization using 

RFE. 

The proposed methodology shown in Fig. 2 explore 
a structured approach to classify MDD based on EEG 
data. The process starts with collecting EEG recordings 
from a standardized dataset that is AHEPA dataset. To 
handle class imbalance, the data is subjected to 
augmentation using Generative Adversarial Networks 
(GANs) and validated with Chi-square tests and p-
value analysis, ensuring a statistical validation of the 
augmented data. Data pre-processing techniques-
standardization, minimax scaling, ANOVA, and Tukey 
tests-are used for normalizing the data.  Heuristic 
measures, like Asymmetric Variance Ratio (AVR) and 
Amplitude Asymmetry Ratio (AAR), techniques are 

combined with channel selection techniques such as 
Recursive Feature Elimination (RFE) and entropy-
based analysis for the selection of the most critical EEG 
channels. The features from important frequency 
bands, like Alpha, Beta, Gamma, Delta, High Beta, and 
High Gamma, are also extracted. A comparative 
heuristic approach is used to fine-tune channel 
selection by integrating AVR, AAR, and entropy 
measures. Further methodology focuses on, designing 
and training classifiers. The machine learning 
algorithms such as, Random Forest, Gradient 
Boosting, Support Vector Machines (SVM), Logistic 
Regression, AdaBoost, and Naïve Bayes implemented 
for feature extraction and classifications. In addition to 
that, deep learning models such as, Long Short-Term 
Memory (LSTM), Convolutional Neural Networks 
(CNN), Recurrent Neural Networks (RNN), and 
EEGNet are implemented and evaluated. Then the 
models use different performance metrics such as 
accuracy, precision, recall, F1-score, and ROC-AUC 
curve that helps to ensure, the evaluation of the 
implemented models and reliable classification results. 
This integrated pipeline allows the development of an 
optimized approach for stages detection in MDD in the 
proposed feature work, through a combination of 
advanced data pre-processing and feature selection 
along with robust classification techniques. 
 

A.  Dataset 

A standard EEG dataset serves as the original source 
of the input. The dataset precise in Fig. 3. This dataset 
comprises EEG signal observations made in the 
second department of neurology at the AHEPA 

 

 
Fig. 3. International 10-20 Electrode placement and Dataset Summary 
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General Hospital in Thessaloniki [19]. This dataset 
consists of electroencephalograms of 293 patients 
divided into two groups: Healthy (95 subjects) and 
Depressive (198 subjects). For recording EEG, the 
dataset maker used a Nihon Kohen device (EEG-2100) 
with 19 electrodes situated on the head as per the 10–
20 scheme: [Fp1-Fp2-F7-F3-Fz-F4-F8-T3-C3-Cz-C4-
T4-T5-P3-Pz-P4-T6-O1-O2]. With sampling rate of 500 
Hz for each signal. The period of EEG recordings 
ranged flanked by 5 minutes to 21 minutes. In the pre-
processing, as an inactive EEG was noted with the 
eyes closed, the important insights like, artifact 
removal, normalization, standardization, and 
dimensionality reduction for classification are 
performed. Each step was carefully chosen to reduce 
noise, standardize features, and improve model 
performance. We used Z-score standardization and 
min-max normalization to handle EEG signal variability, 
ensuring better model stability. Additionally, Recursive 
Feature Elimination (RFE) and Principal Component 
Analysis (PCA) helped retain the most relevant 
features, reducing complexity while improving 
accuracy.  The EEG electrode labels correspond to 
specific regions of the brain and follow a standardized 
naming convention. The letters denote different lobes: 
F stands for the frontal lobe, P for the parietal lobe, T 
for the temporal lobe, C for the central region (located 
between the frontal and parietal lobes), and O for the 
occipital lobe. The letter z is used to indicate the 
midline, which refers to the center of the head. 
Additionally, numbers are used to represent 
lateralization: odd numbers (such as F3 or C3) indicate 
electrodes placed on the left hemisphere, while even 
numbers (such as F4 or C4) refer to the right 
hemisphere. Labels with “z” (like Fz, Cz, or Pz) specify 

positions located directly on the midline of the scalp. 
Diagnosis is the target column with, ‘0’ indicating the 
patient is healthy and ‘1’ indicating the patient is 
depressed.  

Generative Adversarial Networks (GANs) was used 
to increase the number of healthy patients from 95 to 
184. This increased the dataset size to 382. The initial 
dataset was set with 19 channels records for each 
Frequency Band: Alpha, Beta, Delta, Gamma, High 
Beta and High Gamma. ANOVA and Tukey’s test was 
used to filter the Significant Frequency Band (Alpha) for 
further research. 

 

B. Selection of Frequency Band 

To select frequency band for the research ANOVA test 

is been carried out. further, Tukey’s test has been 

performed to confirm the significant band selection. Fig. 

4(a), outcome the selection of Alpha band based on the 

F value calculated as maximum compared with all 

respective frequency bands (Alpha, Beta, Gama, Theta, 

High Beta etc.) Fig. 4(b) Tukey’s test confirms that alpha 

frequency band having all specified channel pairs are 

significant for further studies.  

