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ABSTRACT Globally, Glaucoma is a major cause of permanent blindness, and maintaining eyesight depends on early 

detection. Here, a brand-new deep-learning system for glaucoma prediction. In this work, we offer a novel deep-learning 

approach for enhanced glaucoma prediction that uses a denoising generative adversarial network for preprocessing the input 

image is provided, later the segmentation is carried out by Attention-Gated U-Net with Dilated Convolutions to segment the 

optic cup and optic disc. Feature Extraction Using a Deep Wavelet Scattering Network and finally the glaucoma classification 

is carried out by the Vision Transformers. An attention-gated U-Net with dilated convolutions for segmentation, which 

improves the accuracy of optic disc and cup boundaries by 7% compared to conventional U-Net methods is introduced. A Deep 

Wavelet Scattering Network (DWSN) for feature extraction that achieves a 5% improvement in feature discrimination over 

conventional CNNs by capturing multiscale texture and structural information is suggested. Lastly, ViT, which is based on 

transfer learning, is used for classification; it has a 94.6% accuracy rate, a 93.8% sensitivity rate, and a 95.2% specificity rate. 

The suggested approach outperformed CNN-based models by improving by about 4% on all criteria. The system achieved an 

F1 score of 0.95 and an AUC (Area Under Curve) of 0.96 when tested on publicly accessible glaucoma datasets. Multi-stage 

deep-learning processing for glaucoma prediction by integrating a denoising generative adversarial network for image 

preprocessing, Attention-Gated U-Net with Dilated Convolutions for exact optic cup and disc segmentation, deep wavelet 

scattering for feature extraction, and Vision Transformers for glaucoma classification. 

INDEX TERMS Attention-gated U-Net, Deep learning, Glaucoma detection, Vision Transformer, Wavelet scattering

I. INTRODUCTION 

Glaucoma [1] is a chronic and progressive eye disease that 

results in permanent damage to the optic nerve and often ends 

with vision loss or blindness if not detected and treated early. 

Millions of people are affected, especially those 40 and older, 

and it is one of the main reasons for blindness around the 

globe. The disease progresses slowly and is often 

asymptomatic in its early stages, earning it the moniker "the 

silent thief of sight” [2]. By the time noticeable symptoms like 

peripheral vision loss occur, significant and permanent 

damage to the optic nerve has often already been done. 

Glaucoma is segmented into many different types; the most 

common type of glaucoma is primary open-angle glaucoma 

(POAG) [3]. Early diagnosis and identification of glaucoma is 

also essential because with timely treatment, damage and 
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vision may not worsen further. It usually takes a package of 

tests such as visual field tests [4], IOP measurement, and optic 

nerve imaging, but these may not be always available to 

common practitioner besides, subtle signs of glaucoma often 

occur very early on, making their detection inaccurate [5]. Due 

to the complexities of the human diagnostic process of 

glaucoma, which involves the expertise of the observer and 

possible human errors, there has been an interest in recent 

times in the automation of this process using sophisticated 

technology [6]. Conventional algorithms were designed to aid 

in the detection of glaucoma; however, such approaches 

usually depend on handcrafted features and suffer from the 

lack of generalization over a variety of datasets [7]. 

Additionally, the methods will be faced with problems of less 

accurate ability in detecting some of the medical photograph's 

subtle patterns [8]. 

In the past few years, deep learning transformed the field of 

medical image investigation, enabling the automatic 

acquisition of directly applicable systems from data without 

relying on manually engineered features [9]. CNNs have 

demonstrated very promising applications in several medical 

image analysis domains, for example, retinal fundus image 

classification, segmentation, and disease detection. Deep 

learning representations have shown an ability to identify 

subtle patterns that might be imperceptible to the human eye, 

enabling earlier and more accurate detection of glaucoma [10]. 

Though, such enhancements are still open and lots can be 

improved in improvements. Many existing deep learning 

model pays all their attention to focusing upon a single process 

TABLE 1 

Literature review of Glaucoma detection 

Sl.No Author Year Methodology Used Dataset Accuracy Limitations 

1 
Mahum et 

al., [27] 
2022 

CNN-based glaucoma 

classification 

Custom 

dataset, private 

data 

91.5% 
Limited to specific dataset; 

lacks external validation. 

