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ABSTRACT This research focuses on the automated identification of retinal diseases. To address this challenge, an artificial 

intelligence-based approach developed utilizing five deep learning models namely Xception, InceptionV4, EfficientNet-B4, 

SqueezeNet, and ResNet-264. The model leverages transfer learning to enhance its performance. It is trained on a dataset of 

optical coherence tomography (OCT) images to classify retinal conditions into four categories: (1) diabetic macular edema, (2) 

choroidal neovascularization, (3) drusen, and (4) normal. The training dataset, sourced from publicly available repositories, 

comprises 1,08,312 OCT retinal images covering all four categories. The proposed models achieved good results. InceptionV4 

outperformed other models across multiple metrics, achieving the highest accuracy (99.50%), precision (100%), recall (100%), 

AUC (100%), and F1 score (100%). It surpassed SqueezeNet (accuracy: 98.00%, precision: 98.00%, recall: 98.00%), 

EfficientNet-B4 (accuracy: 98.50%, precision: 98.50%, recall: 98.50%), Xception (accuracy: 78.25%, precision: 80.36%, 

recall: 77.75%, F1 score: 99.50%), and ResNet-264 (accuracy: 87.75%, precision: 87.94%, recall: 87.50%, F1 score: 87.98%). 

The results highlight the effectiveness of deep learning models combined with transfer learning in achieving accurate and 

efficient retinal disease detection. Future research could focus on expanding the dataset and exploring hybrid architectures to 

enhance classification accuracy and improve generalization across various retinal conditions. 

INDEX TERMS Convolution neural network, Deep learning, Explainable artificial intelligence, Machine learning, Medical 

image analysis, Retinal diseases.

I. INTRODUCTION 

The application of deep learning (DL) in medical image 

analysis has significantly enhanced the accuracy and 

efficiency of disease detection and diagnosis. Traditional 

scientific approaches to disease identification were often time-

consuming, less reliable, and susceptible to errors. However, 

with advancements in deep learning, the biomedical field has 

increasingly adopted automated techniques for disease 

detection, leading to more precise and timely results. One of 

the leading causes of early vision loss is retinal disease or 

damage, which adversely affects the retina—a delicate layer 

located at the inner back of the human eye. This study explores 

computer-assisted methods for the automated detection of 

retinal diseases, including drusen, diabetic macular edema 

(DME), choroidal neovascularization (CNV), and normal 

retinal conditions, through the use of transfer learning [1-4]. 

Figure 1 presents sample OCT images illustrating these three 

retinal diseases alongside a normal retina. 

Detecting retinal diseases is a well-established classification 

challenge in deep learning. This study addresses the problem 

by automating the identification of retinal conditions using 

optical coherence tomography (OCT) images. The model 

classifies retinal states into four categories: diabetic macular 

edema (DME), choroidal neovascularization (CNV), drusen, 

and normal [5-7]. With the increasing adoption of OCT 

imaging in medical diagnostics, a computer-assisted system 

for retinal disease detection can enhance reliability, aid in 

treatment, and facilitate disease monitoring. Traditional 
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automated diagnosis methods require extensive image pre-

processing before feeding data into shallow neural networks, 

making the process time-consuming. To overcome these 

limitations, this research employs transfer learning techniques. 

The motivation behind this work stems from the challenges 

researchers face in diagnosing retinal diseases effectively. 

 

  
(a)  (b)  

  
(c)  (d)  

FIGURE. 1 Sample Retina OCT Images ((a) CNV (b) DMV (c) DRUSEN (d) 

Normal 

 

Deep learning (DL) and machine learning (ML) models have 

demonstrated strong performance in retinal disease diagnosis. 

In this study, DL techniques are preferred due to their ability 

to process complex biological data and extract high-level 

abstract features from retinal images. The primary objective is 

to implement a transfer learning approach using five different 

deep learning models pre-trained on the ImageNet dataset. The 

model’s performance is evaluated and compared with existing 

methods for retinal disease classification. To ensure robust 

validation, the proposed model is tested on an external 

dataset—Large Dataset of Labeled Optical Coherence 

Tomography (OCT) and Chest X-ray Images—which 

comprises 1,08,312 OCT retinal images. This dataset is 

compiled by Daniel Kermany, Michael Goldbaum, and Kang 

Zhang. The overarching goal of this research is to advance 

automated retinal disease detection and support computer-

assisted diagnosis for conditions such as macular edema, age-

related macular degeneration, and diabetic retinopathy. The 

key contributions of this study are as follows. 

➢ The proposed study presents an approach for retinal 

disease detection by evaluating multiple deep 

learning architectures, including Xception, 

InceptionV4, EfficientNet-B4, SqueezeNet, and 

ResNet-264 architectures. 

➢ All above models evaluated within a transfer 

learning framework which improved the 

performance of all deep learning models when 

utilized on a separate OCT image dataset compared 

to existing state-of-the-art methods. 