 

 

(a) 

 

(b) 

 

Fig. 4. Tests to select frequency band (a) ANOVA 

test, (b) Tukey’s test 

 

  4. Result 

As we are working upon specific mental health disorder 

i.e. depression, our focus is to study part of the brain and 

effective activity analysis in the region of brain. Human 

emotional states are believed to exhibit distinct EEG 

signals, necessitating channel selection for efficient 

emotion classification and computational timesaving. A 

specific brain region is associated with emotions, 

rendering channels from unrelated areas irrelevant to 

emotion classification. Channel selection methodologies 

for emotion classification can be broadly classified into 

filtering and wrapper techniques. Rizon et al. [28] 

introduced an innovative asymmetric ratio (AR) channel 

selection method for recognizing human emotions from 

EEG signals. This method employs variance ratios 

between hemisphere channels as indicators for brain 

region assessment and emotion-associated channels. 

The electrical activity is accurately gauged by the 

spectral power ratios across hemisphere channels. The 
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asymmetric variance ratio (AVR) is defined as Eq. (1)  

[28]. 

 

AVR = (𝑉(𝐿𝐻𝐶) − 𝑉(𝑅𝐻𝐶))/(𝑉(𝐿𝐻𝐶) + 𝑉(𝑅𝐻𝐶) )             (1) 

                                                                    

Where,V(LHC) represents the variance of the Left 

Hemisphere Channel, while V(RHC) denotes the 

variance of the Right Hemisphere Channel. The indices 

LHC and RHC range from 0 to N, where N is the number 

of electrodes that are evenly distributed across the left 

and right hemispheres of the brain. Additionally, the 

Amplitude Asymmetric Ratio (AAR) is a measure used 

to assess the asymmetry in brain activity between two 

events or regions. It is calculated using Eq. (2) [28].  

 

         AAR = (𝑃(𝑖) − 𝑃(𝑗))/(𝑃(𝑖) + 𝑃(𝑗) )                                   (2) 

 

Where, P(i) and P(j) are the probabilities associated with 

events i and j, respectively. This ratio helps in 

understanding the imbalance or dominance of brain 

activity across different hemispheres or during specific 

cognitive events.Here 𝑃(𝑖) is the spectral power of left 

hemisphere channel, 𝑃(𝑗) is the spectral power of right 

hemisphere channel, 𝐿𝐻𝐶 = 0 to N, 𝑅𝐻𝐶 = 0 to N, and N 

is the number of electrodes on left and right 

hemispheres. 

 

A. Heuristics of AVR & AAR: 

Asymmetric Variance Ratio (AVR): AVR is a metric used 

in EEG (electroencephalography) to quantify the 

asymmetry of brain activity between hemispheres. By 

calculating AVR for different EEG channels, researchers 

can identify channels that exhibit significant hemispheric 

differences during emotional experiences. Channels 

with higher AVR values indicate the stronger 

hemispheric asymmetry and such channels are selected 

for further analysis. Amplitude Asymmetry Ratio (AAR): 

Amplitude Asymmetry Ratio (AAR) is another metric 

used in EEG (electroencephalography) to quantify the 

asymmetry of brain activity between hemispheres. AAR 

for different EEG channels identifies channels where 

there are significant differences in amplitude between 

the left and right hemispheres. Channels exhibiting 

higher AAR values indicate stronger hemispheric 

asymmetry in amplitude and considered for further 

emotion analysis. 

Above mentioned heuristics for AVR and AAR 

methods are need to take in consideration in case of 

critical channels selection in the case of depressive and 

healthy subjects. Here, we have proposed and 

implemented various  technique such as Power 

Spectrum Analysis (AVR+AAR) ,Entropy Calculation 

using Probability mass Function (PMF) & Recursive 

Feature Elimination (RFE)  for EEG Critical Channel 

selection, which has outcome to select and ranked 

EEG channels like most significant, more significant & 

average significant to be considered an optimal 

channels based on their high asymmetry ration 

between left and right hemispheres and the 

uncertainties measurement using high entropy 

measured channels. The pair or ranked channels in 

each rank may result in numerous accuracy in the 

classification of the subject being depressive or normal 

and these research further may progress in identifying 

major depressive stages hence, it may become one of 

the novel approach can be added in the field of brain 

computer interfaces. The Algorithm 1 shows steps to 

find AAR as per the following. 

 

Algorithm 1: (Amplitude Asymmetry Ratio (AAR)) 

Input: LC: left_channels, RC: right_channels 
Output: LC,RC, p-value 
Abbreviations: H_AAR: healthy_aar D_AAR: 
depressive_aar, L: left, R: Right, HL: = Healthy Left 
Channel, HR: = Healthy Right Channel, DL: = 
Depressive Left Channel, DR: = Depressive Right 
Channel. 
 

 
1. 
2. 
3. 
4. 
4.1 
 
 
 
 
 
4.2 
 
 
 
 

5. 
6. 
 
7. 
8. 
9. 
10. 