2 
Kumar et al., 

[28]    
2023 

Transfer learning with 

ResNet and DenseNet 
ORIGA dataset 92.3% 

High computational cost due 

to deep models. 

3 
George et 

al., [29] 
2020 

Attention-gated U-Net 

for optic cup & disc 

segmentation 

RIM-ONE 

dataset 
90.7% 

Struggles with high 

variations in optic disc sizes. 

4 
Kashyap et 

al., [30] 
2022 

U-Net for optic cup & 

disc segmentation 

DRISHTI-GS 

dataset 
89.6% 

Limited accuracy in handling 

complex cases. 

5 
Parashar & 

Agrawal [31] 
2021 

Deep Wavelet 

Scattering Network 

(DWSN) 

ACRIMA 

dataset 
93.4% 

Sensitivity to noise in image 

data. 

6 
Ratul et al.,  

[32] 
2019 

U-Net with dilated 

convolutions 

DRISHTI-GS 

dataset 
91.3% 

Requires high-quality 

images for optimal 

performance. 

7 

Shyamalee 

& 

Meedeniya 

[24] 

2022 
ResNet with transfer 

learning 

ACRIMA 

dataset 
92.8% 

Susceptible to overfitting on 

small datasets. 

8 
Chen et al., 

[33] 
2022 

Vision Transformers 

(ViTs) 

RIM-ONE and 

ORIGA 

datasets 

93.5% 
Requires extensive training 

data for reliable results. 

9 David. [11] 2023 

CNN-RNN hybrid 

model for glaucoma 

classification 

Custom dataset 92.1% 

Challenging to balance 

between CNN and RNN 

complexities. 

10 Li et al., [34] 2019 

Attention-gated U-Net 

for optic disc 

segmentation 

DRISHTI-GS 

dataset 
91.2% 

Difficulty in segmenting 

images with overlapping 

regions. 

11 
Thainimit et 

al., [13] 
2022 

GANs for data 

augmentation and 

noise reduction 

Various, 

including 

ORIGA 

+2% over 

baseline 

GANs can sometimes 

introduce unrealistic 

artifacts. 

12 
Suban at al,.  

[35] 
 

U-Net for 

Segmentation 
Custom dataset 90.6% 

Difficulties in removing 

noise in clinical data. 

13 
Haouli l et 

al., [17] 
 

Classification using 

Vision Transformers 
ORIGA 88.7% 

Struggle with the noise and 

needs high quality images. 
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phase - either segmentation or classification with no proper 

usage of the combined stages of preprocessing, feature 

extraction, segmentation, and lastly classification [11]. 

Moreover, conventional deep learning models like CNNs may 

fail to address issues such as capturing long-range 

dependencies and distinguishing between optic disc and optic 

cup with subtle features, which play a critical role in 

diagnosing glaucoma [12]. 

This research focuses on addressing the limitations of the 

current methods of glaucoma detection by developing a novel, 

multi-stage deep learning framework that improves the 

accuracy, sensitivity, and specificity of glaucoma detection. 

The proposed system includes the following advanced 

methods: GANs for image preparation [13], an attention-gated 

U-Net [14] with dilated convolutions for optic disc and cup 

segmentation [15], a Deep Wavelet Scattering Network 

(DWSN) [16] for feature extraction, and Vision Transformers 

(ViTs) [17] for final classification. 

Vision Transformers (ViTs) for final classification and 

DWSN for feature extraction. Each stage of the suggested 

pipeline is designed to tackle a specific issue or difficulty in 

the identification of glaucoma. To improve the performance of 

later stages, preprocessing with GANs, for instance, might 

assist remove noise and artifacts from retinal images. The goal 

of the attention-gated U-Net with dilated convolutions is to 

enhance the segmentation of the cup and optic disc areas, 

which are important for glaucoma evaluation. The ViT will 

use its capacity to model long-range relationships for more 

precise classification, while the DWSN will extract multi-

scale features, which capture both high- and low-frequency 

information from the retinal images. In important evaluation 

criteria including accuracy, sensitivity, specificity, and Area 

Under the Curve (AUC), the proposed technique is anticipated 

to perform better than conventional techniques and current 

deep learning models.  Table 1 represents Literature review of 

Glaucoma detection. 