➢ Additionally, transfer learning with pre-trained deep 

models has been shown to effectively mitigate 

overfitting challenges in medical image 

classification. Therefore, this study employs all 

models, pre-trained on ImageNet, a large-scale 

dataset of natural images.  

➢ The primary objective of developing this approach is 

to conserve resources, minimize overfitting, and 

optimize computational efficiency. 

Saha et al. created a system for detecting AMD symptoms 

from OCT images. The proposed system used a transfer 

learning algorithm, eliminating the need for thousands of 

images or a highly specialized deep learning machine [8]. De 

Fauw et al. developed a novel deep learning architecture 

applied to three-dimensional OCT images, demonstrating 

performance that matched expert detection in some retinal 

diseases [9]. Lu et al. proposed a method combining four 

binary classifiers within a deep convolutional neural network 

(DCNN) framework to differentiate retinal abnormalities in 

OCT images [10]. An et al. introduced a machine learning 

technique for detecting glaucoma. The authors used three-

dimensional (OCT) data as well as color fundus images to 

detect the abnormal features of eye retina. A segmentation 

algorithm was used to generate thickness and deviation maps. 

Then (CNN) transfer learning was applied to a set of input 

images such as gray-scale optic disc fundus image, retinal 

nerve fiber layer, and retinal ganglion cell complex. CNN is 

trained using data augmentation. Then a random forest (RF) 

was trained by combining the results of each CNN model. 

Their model showed high accuracy to detect glaucomatous 

subjects based on features extracted from images [11]. Fang et 

al. introduced a lesion-sensitive CNN method for classifying 

retinal OCT images. They originally designed a grid to detect 

lesions and then generated an attention map from the OCT 

image using this grid. This attention map was subsequently 

incorporated into the classification network [12]. Wang et al. 

proposed a fully automated CNV segmentation and diagnosis 

algorithm using a CNN. They employed a clinical dataset that 

included eye scans of both CNV and non-CNV patients, 

achieving a specificity of 95% in their test data [13]. Shih and 

Patel presented a new deep learning classification technique 

applied to OCT retinal images, with the dataset comprising 

one normal and three most common retinal disease scans. 

They evaluated several parameters and different classifiers in 

the training network architecture [14]. Sunija et al. proposed a 

deeply separable convolution model to classify glaucoma and 

healthy images using Spectral-Domain OCT (SD-OCT) 

images. This proposed network resulted in a higher overall 

achievable accuracy with less computational complexity and 

produced effective results [15]. 

Adel et al. proposed a multiclassification model based on OCT 

images to detect retinal eye diseases. They used transfer 

learning over direct CNN, employing the Xception and 

InceptionV3 transfer learning models. They opted for the 

categorical hinge loss function (known as SVM loss) over 

softmax loss to classify four eye diseases [16]. Elsharkawy et 
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al. proposed a computer-assisted diagnostic method to detect 

DR using structural 3D retinal scans. They used prior shape 

information to segment retinal layers from 3D-OCT images. 

Several studies have also binary-classified DME, Drusen, and 

CNV retina images against healthy retina images [17]. Berrimi 

and Moussaoui proposed a new CNN classification 

architecture based on deep learning and transfer learning, 

using retinal images obtained from the OCT device. They 

compared their architecture's performance with pre-trained 

models such as VGG16 and InceptionV3 and achieved 98.5% 

accuracy on the test set [18]. Jin et al. developed a multimodal 

deep learning model using Optical Coherence Tomography 

Angiography (OCTA) and OCT images to assess CNV in 

AMD patients, achieving 95.5% accuracy for the dataset in 

their study [19]. Rong et al. proposed a surrogate-assisted 

classification method to automatically classify retinal OCT 

images based on CNN. They first reduced the noise in the 

images, removed the masks by applying morphological 

thresholding and broadening, and used these images to create 

surrogate images. The test images were then estimated by 

averaging the outputs from the CNN model trained on 

representative images [20]. Daghistani employed a method 

that includes a CNN for the DME classification task. Five 

models consisting of different convolution layers were created 

to demonstrate the effect of convolution. The CNN model with 

five convolutional layers exhibited the best performance in 

classifying DME, corroborating the notion that a higher 

number of convolution layers enhances the accuracy of the 

model. Several studies in the literature, akin to our own, 

discuss machine learning methods used to detect individuals 

with CNV, DME, drusen, and healthy individuals from OCT 

images [21]. Rastogi et al. endeavored to detect DME, CNV, 

and drusen from OCT images. They proposed a detection 

model based on deep learning architectures to detect retinal 

diseases, utilizing a Dense Connected Convolutional Neural 

Network (DenseNet) and achieved 98% accuracy on the 

training set [22]. 

Hwang et al. integrated cloud computing with AI and 

telemedicine in their study for the diagnosis of AMD. They 

designed a user-friendly cloud system website, enabling 

anyone with an internet connection and a computer to use the 

AI model [23]. Li et al. proposed a model that categorizes 

retinal patients into four classes: DME, CNV, normal, and 

drusen, using the pre-trained deep learning method VGG16. 