Procedure:   
  LC = ['Fp1', 'F7', 'F3', 'T3', 'C3', 'T5', 'P3', 
'O1'] 
 RC = ['Fp2', 'F8', 'F4', 'T4', 'C4', 'T6', 'P4', 
'O2'] 
              H_AAR  [] 
              D_AAR  [] 
                           FOR (L,R)  (LC, RC): 

𝐴𝐴𝑅ℎ𝑒𝑎𝑙𝑡ℎ𝑦 = ∑ ( 
𝐻𝐿 − 𝐻𝑅

𝐻𝐿 + 𝐻𝑅+∈
)

𝑛

𝐻𝐿,𝐻𝑅=1

 

   
                            FOR (L,R)  (LC, RC): 

𝐴𝐴𝑅𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 = ∑ ( 
𝐷𝐿 − 𝐷𝑅

𝐷𝐿 + 𝐷𝑅+∈
)

𝑛

𝐷𝐿,𝐷𝑅=1

 

                p_values [] 
                FOR i  LC: 
                      T-Test (𝐴𝐴𝑅ℎ𝑒𝑎𝑙𝑡ℎ𝑦, 

𝐴𝐴𝑅𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒) 

                append (p-value , p_values) 
                results( LC,RC, p-value) 
                Sort (results) 
                PRINT (results). 
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(a)  

(b)  

Fig. 5. AAR Score (a) Healthy & (b) Depressive 
subjects 
 
Fig. 5(a) shows visualization of channels and their 
scores obtained for AAR (Depressive) and Fig. 5(b) 
scores AAR for healthy subjects. Table 1, showing the 
experimentation results of power spectrum analysis on 
Electrode pair considered for both the subjects normal 
as well as depressive. The results reveals notable 

differences in the selection of EEG channel pairs based 
on AVR and AAR scoring methods, particularly in the 
most significant category. When using the AVR score, 
the most significant pairs are located in the temporal 
(T5-T6) and occipital (O1-O2) regions, indicating that 
these areas may be more responsive or informative 
under this metric. In contrast, the AAR score 
emphasizes frontal (F7-F8) and temporal (T3-T4) 
channels as most significant, suggesting that it 
captures neural activity patterns from slightly different 
brain regions. In the more and average significant 
categories, there is some overlap but also considerable 
variation. For instance, channels like F3-F4 appear 
consistently across both scoring methods, though often 
at a lower level of significance. This suggests that while 
certain regions are generally informative (like the 
frontal lobe), the scoring method strongly influences 
which areas are prioritized. Overall, these differences 
highlight that AVR and AAR metrics may reflect distinct 
neural dynamics, which could impact how EEG data is 
interpreted or used in applications such as cognitive 
state monitoring or brain-computer interfaces. 
 

B. Entropy Calculation using Probability mass 
Function (PMF) 

Choosing based on entropy entails assessing the 
unpredictability of an EEG channel, considering the 
EEG signal as a random variable. The entropy for 
channel c is calculated by Eq. (3) [28], 

 

    𝐻(𝑐) = − ∑ (𝑝(𝑥𝑖) 𝑙𝑜𝑔2 𝑝(𝑥𝑖  ))
𝑛

𝑖=1
                         (3) 

 
where p(xi) represents the probability mass function of 
the channel over n trials. The n channels with the 
topmost entropy are elected as input to further 

Table 1. AVR and AAR Method Implementation Results 

Channel Selection Methods → AVR AAR 

Channel 
Pair No 

Electrode 
Pair 

Array pair in the 
implementation 

AVR 
Score 
in(Hz) 

Depressive 
(FFT) 

Depressive 
(Spectral 

Power)(Hz) 

Spectral Power 
in the Alpha 

Band (Hz) (Left 
Hemisphere) 

Spectral Power 
in the Alpha 
Band (Right 
Hemisphere) 

1 FP1 & FP2 0,1 
1.19 

 
-0.012 -0.024 7.792593564 8.180316704 

2 F7 & F8 2,6 
1.38 

 
-0.141 -0.277 6.679482341 11.8201506 

3 F3 & F4 3,5 
1.22 

 
-0.026 -0.052 8.90507678 9.89850595 

4 T3 & T4 7,11 
0.89 

 
-0.396 -0.685 3.825483281 20.53127822 

5 C3 & C4 8,10 
1.2 

 
-0.034 -0.069 12.33391045 14.18722794 

6 T5 & T6 12,16 
1.96 

 
0.187 0.362 9.744580179 4.557625377 

7 P3 & P4 13,15 
1.42 

 
0.041 0.082 6.267773615 5.308472944 

8 O1 & O2 17,18 
1.54 

 
0.084 0.167 5.218862555 3.724071122 
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procedure of classification. Table 2 represents entropy 
calculated for each channel. 
 
C. Major Depressive Disorder Classification based 

on optimized EEG channels: 

EEG channel optimization using Recursive Feature 
Elimination (RFE) is a systematic approach to 
identifying the most relevant EEG channels for 
classifying depressive and normal subjects. This 
process reduces the dimensionality of the feature 
space by eliminating irrelevant or redundant channels 
while retaining those that, contribute most significantly 
to classification accuracy, thereby improving model 
performance and computational efficiency. 

 

Table 2. EEG Channels Entropy score experiment 
results 

Chann

el 

Name 

Entropy  of 

Channel 

Chann

el 

Name 

Entropy  of 

Channel 

FP1 2.938665479694 C4 2.983472691221 

FP2 2.939698577005 T4 3.058298546160 

Fz 3.044672090277 T5 3.010856415941 

F5 2.957788026382 P3 2.579697725962 

F2 3.045236095710 Pz 2.752029285544 

F4 2.980541971599 P4 2.764383032989 

F8 2.993311601390 T6 2.786933766242 

T3 3.074479057257 O1 3.055173204750 

C3 2.903351653257 O2 2.884697020777

2658 

Cz 2.895923086529

8675 

  