Despite all these successes, there are still issues pertaining to 

segmentation accuracy, handling the noisy data, and properly 

identifying the long-range connections in the input fundus 

retinal images. The solution is to integrate the more complex 

systems such as Vision Transformers with the hybrid model 

will give better results. Despite the significant progress made 

in glaucoma diagnosis using deep learning, certain research 

gaps remain. One of the main issues is the need for accurate 

segmentation of the optic disc and cup in order to measure the 

cup-to-disc ratio (CDR)[18], [19], which is used in the 

diagnosis of glaucoma. Current CNN-based architectures and 

U-Net models often fail with this task due to noise, artifacts, 

and differences in image quality across datasets. 

The literature still contains a lot of holes, despite the fact that 

deep learning has made great strides in glaucoma detection. 

The biggest gap is linked to the precision of the optic disc and 

cup segmentation. This is crucial since the cup-to-disc ratio, 

or CDR is a crucial diagnostic metric for the diagnosis of 

glaucoma. CNN-based architectures and U-Net models are not 

very good at this task due to noise, distortions, and differences 

in image quality between datasets. Long dependencies in 

images cannot be captured by the majority of conventional 

deep learning models, including CNNs [20], due to their 

constraints. This makes it difficult to identify minor details, 

particularly in conditions like glaucoma where it can be 

difficult to tell the difference between images of the disease 

and healthy ones. There is still opportunity for progress, even 

if numerous studies have tried to get around these difficulties 

by employing multi-scale techniques or attention mechanisms. 

Furthermore, the deep learning-based method for glaucoma 

detection has not focused much on the preprocessing step, 

which involves enhancing image quality and reducing noise. 

Advanced methods like GANs for data augmentation and 

noise reduction have not been thoroughly investigated, even 

though several studies have employed simple image 

improvement techniques. Lastly, there isn't a lot of a method 

that catches a wide range of frequencies in the image; feature 

extraction techniques are frequently low-level and high-level. 

Although they have shown promise in this area, deep wavelet 

scattering networks (DWSN)[16] are still not well understood 

in the field of glaucoma detection. 
 
II. METHOD 

A. OVERVIEW OF THE PROPOSED FRAMEWORK 

 By presenting a novel multi-stage deep learning architecture 

for glaucoma diagnosis, the research suggested in this paper 

aims to close these gaps. The following are this research's 

primary contributions: To improve segmentation and 

classification outcomes, retinal fundus images [21] will be 

enhanced using a GAN-based technique that lowers noise and 

improves image clarity. Output image is represented using the 

formula Eq. (1) [13] 

 C_i = C(In,cl, 𝐺𝑠)  (1) 

Here C_i, In, cl, Gs represents Output image, input image, clip 

limit and grid size of an image. Compared to other U-Net 

architectures, an attention-gated U-Net with dilated 

convolutions will be employed for improved optic disc and 

cup segmentation accuracy. The model will be able to learn 

both high-frequency and low-frequency information from 

retinal images by using DWSN [22] to capture the multi-scale 

features. ViTs [23]would improve glaucoma detection 

accuracy above that of conventional CNNs by simulating 

long-range relationships. Comparing these new techniques to 

existing glaucoma diagnostic techniques, the technique seeks 

to greatly improve important evaluation criteria like 

specificity, sensitivity, and accuracy. It is anticipated that the 

suggested approach will establish a new standard for 

glaucoma early diagnosis and detection. It aso improving 

patient outcomes and healthcare systems in the process. The 

recommended glaucoma prediction system will have four 

important phases. The first stage is preprocessing the fundus 

image, then the second stage is segmentation, the third stage is 

Feature extraction and the final stage is the classification of 

Glaucoma stages. 

 

Stage 1: Preprocessing: In the research work, GAN is used to 

eliminate the various challenges in the fundus image, such as 

the inconsistency of noise and image quality. By holding the 

minute details inside the retina, this preprocessing stage will 
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substantially improve the quality of the fundus image and it 

will give a high-quality image for the segmentation process. 

Stage 2: Segmentation: The attention-gated U-Net method 

which will include the process of dilated convolutions, the 

optic disc, and optic cup region is very much essential in the 

glaucoma diagnosis process are exactly segments during this 

segmentation stage. While comparing this attention-gated U-

Net model to the conventional U-Net model, the proposed 

system accuracy and the edge detection both increase by 

nearly 7%. 