They achieved a prediction accuracy of 98.6% on a validation 

dataset of 1,000 images [24]. Saleh et al. used OCT images to 

classify patients as drusen, DME, normal, and CNV. They 

used transfer learning-based SqueezeNet and InceptionV3 

techniques to classify retinal diseases, achieving high 

performance as a result of their study [25]. Yan et al. 

developed a classification system based on OCT images, 

dividing them into four categories: drusen, inactive CNV, 

active CNV, and normal. They trained a ResNet-34 deep 

learning model containing a Convolutional Block Attention 

Module (CBAM) on the dataset [26]. Gupta et al. aimed to 

design an AI-based automated network to help 

ophthalmologists more accurately identify and categorize eye 

diseases from OCT images, such as drusen, DME, and CNV. 

They achieved 83.66% accuracy performance for test images 

using a CNN architecture [27]. 

The structure of this paper is as follows: Section 2 provides an 

outline of the research methodology in detail, along with the 

databases an evaluation metrics used in this study. Section 3 

presents the results obtained from the experiments. Section 4 

discusses the outcomes of the study. Finally, Section 5 

concludes the study and suggests potential future research 

directions. 

 
II. MATERIAL AND METHODS 

The proposed methodology consists of five key stages: data 

collection, augmenting the data, preprocessing of data, 

training the model, and model evaluation. First stage involves 

acquiring images of diseased and normal retina images. Due 

to non-availability of sized data, augmentation technique was 

applied to create additional images. To improve accuracy in 

detecting retina diseases, five widely used deep learning 

models— Xception, InceptionV4, EfficientNet-B4, 

SqueezeNet, and ResNet-264—were selected and assessed. 

These algorithms demonstrate high accuracy in identifying 

diseases, making the method a valuable tool for fast and 

precise retina disease diagnosis in medical image analysis 

tasks. The stages and processes in the methodology are 

illustrated in Figure 2. 

 

FIGURE 2.  Proposed Methodology 

A. DATA COLLECTION 
This study utilizes the "Large Dataset of Labeled Optical 

Coherence Tomography (OCT) and Chest X-ray Images", 

which is publicly accessible on Mendeley Data for research 

purposes. The dataset was compiled by Daniel Kermany, 

Michael Goldbaum, and Kang Zhang and is structured into 

three main sections: training, testing, and validation. Each 
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section is further divided into four categories based on image 

classification: Normal, CNV, DRUSEN, and DME [28]. The 

dataset comprises approximately 1,08,312 retinal OCT scan 

images in JPEG format. These images were collected from 

adult patients over a period spanning July 1, 2013, to March 1, 

2017, across multiple medical institutions, including the 

California Retinal Research Foundation, Shiley Eye Institute 

at the University of California, Beijing Tongren Eye Center, 

Medical Center Ophthalmology Associates, and the Shanghai 

First People’s Hospital [29]. The description of the dataset is 

given in TABLE 1. 

TABLE 1 

DATASET Description 

Large Dataset of Labeled Optical Coherence Tomography (OCT) 

and Chest X-ray Images. [28][29] 

Classes Number of Images Number of Images used  

NORMAL 51390 1250 

DRUSEN 8867 1250 

CNV 37456 1250 

DME 11599 1250 

Total Images 108312 5000 

B. PREPROCESSING 
In image analysis, preprocessing is a critical step as it 

improves the quality and consistency of the dataset. This study 

employed different preprocessing techniques such as data 

augmentation, image normalization, and image scaling. 

Images in the dataset are resized in 150 × 150 format to 

confirm uniform dimensions and simplify data processing by 

the model. Image normalization was performed to decrease 

the effect of contrast and light variations by scaling values of 

pixels in the interval of 0 to 1. Data augmentation techniques 

such as cropping, rotation, and flipping are used for expanding 

the database and removing overfitting. These methods 

increase the diversity of the data and enhanced the model's 

performance. Common data augmentation strategies, 

including zooming, rotating, shifting (height and width), 

shearing, and vertical flipping, are used to generate new 

images by introducing minor changes to the original ones. 

This approach creates a bigger and varied database, which 

helped train DL (deep learning) method more effectively. 

As the dataset used in this research is already preprocessed 

and augmented, we have not performed any preprocessing. 

We have selected 1250 images of each class for our task. We 

adopt a 70-20-10 split for training, testing, and validation to 

ensure effective model learning, evaluation, and fine-tuning. 

The training set (70%) is used to learn patterns from the data, 

the test set (20%) is reserved for final model evaluation to 

assess generalization, and the validation set (10%) is used for 

hyperparameter tuning and model selection to prevent 

overfitting. 