 
The RFE process begins by training a machine learning 
classifier on the complete set of EEG channels. In this 
study, we employ the RandomForestClassifier, which 
is well suited for EEG data due to its ability to rank 
features based on importance. The significance of 
individual channel is quantified built on its influence to 
reducing the Gini impurity in decision trees within the 
Random Forest model. For a given feature j, the 
importance score Ij is computed as per Eq. (4) [29], 

    𝐼𝑗 =
1

𝑇
∑ ΔGini(j, t)

𝑇

𝑡=1
                                             (4) 

Where ΔGini (j, t) denotes the decrease in Gini impurity 
caused by feature j in tree t, and T represents the total 
number of trees in the RandomForest ensemble. RFE 
iteratively eliminates the least important features, as 
determined by the classifier, while retraining the model 
on the remaining features at each step. This repetitive 
process remains until a pre-defined number of features 
is reached or till model performance reaches a plateau. 

Specifically, if F= {f1, f2… fn } denotes the set of EEG 
channels, at each iteration k, the feature set is reduced 
as per Eq. (5) [29], 

        𝐹𝑘+1 = 𝐹𝑘  /Fmin                                                (5) 

Where  𝐹𝑚𝑖𝑛 represents the channel with the lowest 
importance score in the current set 𝐹𝑘. The model is 

then retrained with the reduced set of features, and its 
performance is evaluated. Once the optimal number of 
EEG channels is identified, the classifier is retrained on 
this reduced feature set. Performance is evaluated 
using standard metrics such as accuracy, precision, 
recall, and F1-score. By limiting the feature space to 
the most relevant channels, the model is expected to 
achieve comparable or improved performance with 
reduced computational complexity. The result of 
comparative analysis of all above implemented channel 
optimization methods shown in following Table 3. 
Channel Optimization using Recursive Feature 
Elimination is as per steps defined in    Algorithm 2. 
Recursive Feature elimination methods is been tested 
separately on all classifiers because of different 
channel set obtained by this method.   
 

Algorithm 2: EEG Channel Optimization using 
Recursive Feature Elimination  

Input: D: Dataset  
Output: S_ch , Acc 
Abbreviations:  X: EEG Features, Y: Labels (0: 
Normal, 1: Depressive) , Xtr, Xte: Training and 
Test Features,         Ytr, Yte: Training and Test 
Labels, C: RandomForestClassifier, R: Recursive 
Feature Elimination (RFE), k: Number of Selected 
Channels, S_ch: Selected Channels, Acc: 
Accuracy, Ypred: Predicted Labels 

Procedure:  
1. Recursive Feature Elimination (Dataset) 

1.1 DDatset 

             1.2 X,YD 

             1.3 Xtr, Xte, Ytr, Yte   

train_test_split(X,Y,   

                  test_size=0.3) 

             1.4 C RandomForestClassifier 

       2. R RFE(C,n_features_to_select=k)R.fit(Xtr,  

           Ytr) 

       3. Sch{indices wher, R. ranking=1)} 

                     3.1 C.fit (Xtr [: , S_ch ],  Ytr) 

                     3.2 Ypred C. predict(Xte [: , S_ch ]) 

                     3.3Accaccuracy_score(Yte, Ypred )      

        4. return S_ch , Acc 

 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.719
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 581-596                                                e-ISSN: 2656-8632 

 
Manuscript received February 24, 2025; Accepted April 20, 2025; date of publication May 5, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.719 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 589               

  
As per the analysis in the Table 4, the machine learning 
and deep learning  approach such as Random Forest 
is concluding classification accuracy 95% with or 
without considering central lobe channels, LSTM 
having classification accuracy recorded as 97% using 
optimized method RFE & without consideration of 
central lobe channels, 1D-CNN reported classification 
accuracy 95% with or without consideration of central 
lobe channels, LSTM & Multilayer Perceptron & 
EEGNet are best classifiers over the other 
implemented various machine learning approaches 
concluding model accuracy is between 95% to 99% 
while consideration of optimized channels by RFE 
optimization techniques over the other optimized 
techniques without ambiguity in consideration 
of central lobe channels. Hence LSTM, MLP & EEGNet 
outperforming with or without considering central lobe 
channels. The other way is explored as follow.  
 
D. Classification result on Entire Dataset vs. 

Optimized feature (EEG Channels) set w.r.t 

different classifiers 

 

1. Feature Selection 

Feature choice is a machine learning process that 
involves selecting the most related features from a 
dataset to use in a model. In this study, feature 
selection was done using Recursive Feature 
Elimination. Top-ranked feature subsets determined 
via Recursive Feature Elimination (RFE) have been 
employed for assessing the performance of numerous 
machine-learning models. Based on the model's 
empirical feedback, RFE, a wrapper procedure, 
incrementally minimizes less essential features, 
remaining only the most significant ones. To identify 
interactions between traits and the target variable, the 
dataset first served to train the Random Forest 
Classifier. Then, attributes were classified by slowly 
eliminating the least noteworthy ones through 
Recursive Feature Elimination (RFE). RFE iteratively 
clipped the feature set until solely the top 15 features 
were retained, using the Random Forest Classifier as 
the foundational model. The importance of these traits 
was classified, with lower numbers implying more 
significance. Considering most models supplied good 
accuracy, feature counts from ten to fifteen were 
implemented for comparing the models. The same top-

Table 4. Classification Accuracy to test MDDS over Normal Subject   
Sr. 

No. 