Stage 3: Feature Extraction: Compared to traditional CNNs, 

a Deep Wavelet Scattering Network (DWSN) offers more rich 

features by extracting multiscale texture and structural 

information. This method improves feature discrimination and 

gives the framework a 5% increase in accuracy when 

distinguishing between glaucomatous and healthy eyes. 

Stage 4: Classification: A Vision Transformer with transfer 

learning is used for the last step. Compared to CNN-based 

models, this state-of-the-art classification method produces  

better-predicted accuracy (94.6%), sensitivity (93.8%), and 

specificity (95.2%) by capturing both local and global patterns 

found in retinal images.  

Figure 1 shows the proposed  framework of glaucoma 

detection. It strats from image acquisition, followed by GAN-

based preprocessing for noise reduction and quality 

enhancement, proceeding to attention-gated U-Net 

segmentation, then to DWSN-based feature extraction, and 

concluding with ViT-based classification for glaucoma 

detection (19). 

B. GAN-BASED PREPROCESSING 

For accurate diagnosis in medical imaging, high-quality inputs 

are essential. However, because of things like patient 

circumstances and equipment variations, retinal images 

frequently have noise, low contrast, and unpredictability. 

These problems can mask important characteristics, which 

makes it more difficult for machine learning models to 

correctly detect illness signs. To guarantee that crucial retinal 

details, such as the optic disc and cup, are retained for further 

processing steps, efficient noise reduction and image 

enhancement approaches are required. In the Preprocessing 

stage of the Glaucoma detection framework, we have used 

Denoising GAN to address the following issues. In General, 

GANs are a very efficient deep learning method that will 

enhance the fundus image quality by using its Generator and 

discriminator module. The GAN method is trained to improve 

and denoise the retinal fundus images in the proposed 

architecture to prevent the unique and fine-tuned image 

properties that are essential for the feature extraction and 

segmentation process. Gan have got several advantages. GAN 

is very effective in removing the noise and also the GAN will 

maintain the sensitive retinal characteristics which is very 

much needed in the Glaucoma Analysis. The noisy and traget 

image is represented using the formula Eq. (2) and Eq. (3) 

[24]. 

𝐼nsy = resize𝐼𝑛𝑠𝑦,(𝐻,𝑊) (2) 

 𝐼trg = resize𝐼𝑡𝑟𝑔,(𝐻,𝑊)` (3) 

Here 𝐼nsy represents noisy image, 𝐼𝑡𝑟𝑔represents target image. 

By getting high-quality images are used as the input for the 

segmentation phase, because they will capture the minute 

details from the optic disk and optic cup. The proposed 

architecture enhances the fundus image quality by using 

GAN-based preprocessing, which assures the subsequent 

steps like image segmentation and feature selection get the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1:  Proposed Glaucoma Detection Framework 
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best inputs. Pixel intensity is calculated using the formula Eq. 

(4) [13]. 

ℰ(Input(𝑥, 𝑦)) = (𝐼(𝑥, 𝑦) − 𝐼𝑚𝑖𝑛) ×
𝐿−1

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
s (4) 

Here, I(x,y) is the input pixel intensity, Imin and Imax are the 

minimum and maximum intensity values in the image 

C. FUNDUS IMAGE SEGMENTATION USING ATTENTION-

GATED U-NET WITH DILATED CONVOLUTIONS  

In the Glaucoma image dataset, the optic disk and optic cup 

offer a significant indication of the condition, so the accurate 

segmentation of the optic disk and optic cup region in the 

image is very important in detecting Glaucoma. Finding the 

optic cup and optic disk ratio is the main factor in the diagnosis 

of glaucoma. By extracting the precise boundary detection, we 

can improve the reliability of Glaucoma prediction models. 

For the image segmentation process, the better deep learning 

architecture is U-Net. Figure 2 shows basic U-Net model.  The 

U-Net consists of an Encoder block and a decoder block. Here, 

the decoder block is used for up-sampling to reconstruct the 

spatial dimensions while the encoder block is used to 

downsample to get the details from the given image. Because 

the U-Net will use both high-level and low-level pieces of 

information to avoid the relationship between both the encoder 

block and decoder block, the  U-Net is the better framework 

in the image . In the proposed work, the attention-gated-U-Net 

is used to improve the image segmentation accuracy while 

focusing on the important part of the optic disc and optic cup, 

which is the most important region of the retinal image. The 

Attention mechanism is used to support the region of interest 

from the image while comparing it to the other irrelevant 

regions of the image for the precise segmentation process. The 

dilated convolutions allow the framework to find a wider 

range of settings without compromising the computational 

load. Dilation is used to detect very fine and large-scale objects 

will improve the accuracy of boundary detection in optic discs 

and optic cups. The predicted segmenattion mask is calculted 

using Eq. (5) [24]. 