C. MODEL SELECTION AND TRAINING 
The DL (deep learning) methods used in this study—

EfficientNet-B4, Xception, InceptionV4, SqueezeNet, and 

ResNet164—were selected based on their ability to optimize 

model performance across different dimensions, including 

accuracy, computational efficiency, and feature extraction 

capabilities. The criteria for selecting these models are detailed 

below: 

• EfficientNet-B4: Based on a compound scaling approach, 

EfficientNet-B4 achieves high accuracy with 

significantly fewer parameters, making it an ideal choice 

for balancing efficiency and performance [30][31]. 

• Xception: Utilizing depthwise separable convolutions, 

Xception reduces computational complexity while 

enhancing feature extraction, making it highly effective 

for complex image classification tasks [32]. 

• InceptionV4: Designed with multiple parallel 

convolutional filters, InceptionV4 captures multi-scale 

features efficiently, improving the model’s ability to 

detect fine-grained patterns in images [33]. 

• SqueezeNet: A lightweight architecture that uses Fire 

modules to achieve comparable accuracy to larger models 

with significantly fewer parameters, making it suitable for 

low-resource environments [34]. 

• ResNet164: Leveraging deep residual learning, 

ResNet164 addresses vanishing gradient issues and 

improves feature learning by allowing deeper network 

training without performance degradation [35]. 

Leveraging model’s pretrained weights allowed for faster 

convergence, even with a relatively limited dataset size. We 

trained all these models with preprocessed data, which 

enhanced their ability to learn distinguishing features 

effectively.  

 

1) EFFICIENTNET-B4 

EfficientNetB4 is one of the scaled variants of the original 

EfficientNet architecture, which is designed using Neural 

Architecture Search (NAS) to optimize accuracy and 

efficiency across a range of computational budgets. The 

foundation of EfficientNet lies in its compound scaling 

method, which uniformly scales depth (d), width (w), and 

input resolution (r) using a compound coefficient φ. The 

scaling is governed by the Eq. (1) and Eq. (2) [30] [31]. 

 

                      d = αφ,       w = βφ,          r = γφ                   (1) 
 

                    α · β² · γ² ≈ 2,    where α, β, γ >  0                     (2) 

 

This method allows for a principled and balanced scaling of 

all three dimensions, unlike conventional approaches that 

scale arbitrarily. EfficientNetB4 corresponds to a higher value 

of φ, specifically φ = 4, meaning it has greater depth, width, 

and input resolution than baseline EfficientNetB0, leading to 

higher accuracy at the cost of increased computation. The 

architecture relies on MBConv blocks (Mobile Inverted 

Bottleneck Convolution), which combine depthwise separable 

convolutions and squeeze-and-excitation (SE) modules to 

efficiently capture spatial and channel-wise information. The 

network is trained using categorical cross-entropy loss given 

by Eq. (3) [30][31]. 
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                                L = − ∑ (yi
C
i=1 log (ŷi))                          (3) 

 

where yᵢ and ŷᵢ are the ground-truth and predicted probabilities 

for class i, and C is the number of classes. EfficientNetB4 

achieves state-of-the-art performance on image classification 

benchmarks such as ImageNet, making it highly suitable for 

complex tasks like skin disease classification, where fine-

grained details are critical. 

 

2) XCEPTION 

Xception (Extreme Inception) is a deep convolutional neural 

network architecture that improves upon Inception modules 

by completely replacing them with depthwise separable 

convolutions. The architecture is based on the assumption that 

spatial and cross-channel correlations can be mapped 

separately. A depthwise separable convolution consists of a 

depthwise convolution followed by a pointwise (1x1) 

convolution. This operation is mathematically using Eq. (4) 

[32]. 

                                 y = pw(dw(x))                                                    (4) 
 

where 𝑑𝑤 denotes depthwise convolution and 𝑝𝑤 denotes 

pointwise convolution. Xception uses residual connections as 

per Eq. (5) [32] and is trained with the categorical cross-

entropy loss calculated by Eq. (6) [32] 

 

                                  y = F(x) + x                                              (5) 
 

                              l = − ∑ yi ∗ log (ŷi))                               (6) 

 

Xception achieves high performance with fewer parameters, 

making it ideal for resource-constrained environments and 

high-accuracy requirements such as skin disease detection. 

 

3) INCEPTIONV4 

InceptionV4 is a convolutional neural network (CNN) that 

builds upon the Inception architecture by combining the 

benefits of deeper networks with efficient computation. It 

integrates the design principles of Inception-ResNet modules 

and increases the network’s depth with residual connections. 

The core building blocks of InceptionV4 are Inception-A, 

Inception-B, and Inception-C modules, which are optimized 

for capturing multi-scale features through parallel 

convolutions. Each module contains different filter sizes (1x1, 

3x3, 5x5) and pooling operations that operate in parallel and 

concatenate their outputs. Residual connections improve 

gradient flow, defined as per Eq. (7) [33]. 

 

                                     y = F(x) + x                                          (7) 
 

where 𝐹(𝑥) is the output of the Inception module and 𝑥 is the 

input. The model is trained using cross-entropy loss using Eq. 