Classifier Accuracy with 

All Channels 

(Epoch) 

 

Accuracy with 

Optimized 

Channels Methods 

(AVR, AAR & 

Entropy) (without 

Central Lobe 

Channels 

[Fz,Cz,Pz]) 

Accuracy with 

Optimized 

Channels Methods 

(AVR, AAR & 

Entropy) (with 

Central Lobe 

Channels 

[Fz,Cz,Pz]) 

Accuracy 

with 

Optimized 

Channels 

Methods 

(RFE) 

(without 

Central 

Lobe 

Channels 

[Fz,Cz,Pz]) 

Accuracy with 

Optimized 

Channels 

Methods 

(RFE) 

(without 

Central Lobe 

Channels 

[Fz,Cz,Pz]) 

1 Random Forest 92% 86% 88 95% 95% 

2 
Support Vector 

Machine 
80% 74% 76% 77% 77% 

3 
Long Short-Term 

Memory 

94.81% 

((200-250)) 
90.91% 89.61% 97.40% 93.51% 

4 RF+LSTM 95% (200-250) 86% 88% 94% 87% 

5 1D-CNN+LSTM 97% (50) 92% 92% 95% 95% 

6 
Multilayer 

Perceptron 

98%  

(100) 
98% 98% 98% 98% 

7 

Electroencephalogra

phy Neural Network 

(EEGNet) 

97 to 99% 

(50) 
91% 92%, 96% 96% 

 

Table 3. Optimized Channels/Channels Set to classify MDDS 
Methods/Channel 
Significance 

High Significant 
Above Average 

Significant 
Less Significant No Significant 

AVR T5 & T6, O1 & O2 P3 & P4, F7 & F8 F3 & F4, FP1 & FP2 T3 & T4 

AAR T3,T4, F7, F8  T5-T6, C3-C4, O1-O2 F1,F2,F3, F4  P3, P4 & Pz  

Entropy T3,T4, F7, F8 & Fz T5,T6,C3,C4 O1 & O2  F1,F2,F3, F4  P3, P4 & Pz  

 RFE F7,F4,T5,P3,Pz Not Applicable 
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ranked features were applied uniformly across all 
models without recalculating rankings for each, 
ensuring a consistent basis for comparison. 

2. Model Selection 

The features in the dataset were scaled using Min-Max 
Scaler. The data was also standardized. Nine distinct 
machine and deep learning models were implemented 

to fit the data as per listed and the accuracies and 
performance achieved by these models after training 
on the entire dataset are summarized in Table 6.  To 
achieve the best classification performance, we tuned 
hyper parameters using Grid Search Cross-Validation 
(GridSearchCV) and Randomized Search Cross-
Validation with a 5-fold cross-validation method. Table 
5 on above page is summarizing the selected models 

Table 5. Summary of Hyperparameter Settings and Tuning Strategies 

Classifier Key Hyperparameters Tuning 
Strategy 

Optimization 
Method 

Reproducibility 
Measures 

Random Forest 
(RF) 

n_estimators=100, 
max_depth=10, 
min_samples_split=2, 
min_samples_leaf=1, 
max_features=sqrt, 
criterion=gini 

GridSearch
CV 

Bootstrap 
sampling 

Fixed random seed 
(42) 

Gradient 
Boosting 

n_estimators=200, 
learning_rate=0.1, 
max_depth=6, 
min_samples_leaf=1, 
subsample=0.8 

GridSearch
CV 

Deviation loss 
function 

Scikit-learn library 

XGBoost 

n_estimators=200, 
learning_rate=0.1, 
max_depth=6, 
min_child_weight=1, 
gamma=0.0, subsample=0.8, 
colsample_bytree=0.8 

Randomize
d Search 
CV 

Multi-class 
objective 
function 

XGBoost library 

Logistic 
Regression 

penalty=L2 (Ridge), C=1.0, 
solver=lbfgs, max_iter=1000 

GridSearch
CV 

Regularization 
for 
generalization 

Scikit-learn library 

SVC (Support 
Vector Classifier) 

kernel=RBF, C=1.0, 
gamma=scale, tol=1e-3, 
max_iter=1000 

GridSearch
CV 

Margin 
maximization 

Scikit-learn library 

MLP Classifier 

hidden_layer_sizes=(64), 
activation=ReLU, 
solver=Adam, 
learning_rate=0.001, 
batch_size=32, epochs=50, 
loss=categorical cross-entropy 

Randomize
d Search 
CV 

Deep learning 
optimization 

TensorFlow/Keras 

TabNet Classifier 

decision_steps=3, 
batch_size=64, 
virtual_batch_size=32, 
momentum=0.98, gamma=1.5 

GridSearch
CV 

Feature 
selection 
entropy 

PyTorch-based 
TabNet 

CatBoost 
Classifier 

iterations=1000, 
learning_rate=0.1, depth=6, 
l2_leaf_reg=3.0, 
border_count=32, 
leaf_estimation_method=Newt
on 

Randomize
d Search 
CV 

Gradient 
boosting 
optimization 

CatBoost library 

LightGBM 
Classifier 

num_leaves=31,  
learning_rate=0.05, 
max_depth=-1, boosting=gbdt, 
min_data_in_leaf=20, 
feature_fraction=0.8 

GridSearch
CV 

Leaf-wise tree 
growth 

LightGBM library 
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and their hyperparameters settings and tuning 
Strategies. 