�̂� = 𝑈Attention(𝑋)   (5) 

where �̂� is the predicted segmentation mask, and X is the input 

fundus image. The attention-gated U-Net along with the 

dilated convolutions performs well with the traditional U-Net 

architecture by about 7% in terms of segmentation accuracy. 

The advantage is mostly due to the attention mechanism's 

capacity to accurately focus on significant regions of interest 

in the image and the dilated convolutions' capacity to capture 

the more complex detail in a multiresolution analysis. This 

procedure then strengthens the optic disc and cup boundaries 

to enhance downstream function. 

 

D. FEATURE EXTRACTION USING DEEP WAVELET 

SCATTERING NETWORK (DWSN) 

Generally, by converting the raw fundus image into 

meaningful representations will find the precise patterns in the 

image and the feature extraction is very much essential in the 

identification of Glaucoma. The most important feature of 

multiscale structural characteristics is texture and the other 

forms which will give very important suggestions to classify 

the healthy eyes and the eyes having glaucoma. The Wavelet 

transform is a very good mathematical technique for 

separating an image into several pieces while preserving the 

low frequency, which will rarely connect with the vast 

patterns, and high frequency, which will connect both the 

patterns. Here both the small information like the border 

between the optic disk and optic cup and the bigger 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Basic U-Net Model 
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information like the shape of the optic disk will much essential 

in the glaucoma analysis. In the feature extraction phase, the 

DWSN is combined with the wavelet transformers. DWSN 

uses deep network layers in figure 3 to capture intricate 

patterns and wavelet transformations at various sizes to 

capture an image's hierarchical character. The model can now 

more accurately differentiate between healthy and 

glaucomatous eyes based on minute structural and textural 

variations to this improved feature representation. Multiscale 

features is extracted by Eq. (6) [9]. 

 

Z = W(X)   (6) 

where Z represents the multiscale wavelet features extracted 

from the input image X. The entire spectrum of multiscale and 

texture information seen in retinal images is frequently missed 

by conventional CNNs. By preserving crucial information 

across scales, DWSN overcomes this constraint and improves 

feature discrimination. When compared to CNN-based 

techniques, DWSN improves feature extraction performance 

by 5% in the suggested framework, which helps to increase 

the detection accuracy of glaucoma. 

 

E. CLASSIFICATION USING VISION TRANSFORMER 

(VIT) 

Transformer topologies, originally developed for natural 

language processing, are used in a deep learning model called 

Vision Transformer (ViT)to identify images. Unlike CNNs, 

which employ convolutional layers to find local patterns, ViT 

breaks an image up into patches and interprets each patch as a 

sequence, similar to words in a phrase. This enables ViT to 

better capture global context and express long-range  

dependencies than CNNs, which are often limited to local 

feature extraction. To improve a pre-trained Vision 

Transformer for glaucoma diagnosis, the suggested 

architecture uses transfer learning. The Figure 4 shows 

transfer learning  reduces the requirement for a lot of training 

data and speeds up convergence by enabling the model to 

extract knowledge from large-scale datasets.  This method 

works particularly well in medical imaging since there are 

frequently few labeled datasets as shown in Eq. (7) [1]. 

𝑃(𝑦|𝑍) = ViT(𝑍)   (7) 

Where 𝑃(𝑦|𝑍) is the probability of glaucoma, predicted by the 

Vision Transformer based on wavelet features Z. In key 

measures such as glaucoma detection accuracy, sensitivity, 

and specificity, the Vision Transformer outperforms CNN-

based models by about 4%. This is because ViT models both 

local and global patterns while concurrently capturing long-

range relationships present in retinal images. CNNs' small 

receptive fields, on the other hand, make them less effective at 

spotting patterns that cover a large portion of an image. ViT's 

more sophisticated modeling of these interactions provides 

better and more accurate glaucoma identification. Using 

transfer learning, the Vision Transformer can adapt quickly to 

the retinal imaging domain with improved speed and accuracy 

for glaucoma classification. A publicly available dataset 

comprising retinal fundus images is used for the experiment. 