(8) [33]. 

 

                            l = − ∑ yi ∗ log (ŷi))                                              (8) 

 

InceptionV4 strikes a balance between computational 

complexity and classification performance, making it suitable 

for fine-grained image classification tasks like medical image 

analysis. 

 

4) SQUEEZENET 

SqueezeNet is a lightweight convolutional neural network 

designed for high accuracy with very few parameters. It 

employs a unique 'fire module' that includes a squeeze layer 

(1x1 convolutions) followed by expand layers (a mix of 1x1 

and 3x3 convolutions). The squeeze layer reduces input 

channels, while the expand layer increases them, reducing 

overall model size. The fire module is computed using Eq. 

(9) [34]. 

                           y = Expand(Squeeze(x))                             (9) 

 
SqueezeNet achieves AlexNet-level accuracy with 50x 

fewer parameters. It is particularly suited for embedded 

systems and mobile applications. The network is trained 

using the cross-entropy loss using Eq. (10) [34]. 

 

                              l = − ∑ yi ∗ log (ŷi))                           (10) 

 

Its small footprint and decent accuracy make it a candidate for 

real-time medical diagnosis on mobile devices. 

 

5) RESNET-264 

ResNet264 is a very deep variant of the Residual Network 

(ResNet) family, designed to learn extremely complex 

features without suffering from vanishing gradients. It utilizes 

identity shortcut connections that allow gradients to flow 

directly through the network. A residual block in ResNet264 

is expressed as per Eq. (11) [35]. 

 

                                 y = F(x, {wi}) + 𝑥                                      (11) 

 

where 𝐹(𝑥, {𝑤𝑖}) represents the residual mapping to be 

learned. Batch normalization and ReLU activations follow 

each convolution. Due to its depth, ResNet264 captures 

intricate hierarchical features in images. Training is done 

using categorical cross-entropy using Eq. (12) [35]. 

 

                                l = − ∑ yi ∗ log (ŷi))                  (12) 

 

ResNet264 is highly suitable for tasks demanding fine-grained 

detail, such as skin disease classification from dermoscopic 

images. 

 

6)  TRANSFER LEARNING 

Transfer learning has proven to be an effective strategy in deep 

learning-based classification tasks, particularly when working 

with complex architectures such as EfficientNet-B4, 

Xception, InceptionV4, SqueezeNet, and ResNet164. These 

models have been pre-trained on large-scale datasets such as 

ImageNet, allowing them to learn hierarchical feature 

representations that can be effectively transferred to domain-
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specific tasks [30][36]. Transfer learning is used in this work 

to achieve following benefits from two key advantages: 

1. Computational Efficiency – Training deep CNNs from 

scratch requires extensive computational resources and 

large amounts of labeled data. By using pre-trained 

models, we significantly reduce the training time and 

computational cost while still achieving high accuracy. 

2. Improved Performance and Generalization – The pre-

trained models provide a strong feature extraction 

foundation, reducing the risk of overfitting, especially 

when working with limited datasets. Studies have shown 

that fine-tuning these models can lead to improved 

accuracy and robustness in classification tasks [33] [35]. 

For this study, we fine-tune the pre-trained models on our 

dataset while preserving the lower-level feature extraction 

layers. This ensures that the models retain their learned 

representations while adapting to the specific characteristics of 

our data.  

 

7)  EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI) 

Explainable Artificial Intelligence (XAI) plays a crucial role 

in interpreting neural networks. While deep learning models 

have excelled at handling complex tasks, their intricate 

architectures and extensive parameterization often make them 

incomprehensible, earning them the label of "black boxes." 

Interpreting these models is essential to building trust, 

fostering transparency, and ensuring accountability, 

particularly in high-stakes real-world applications [37][38]. 

XAI provides insights into the decision-making processes of 

neural networks, shedding light on the key factors and patterns 

that influence their outcomes. This capability helps identify 

and address biases, ensures compliance with ethical and legal 

standards, and supports model optimization, validation, and 

debugging. By improving fine-tuning and enhancing capacity, 

XAI enables effective use of deep learning’s full potential, 

confirming that decisions in important areas are ethical, 

informed, and reliable. To enhance the trust and consistency 

of our presented models, we employed Grad CAM, Grad 

CAM++, Eigen CAM and LIME Class Activation Mapping 

(CAM) techniques, to visually explain the model's decision-

making process. This approach provides a clear, visual 

representation of influential factors, promoting better 

understanding in the system. Grad-CAM is a powerful 

technique for identifying instances associated with a specific 

class. The heatmaps it generates are anticipated to provide 

greater accuracy in highlighting precise areas corresponding 

to a specific class in an image. By integrating Grad-CAM++, 

the visualization of predictions made by CNN models is 

further refined. The mathematical formulation of Grad-

CAM++ can be represented as follows Eq (13) [37][38]. 