To optimize the performance of classifiers used in 
our study, we conducted hyperparameter tuning by 
exploring a predefined search range for key 
parameters in Support Vector Machine (SVM), 
Random Forest (RF), and Multi-Layer Perceptron 
(MLP) models. For SVM, we tuned the regularization 
parameter C, which controls the trade-off between 
maximizing the margin and minimizing classification 
errors, with values [0.1, 1, 10]. Additionally, we 
explored different Gamma settings, including ‘scale’ 
and ‘auto’, which influence the kernel function's impact 
on the decision boundary. For Random Forest, we 
varied the number of estimators (n_estimators) 
between 50, 100, and 200, as a higher number of trees 
can improve accuracy but increases computational 
cost. We also tuned the max_depth parameter, 
selecting values [5, 10, 20], to control model complexity 
and prevent overfitting. For MLP (Multi-Layer 
Perceptron), we adjusted the learning rate (0.001, 0.01) 
to balance convergence speed and model stability, and 
explored different numbers of hidden neurons (32, 64, 
128) to optimize network capacity for EEG feature 
representation. By systematically tuning these 
parameters, we ensured that each classifier was 
optimized for robust and reliable MDD classification. 
We used Grid Search Cross-Validation 
(GridSearchCV) and Randomized Search Cross-
Validation to find the best hyperparameters. 5-fold 
cross-validation helped ensure reliable model 
evaluation. To improve reproducibility, we set a fixed 
random seed (42) and listed the software libraries 
used. This will make it easy for reviewers to understand 
the hyperparameter tuning process. 

Feature Selection is applied, to identify the channels 
in the human brain, which can help detect depression. 
These classifiers underwent training on the dataset 
with reduced features with MLP demonstrating the 
highest accuracy amongst them with a commendable 
accuracy of 98.70%. It also displayed strong 
performance metrics with a Precision Score of 1.00, 
F1-Score of 0.983051 and Recall Score of 0.966667. 
Table 8 on next page summarizes the accuracies of the 
algorithms with different feature counts which clearly 
shows that, the MLP Classifier is the best model among 

all the algorithms, achieving a consistent accuracy of 
98.70%. These findings demonstrate that, the identified 
channels can be effectively used for depression 
detection. Given the serious nature of depression, early 
detection through these channels can play a crucial 
role in timely intervention and treatment. By utilizing 
these methods, we can contribute to improving mental 
health outcomes and potentially mitigate the impact of 
depression through early-stage identification and 
support. The 11 most important channels are identified 
and mentioned in Table 7.    

As discussed earlier in Fig. 2 which shows a 
flowchart that summarizes the complete process in 
order to provide an in-depth understanding of the steps 

that are required. It makes the flow of the process 
easier to comprehend by providing a graphical 
representation of how it works from data collection to 
the final classification. The MLP model achieved high 
classification performance with only one 
misclassification, correctly identifying 47 non-
depressed and 29 depressed subjects. This indicates 
strong model accuracy and reliability in distinguishing 
between the two classes as per confusion matrix.          
Achieving a commendable accuracy of 98.70%, the 
model also achieved strong performance metrics with 
a precision of 1.00, recall score of 0.966667 and F1-
Score of 0.983051. Confusion matrix is a crucial 
method to check how classification models work.  

The predictions are classified into four groups - True 
Positives (TP), False Positives (FP), True Negatives 
(TN) and False Negatives (FN). This division is crucial 
in the calculation of accuracy, precision, F1-score and 
recall score which give us better insights into the 
model’s performance. The examination of the 
confusion matrix gives us a measure of the model's 
overall accuracy in addition to the specific regions 
where errors may arise resulting in greater emphasis 
on improvements in efficiency. 

Table 7.  Accuracies of Different Algorithms after 
Feature Selection 
Sr. No 1 2 3 4 5 6 7 8 9 10 11 

EEG 
Channel 

Fp
1 

Fp
2 

F
7 

F
4 

F
8 

T
3 

C
3 

C
z 

T
4 

T5 P3 

 

 

Table 6. Performance of Different Algorithms on Entire Dataset 
Sr No. Model Name Accuracy (in %) Precision F1-Score Recall-Score 

1) Random Forest 88.31 0.8000 0.8615 0.9333 

2) Gradient Boosting 92.21 0.8529 0.9063 0.9667 

3) XGBoost 93.51 0.9032 0.9180 0.9333 

4) Logistic Regression 92.21 0.8333 0.9091 1.0000 

5) SVC 72.73 0.5918 0.7342 0.9667 

6) MLP Classifier 98.70 1.0000 0.9831 0.9667 

7) TabNet Classifier 50.65 0.4259 0.5476 0.7667 

8) CatBoost Classifier 92.21 0.8750 0.9032 0.9333 

9) LGBM Classifier 94.81 0.9063 0.9355 0.9667 
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The ROC-AUC curve (Receiver Operating 
Characteristic - Area Under the Curve) is important to 
evaluate the performance of binary classifiers. It plots 
the True Positive Rate (TPR) against the False Positive 
Rate (FPR). This visualizes the relationship between 
recall (TPR) and fall-out (FPR) across different 
thresholds. The AUC (Area Under the Curve) 
measures the ability of the model to classify between 
classes. A higher AUC score indicates better model 
performance. This curve is particularly useful for 
comparing models and assessing their effectiveness. 
Fig. 6 shows the ROC-AUC curve of the MLP model. 
The high AUC score of 0.9943 of the MLP model 
demonstrates its powerful classifying power. The 
effectiveness of the chosen channels in detecting 
depression is indicated by the strong performance of 
the model. Therefore, these channels can help in the 
effective and quick identification of depression. This 
facilitates quick action and therapy. 