Retinal images, mostly fundus and OCT (Optical Coherence 

Tomography) are mainly used in diagnosing glaucoma, as 

these depict detailed structures of the optic nerve and the 

retinal layers. The optic nerve is mainly attacked by glaucoma, 

and most diagnostic procedures rely on identifying unusual 

changes in the optic disc and the cup-to-disc ratio (CDR). 

The dataset selected is large because of its extensive labeling 

and image quality. The datasets are used here is RIM-ONE 

Dataset – https://bit.ly/rim-one-dl-images. Date of Access: 

12.06.2024. A database that includes images annotated for 

optic disc and optic cup segmentation. 

http://www.ia.uned.es/~ejcarmona/DRIONS-DB.html. Date  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Deep Wavelet Scattering Network 
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of Access : 12.06.2024. The Online Retinal Fundus Image 

Database for Glaucoma Analysis, which consists of fundus 

images labeled as glaucoma or non-glaucoma, with detailed 

annotations for optic disc and cup regions. 

https://www.kaggle.com/datasets/arnavjain1/glaucoma-

datasets. Date of Access: 12.06.2024. These datasets provide 

a large number of high-resolution retinal images along with 

ground truth annotations for both segmentation (optic disc and 

cup boundaries) and classification (glaucomatous or non-

glaucomatous). The quality of images and detailed labeling 

ensures that both the segmentation and classification tasks in 

our proposed approach are well-supported. The dataset 

comprises a total of 1,200 fundus images, in that 700 images 

are labeled as non-glaucomatous (normal eyes). 500 images 

are labeled as glaucomatous. The dataset is split into three sets 

for training, validation, and testing and for Training Set, 60% 

of the images, i.e., 720 images (420 non-glaucomatous and 

300 glaucomatous), for validation set, 20% of the images, i.e., 

240 images (140 non-glaucomatous and 100 glaucomatous). 

Finally for test set: 20% of the images, i.e., 240 images (140 

non-glaucomatous and 100 glaucomatous). Here, Class 1 

indicates non-glaucomatous. These images show normal optic 

discs and cups, with a normal cup-to-disc ratio. 

The class 2 represents glaucomatous. These images exhibit 

visible structural changes in the optic nerve and retinal layers 

indicative of glaucoma, including an enlarged optic cup and a 

reduced neuroretinal rim, which lead to an abnormally high 

cup-to-disc ratio.The dataset comes with detailed annotations 

for segmentation and classification. Each image includes 

manually annotated boundaries of the optic disc and optic cup, 

which are essential for calculating the cup-to-disc ratio (CDR). 

A set of CDR values is pre-calculated for each image. This is 

a very important feature for classification. Each image was 

classified as either glaucomatous or non-glaucomatous using 

clinical evaluation. Images of the fundus are saved in JPEG 

format with a resolution of 1024x1024 pixels to provide 

detailed images for analysis. These annotations and the 

availability of such detailed ground truth allow our system to 

be trained effectively for both segmentation techniques and 

classification tasks. 

 

III. RESULTS  

To broadly evaluate the performance of the proposed 

glaucoma detection model, a variety of metrics were 

employed. These metrics were chosen to provide insights into 

both the overall accuracy and the model's ability to detect 

glaucoma, a condition often associated with subtle changes in 

retinal structure. Below is a description of the evaluation 

metrics used. Here, Accuracy is one of the main criteria used 

to assess the classification model is accuracy. It scales how 

accurate the model's predictions are overall. The accuracy is 

determined using Eq. (8) [11],[25],[26]. 

 

Accuracy =  
TP+TN

TP+TN+FP+FN
    (8) 

 

where, TP indicates True Positives (properly identified 

glaucoma cases), TN indicates True Negatives (properly 

identified non-glaucoma cases), FP indicates False Positives 

(non-glaucoma cases wrongly predicted as glaucoma), FN 

indicates False Negatives (glaucoma cases wrongly predicted 

as non-glaucoma). While accuracy gives an overall sense of 

model performance, it may not always be the best indicator for 

imbalanced datasets. Therefore, it is complemented with 

additional metrics. Sensitivity, sometimes referred to as recall, 

gauges how well the model can detect cases of glaucoma. In 

medical applications, where it can be very important to 

overlook a positive instance, it focuses on the genuine positive 

rate. The sensitivity  is calculated  using Eq. (9) [11],[25],[26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Classification Using Vision Transformer 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (9) 

A high sensitivity specifies that the model is successful in 

detecting a large proportion of actual glaucoma cases. 