                      𝑊𝑘
𝑐 =  ∑ ∑ ∝𝑖,𝑗

𝑘𝑐
𝑗𝑖 𝑅𝑒𝐿𝑈 (

𝜕𝑌𝑐

𝜕𝐴𝑖,𝑗
𝑘 )                    (13) 

where, 𝑊𝑘
𝑐 represents the weights of neurons, ∝𝑖,𝑗

𝑘𝑐 denotes the 

significance of location (𝑖, 𝑗), 𝐴𝑘  refers to the activation map, 

𝑐 stands for the target class, and 𝑌𝑐 represents the score of 

class 𝑐. 

8)  EVALUATION METRICS 

To assess the effectiveness of the deep learning models, we 

utilize multiple evaluation metrics, ensuring a comprehensive 

and fair assessment of classification performance [39]. The 

performance was assessed using a confusion matrix. The Eq. 

(14) [39], Eq. (15) [39], Eq. (16) [39], Eq. (17) [39], and Eq. 

(18) [39] were applied to compute accuracy, precision, recall, 

F1-score, and AUC based on the confusion matrix.  

 

           Accuracy = (TN + TP)/(TN + FP + TP + FN) (14) 

 

                         Precision(Pre) = TP / (TP +  FP)          (15) 
 

                             Recall(Rec) =  TP/(TP + FN)            (16) 
 

             F1 Score = (2 x Pre ∗  Rec) / (Pre +  Rec)     (17) 
 

         AUC =
1

2
(

TP

TP+FN
+

TN

TN+FP
)                          (18) 

 

In these calculations, true positives (TP), true negatives (TN), 

false positives (FP), and false negatives (FN) are used as the 

key components. Keras was employed to implement all deep 

learning models and explainable AI (XAI), with TensorFlow 

serving as the backend. These experiments were carried out in 

PyCharm Community Edition (2021.2.3). The model training 

and evaluation were performed on a PC equipped with an 11th 

generation Intel® Core™ i3 CPU (2.50GHz), 128GB of 

RAM, and a 24GB GPU, running 64-bit Windows 11. 

III. RESULTS 

The research was conducted using the Python language and 

the TensorFlow. Table 1 details the training parameters used. 

The models were trained using training data and validated with 

validation data to ensure proper training. After training, the 

model was evaluated using test data. TABLE 2 gives the 

information about the various training parameters used.  

TABLE 2 

Training Parameters 

Models: EfficientNet-B4, Xception, InceptionV4, SqueezeNet,   

               and ResNet164 

Image Size 150 x 150 

Batch Size 32 

Epochs 40 

Learning Rate 0.001 

Loss Function Categorical Crossentropy 

Optimizer Adam 
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TABLE 3 shows the details of classification and detection 

performances of all proposed models. InceptionV4 achieved 

the highest accuracy of 99.50%, surpassing other models: 

SqueezeNet (98.00%), EfficientNet-B4 (98.50%), Xception 

(78.25%), and ResNet-264 (87.75%). InceptionV4 achieved 

the highest precision of 100% surpassing other models: 

SqueezeNet (98.00%), EfficientNet-B4 (98.50%), Xception 

(80.36%), and ResNet-264 (87.94%). InceptionV4 achieved 

the highest recall of 100% surpassing other models: 

SqueezeNet (98.00%), EfficientNet-B4 (98.50%), Xception 

(77.75%), and ResNet-264 (87.50%). InceptionV4 achieved 

the highest AUC of 100% surpassing other models: 

SqueezeNet (98.80%), EfficientNet-B4 (99.64%), Xception 

(94.53%), and ResNet-264 (96.33%). InceptionV4 achieved 

the highest f1 score of 100% surpassing other models: 

SqueezeNet (98.00%), EfficientNet-B4 (98.50%), Xception 

(99.50%), and ResNet-264 (87.98%). The results demonstrate 

that the InceptionV4 model outperformed the other models. 

Figures 3 presents the ROC curves four classes across five 

models, illustrating the trade-off between True Positive Rate 

(TPR) and False Positive Rate (FPR). A higher ROC value 

(close to 1) indicates strong classification, while values near 

0.5 suggest poor distinction. The results confirm that 

InceptionV4, EfficientNet-B4 and SqueezeNet models have 

strong performance across most classes. 

FIGURE 4 show plots for the training and validation 

losses, as well as the accuracies, precision, recall, AUC, and 

F1 score of all models. To avoid unnecessary computations, 

training is halted if results stagnate for three consecutive 

epochs, indicating the best performing epoch. FIGURES 5 

presents confusion matrices drawn based on the performance 

of models employed in this research. The matrices give the 

count information of various classes classified by the model as 

an actual prediction and different prediction. FIGURE 6 

presents original and predicted image visualization of Grad-

Cam, Grad Cam++, Eigen-Cam and LIME. FIGURE 7 shows 

the wrong predictions. FIGURE 8 presents evaluation results 

achieved with test set graphically. 