 

 

Fig. 6. ROC-AUC Curve of MLP Model 

 
The AUC score is calculated by as per the Eq. (6).  

∫ 𝑇𝑃𝑅(𝑥)𝑑𝐹𝑃𝑅(𝑥)
1

0
  (6) 

5. Discussion 

To ensure our findings are reliable and meaningful, we 
used strong statistical validation techniques, including 
the Chi-Square Test, ANOVA, and the Wilcoxon 
Signed-Rank Test. These tests helped us to confirm 
that, the differences in model performance were not 
random but statistically significant. The Chi-Square 
Test checked whether classification accuracy was 
independent of different feature selection methods and 
classifiers. ANOVA with post-hoc Tukey’s HSD showed 
that certain models and feature selection techniques 
had a significant impact on performance. The Wilcoxon 
Signed-Rank Test further confirmed that optimized 
feature selection methods (AVR, AAR, and RFE) led to 
noticeable improvements in classification accuracy. 
These statistical analyses provide strong proof that, 
combining feature selection techniques with advanced 
machine learning models significantly enhances EEG 
classification performance.  

To comprehensively evaluate the performance of 
classifiers used in Major Depressive Disorder (MDD) 
classification, we employed multiple evaluation 
metrics, including Accuracy, Precision, Recall, F1-
Score, and the ROC-AUC Curve. Accuracy (%) 
provides an overall measure of correctness by 
assessing the proportion of correctly classified 
instances. However, in the presence of class 
imbalance, accuracy alone may not provide an 
accurate representation of model performance. To 
address this limitation, Precision (Positive Predictive 
Value) was included to measure the proportion of 
correctly identified MDD cases among all predicted 
positive cases, ensuring that false positives are 
minimized. Recall (Sensitivity) was used to evaluate 
the model's ability to correctly detect MDD cases, 
minimizing false negatives, which is crucial in medical 

Table 8. Accuracies of Different Algorithms after Feature Selection 

Sr. 
No. 

Model Name Accuracy 
% (10 
features) 

Accuracy % 
(11 features) 

Accuracy % 
(12 features) 

Accuracy % 
(13 features) 

Accuracy % 
(14 features) 

Accuracy % 
(15 features) 

1) Random Forest 87.01 90.91 90.91 92.21 89.61 89.61 

2) Gradient Boosting 90.91 92.21 92.21 92.21 90.91 93.51 

3) XGBoost 92.21 96.10 94.81 94.81 93.51 93.51 

4) Logistic Regression 89.61 90.91 89.61 89.61 89.61 90.91 

5) SVC 76.62 74.03 74.03 74.03 74.03 72.73 

6) MLP Classifier 96.10 98.70 98.70 98.70 98.70 98.70 

7) TabNet Classifier 68.83 61.04 72.73 61.04 41.56 38.96 

8) CatBoost Classifier 88.31 94.81 92.21 94.81 93.51 93.51 

9) LGBM Classifier 92.21 92.21 94.81 97.40 96.10 93.51 
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diagnosis to avoid undetected cases. Since both 
precision and recall are essential in clinical 
applications, we incorporated the F1-Score, which 
provides a balanced measure by computing their 
harmonic mean, making it suitable for datasets with 
imbalanced class distributions. Additionally, the ROC-
AUC Curve (Receiver Operating Characteristic - Area 
under Curve) was utilized to assess the model’s overall 
discriminatory power, providing a threshold-
independent evaluation of classification performance. 
A higher AUC indicates better differentiation between 
MDD and non-MDD cases, making it a robust metric for 
clinical applications. By integrating these 
complementary evaluation metrics, we ensured a 
rigorous assessment of classifier performance, 
enabling a more reliable and clinically interpretable 
approach to EEG-based MDD classification. To make 
sure robustness of model, different validation methods, 
including k-fold cross-validation, leave-one-out cross-
validation (LOO-CV), stratified k-fold cross-validation, 
and hold-out validation. K-fold cross-validation (k=5) 
helped tune the model while balancing bias and 
variance. Leave-one-out cross-validation provided an 
accurate measure of generalization, especially for 
small datasets, but required high computational power. 
Stratified k-fold cross-validation ensured class balance 
in each fold, improving reliability and Hold-out 
validation (80-20 split) tested how well the model 
performed on unseen data. By combining these 
methods, we reduced overfitting risks, improved 
reproducibility, and ensured our models were reliable 
for EEG classification. 