 

TABLE 3 

Performance of the classifier models 
Model Accuracy Precision Recall AUC F1 Score 

Xception 78.25 80.36 77.75 94.53 99.50 

InceptionV4 99.50 100 100 100 100 

ResNet-264 87.75 87.94 87.50 96.33 87.98 

EfficientNet-B4 98.50 98.50 98.50 99.64 98.50 

SqueezeNet 98.00 98.00 98.00 98.80 98.00 

 

 

   
(a) (b) (c) 

 

 

 
(d)  (e) 

 

FIGURE 3. ROC curve (a) ResNet-264, (b) Xception, (c) InceptionV4, (d) SqueezeNet, (e) EfficientNet-B4 
 
 
 
 

 
 
 

 

 

 

 

 

https://jeeemi.org/index.php/jeeemi/index


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 7, No. 2, April 2025, pp: 471-483;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                       478               
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(b) 
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(d) 

 
(e) 

 
FIGURE 4. Accuracy, Loss, AUC, Precision and F1-score graph (a) EfficientNetB4, (b) SqueezeNet, (c) Xception, (d) ResNet-264, (e) InceptionV4 

 

https://jeeemi.org/index.php/jeeemi/index


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 7, No. 2, April 2025, pp: 471-483;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                       479               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
(a) (b) (c) 

 

 

 

(d)  (e) 
FIGURE 5. Confusion Matrix (a) EfficientNetB4, (b) SqueezeNet, (c) InceptionV4, (d) Xception, (e) ResNet-264\ 
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(d) (e) (f) 
 

FIGURE 6. Confusion Matrix (a) EfficientNetB4, (b) SqueezeNet, (c) 
InceptionV4, (d) Xception, (e) ResNet-264 

 

 

 

 

 

(a)  (c)  

 
 

 

(b)  (d)  

FIGURE 7. Original and predicted Images (a) True: DME Predicted: 
NORMAL (b) True: CNV Predicted: DME (c) True: DRUSEN Predicted: 
NORMAL (d) True: DRUSEN Predicted: CNV 
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 IV. DISCUSSION 

This work uses ISIC 2017 data to assess the performance of 

deep CNN models in retinal illness classification. We 

validated the performance of the suggested models by 

matching their outcomes with those of current literature 

studies. Preprocessing activities including data augmentation 

to boost dataset diversity and reduce overfitting followed data 

capture. Unneeded areas were eliminated via cropping, 

therefore freeing the model to concentrate on the area of 

interest (ROI). All photos were downsized to a consistent 

dimension of 150 × 150 × 3 since the dataset comprised 

photographs with differing resolutions. Several deep CNN 

architectures were applied in feature extraction. The models 

obtained testing accuracy between 78.25% and 99.50%. With 

99.50%, InceptionV4 produced the best accuracy followed by 

EfficientNet B4 (98.50%), SqueezeNet (98.00%), 

ResNet0264 (87.75%), and Xception (78.25%).  

TABLE 4 offers a comparison with other currently used 

techniques. InceptionV3 (94.46%) by Boix et al. [40], CNN 

with InceptionV3 (98.00%) by Choudhary et al. [41], RFT 

with CNN layers (83.78%) by Alwakid et al. [42], and 

ResNet50 (93.60%) by Abood et al. [43] have demonstrated 

varied degrees of accuracy depending on different models. 

Additional noteworthy studies include DenseNet 169 

(90.00%) by Mushtaq et al. [44], DenseNet 121 (98.40%) by 

Mostari et al. [45], and a combination of VGG16 and VGG19 

(90.16%) by Menaouer et al. [46]. Further underlining the 

better performance of our approach are additional 

comparisons with retinal illness classifiers as EyeDeep-Net 

(91.00%) by Senger et al. [47] and models constructed by Das 

et al. [48] and Nguyen et al. [49] with respective accuracies of 

89.10% and 89.17%, respectively. With an average accuracy 

of 95.04%, the enhanced Deep CNN models developed by 

Ejaz et al. likewise produced comparable results. Our 

approach exceeded all previous findings with a 99.50% 

accuracy by combining five DL models with transfer learning 

and Dropout regularization.  

By mimicking dataset diversity which is essential in the 

medical field where data shortage is common data 

augmentation significantly improved model robustness. 

Analyzing several deep learning models revealed their 

respective strengths and shortcomings for the retinal illness 

classification. Especially, the addition of several illness classes 

alongside healthy controls improves the clinical relevance of 

the model by more precisely replicating real-world diagnostic 

circumstances than binary classification systems.  

At last, a thorough analysis of important criteria accuracy, 

sensitivity, specificity, and precision offers a whole picture of 

every model's diagnostic power. This helps one to find places 

where models shine or call for more improvement. The results 

confirm that, in retinal disease detection, well tuned deep 

CNNs together with suitable preprocessing and training 

techniques can attain better performance than current 

approaches.  
TABLE 4 

Comparison of results with state-of-the-art models 

Reference Model Accuracy 

Boix et al. [40] InceptionV3 94.46 

   

Choudhary et al. [41] InceptionV3, CNN 98.00 

Alwakid et al. [42] RFT, CNN 83.78 

Abood et al. [43] ResNet-50 93.6% 

Mushtaq et al. [44] DenseNet-169 90.00% 

Mostari et al. [45] DenseNet-121 98.40% 

Menaouer et al. [46] VGG16 and VGG19 90.60%. 

Sengar et al. [47] EyeDeep-Net 91.00% 

Das et al. [48] Deep Learning 89.10% 

Nguyen et al. [49] ResNet152 89.17% 

Ejaz et al. [50] CNN-3 95.04% 

Proposed Model Xception, ResNet-264, 

EfficientNet-B4, 

SqueezeNet, InceptionV4 

99.50% 

InceptionV4 

 

By mimicking dataset diversity which is essential in the 

medical field where data shortage is common data 

augmentation significantly improved model robustness. 

Analyzing several deep learning models revealed their 

respective strengths and shortcomings for the retinal illness 

classification. Especially, the addition of several illness classes 

alongside healthy controls improves the clinical relevance of 

the model by more precisely replicating real-world diagnostic 

circumstances than binary classification systems.  

 
 

FIGURE. 8   Performance of the classifier (SQN = SqueezeNet, EFN = EfficientNet-B4, XC = Xception, INV = InceptionV4, REN = ResNet-264) 
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At last, a thorough analysis of important criteria accuracy, 

sensitivity, specificity, and precision offers a whole picture of 

every model's diagnostic power. This helps one to find places 

where models shine or call for more improvement. The results 

confirm that, in retinal disease detection, well tuned deep 

CNNs together with suitable preprocessing and training 

techniques can attain better performance than current 

approaches.  

This study, while promising, suggests that further research 

is needed to fully realize the potential of deep learning models 

in retinal disease detection. Future investigations could focus 

on integrating additional variables, such as patient 

demographics or clinical histories, to better understand how 

these factors influence the accuracy of predictions. Exploring 

the applicability of these models across different healthcare 

settings and for various stages of retinal diseases would 

undoubtedly broaden our understanding of their utility and 

scalability. A key limitation of this study is its reliance on a 

single dataset. The generalizability of the results could be 

improved by validating these models with diverse datasets 

from different populations and clinical environments. While 

deep learning models show superior performance compared to 

traditional methods, the “black box” nature of these models 

remain a significant challenge, making them difficult to 

interpret when applied to specific clinical decisions. Efforts to 

enhance the transparency of the decision-making process in 

deep learning models, or to develop more interpretable models 

without compromising performance, would provide valuable 

insights for clinicians. This study demonstrates that deep 

learning models, especially convolutional neural networks 

(CNNs), could be highly effective in detecting retinal diseases, 

paving the way for greater integration of technology in 

medical diagnostics. Further refinement of these models, 

along with the exploration of practical applications in clinical 

practice, will be critical in advancing toward more 

personalized and accurate detection systems. Such 

advancements could help optimize patient care by providing 

timely diagnoses, improving treatment plans, and ultimately 

enhancing overall healthcare outcome.  

This study emphasizes the significant potential of machine 

and deep learning models, particularly algorithms like 

EfficientNet-B4, Xception, InceptionV4, SqueezeNet, and 

ResNet164, in retinal disease detection. The superior 

performance of these models suggests they could play a 

pivotal role in developing predictive tools for identifying 

various medical illnesses. Such tools would allow medical 

practitioners to take proactive measures and offer a very good 

medical support tailored to different diseases. Furthermore, 

the insights generated from these models could help design 

treatment plan, resource allocation, and the creation of 

methods that promote an inclusive and effective medical 

environment. This approach not only boosts disease detection 

but also ensures that medical practices are grounded in data, 

making them adaptable to the diverse needs of the different 

diseases. 

 

V. CONCLUSION 

The aim of this research was to enhance deep learning-based 

techniques for retina disease detection to attain superior 

accuracy compared to current algorithms. A transfer learning 

approach utilizing Xception, InceptionV4, EfficientNet-B4, 

SqueezeNet, and ResNet-264 models was introduced and 

demonstrated the maximum performance, with an accuracy 

score of 100% (InceptionV4). The proposed strategy 

demonstrated superior performance compared to methods 

outlined in earlier research. This approach may be utilized in 

the future for real-time detection and forecasting of retina 

disease detection on smartphones. To substantiate the model's 

feasibility, further investigations may require the examination 

of greater image sizes. We believe that this study and further 

related studies will facilitate the rapid identification, 

categorization, and management of retina disease detection. 

Our findings are encouraging, indicating that our model may 

represent a cutting-edge DL (Deep learning) method for the 

early identification of retina diseases. Our model attained a 

significant degree of accuracy in classifying retina diseases 

within both test and training datasets, rendering it possibly a 

relevant instrument for rapid and precise disease detection in 

medical analysis environments.  
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