Our research outcomes are compared with number 
of authors w.r.t to the methods, techniques, algorithms 
they used for classification of the depression with 
different channel selection approaches such as, 
techniques contributed by researchers in optimizing the 
channels such as normalized mutual information (NMI) 
to optimally select EEG channels, achieving high 
accuracy in emotion detection while reducing channel 
count [6] . The correlation coefficient method can 
effectively determine the best channel combination, 
enhancing accuracy [7]. Sparse common spatial 
pattern algorithm for EEG channel selection can be 
tailored to achieve optimal classification accuracy by 
filtering out noisy and irrelevant channels [8]. Another 
study examines EEG channel selection methods that 
using a subset of channels (10-30% of total) can offer 
comparable performance to using all channels, 
highlighting efficiency [10]. One more study compared 
various single-channel EEG measures and found that, 
a combination of linear and nonlinear measures could 
achieve up to 92% classification accuracy in 
discriminating between depressive and control 
subjects [14]. Another simple method for detecting 
depression using single-channel EEG signals, and 
found that a combination of linear (SASI) and nonlinear 
(DFA) analysis of a single EEG channel (Pz) can 

provide high accuracy (91.2%) in differentiating 
depressive and healthy individuals [15]. To detect mild 
depression, finding that the beta frequency band and 
left parietotemporal lobe region were most relevant, 
and a combination of the GSW feature selection 
method and KNN classifier performed best [18]. 
Machine learning-based framework for detecting 
depression using EEG signals from a publicly available 
dataset, achieving a high classification accuracy of 
96.36% using a BF-Tree classifier and a feature vector 
length of 12, outperforming existing state-of-the-art 
approaches [20]. The study used 3-channel EEG 
signals and linear/nonlinear features to classify 
depression patients and healthy controls, achieving 
72.25% accuracy and suggesting the potential for early 
depression diagnosis. Collected EEG signals from 3 
electrodes (Fp1, Fpz, Fp2)e extracted 3 linear features 
(Min-Max-Center Value)) and 3 nonlinear features 
(correlation-dimension, Renyi-entropy, C0-complexity) 
from the electroencephalograms [21]. So, for detailed 
comparative study the introduction part provide the 
background of research on classification study of the 
depression. Our study has some limitations such as, 
Limited sample size can impact the generalizability of 
the study's findings, The process of selecting 
participants for the study may introduce selection bias, 
BCI technology is constantly evolving, and the validity 
and reliability of specific BCI measures for depression 
detection may still be an ongoing area of research, 
Interpreting the complex patterns of brain activity 
obtained through BCI can be challenging. So, despite 
these limitation, our research provides important 
insights into the viability of employing EEG-based 
Brain-Computer Interface (BCI) technologies in 
detecting depression. The research indicates that, 
even with a small sample size, machine learning 
models such as MLPs are capable of differentiating 
depressive patterns of brain activity. The research 
emphasizes the importance of using larger and more 
heterogeneous datasets to enhance generalizability 
and minimize selection bias. Moreover, it emphasizes 
the need to establish standardized procedures and 
interpretable models to advance the dependability of 
BCI measures in mental health assessment. As BCI 
technologies advance, our study sets the stage for 
future growth in non-invasive, neurotechnology-based 
mental health testing.  
 

  6. Conclusion  

After the systematic review, it is been clearly observed 
that, channel selection is significant for the mental 
disorder analysis. It may affect to the unnecessary 
computational time, resources as well as false 
prediction or classification of undertaken mental health 
disorder. So, from the experimental results (AVR, AAR, 
Entropy using Probability mass Function (PMF) & 
RFE), RFE demonstrated and evaluated over the other 
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optimized techniques without ambiguity in 
consideration of central lobe channels [Fz,Cz,Pz]) 
which significantly conclude in enhanced performance 
of mental depressive disorder classification by 
undertaking optimized EEG channels. The 
effectiveness of theses elected channels can be 
checked with different machine learning and deep 
learning models such as, Random Forest is concluding 
classification accuracy 95% with or without considering 
central lobe channels, LSTM having classification 
accuracy recorded as 97% using optimized method 
RFE & without consideration of central lobe channels, 
1D-CNN reported classification accuracy 95% with or 
without consideration of central lobe channels, LSTM & 
Multilayer Perceptron & EEGNet are outperformed 
classifiers over the other implemented various machine 
learning approaches concluding model accuracy is 
between 95% to 99% with channel optimization 
technique RFE over the other optimized techniques 
without ambiguity in consideration of central lobe 
channels. 

The MLP model proposed by this study has been 
trained on EEG signal data from 382 patients to 
diagnose their depression. Through careful data 
analysis and training, the following EEG channels were 
identified as primary features for depression detection: 
[Fp1, Fp2, F7, F4, F8, T3, C3, Cz, T4, T5, and P3]. The 
high accuracy of the model of 98.70% displays its 
ability in differentiating between depressed and non-
depressed subjects. The ideal precision score of the 
model of 1.00 along with Recall-Score of 0.966 and F1-
Score of 0.983 demonstrate its powerful and reliable 
performance. This helps us to conclude that, the 
proposed model may be used for the early detection of 
depression demonstrating significant potential for 
clinical applications. This research contributes in the 
field of brain computer interface to treat depression 
classification of the subject. To discuss about future 
work, though even we worked with small and dataset 
and enhanced accuracy by using stratified k-fold cross-
validation to maintain class balance and by data 
augmentation, using GAN as per required class data to 
make it nearly balanced. In the further study, we have 
target, to scale dataset up to the mark by ensuring 
diversity in demographics information present in the 
current dataset. This we must have to explore with the 
objective of identification of MDD stages (Mild, 
Moderate, Server). In addition to that, to find efficiency 
in computational time of training period over entire 
dataset vs. training period with critical channels which 
will be ensuring the computational optimization in 
classification. Finally, explainable AI models such as 
LIME, SHAP, etc. will support our classification of MDD 
stages. 
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