Specificity measures the model's capability to properly 

identify non-glaucoma cases, focusing on the true negative 

rate. The specificity is determined using Eq. (10) 

[11],[25],[26]. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
     (10) 

This metric ensures that the model does not incorrectly 

classify non-glaucomatous images as glaucomatous, thus 

reducing false alarms. Precision measures the model's 

accuracy in predicting positive outcomes, or the proportion of 

projected positive occurrences that come to pass.The precision 

is calculated using Eq. (11) [11],[25],[26]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (11) 

 

High precision is especially important in this context, as we 

want the model to minimize the number of false positives 

(non-glaucoma cases misclassified as glaucoma).With respect 

to false positives and false negatives, the F1 score provides a 

balance between recall and precision. It proves to be useful in 

case of class imbalance, where imbalances often arise in the 

data related to medicine. The F1 score is determined using Eq. 

(12) [11],[25],[26]. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (12) 

The F1 score is a harmonic mean ensuring the model performs 

well on precision and recall, making it an ideal metric for 

glaucoma detection. Plotting the genuine positive rate 

(sensitivity) versus the false positive rate (1-specificity) is 

done by the ROC Curve. The model's performance across all 

potential classification criteria is summarized by a single 

scalar statistic called the Area Under the Curve (AUC). 

Improved overall model performance is indicated by a higher 

AUC. The ROC curve is determined using Eq. (13) 

[11],[25],[26]. 

𝐴𝑈𝐶 − 𝑅𝑂𝐶 = ∫ 𝑓(𝑥)𝑑𝑥
True Positive Rate

False Positive Rate
   (13) 

 
The MCC is a balanced parameter that considers all four 

categories of the confusion matrix (TP, TN, FP, and FN). It is 

especially useful for imbalanced datasets where standard 

metrics like accuracy may not fully capture model 

performance. The Matthews Correlation Coefficient is 

determined using Eq. (14) [11],[25],[26]. 

 

𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
  (14) 

 

(a) (b) (c) (d) 

    

    

    

    

    

    

    

 
Figure 5: Extracted region of Disc and Cup; a) Initial Image b) Raw Image c) Smooth Image d) OC and OD Segmentation 
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For the segmentation, the Jaccard Index is used, which is also 

known as the Intersection over Union (IoU), to measure the 

comparison between the predicted segmentation and the 

ground truth. The Jaccard Index is determined using Eq. (15) 

[11],[25],[26]. 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝐼𝑛𝑑𝑒𝑥 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
   (15) 

Similar to IoU, the Dice Coefficient is used to evaluate the 

accuracy of the optic disc and optic cup segmentation. It 

measures how well the predicted segmentation overlaps with 

the ground truth. The Dice Coefficient is determined using Eq. 

(16) [11],[25],[26]. 

𝐷𝑖𝑐𝑒𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2⋅𝑇𝑃

2⋅𝑇𝑃+𝐹𝑃+𝐹𝑁
   (16) 

The assessment of the suggested methodology for glaucoma 

identification is presented. Accuracy, sensitivity (recall), 

specificity, F1 score, and Area Under the Curve (AUC) of the 

Receiver Operating Characteristic (ROC) are among the 

measures used to evaluate the model's performance. The 

performance of several deep learning models for optic disc 

segmentation and glaucoma classification is compared in this 

paper. With an accuracy of 85.4% and an F1-score of 0.83, 

CNN-based techniques exhibit only modest performance. 

ResNet and DenseNet build on this with a little rise in 

accuracy (86.2%) and F1-score (0.85). With the former 

attesting to 90.7% accuracy and 0.88 F1-score, attention-gated 

U-Net for optic disc segmentation and U-Net for optic cup 

segmentation show notable improvements. Achieving 

accuracy of 93.4% and 91.3%, respectively, the Deep Wavelet 

Scattering Network (DWSN) and U-Net with dilated 

convolutions improve outcomes even more. Having a 93.5% 

accuracy and 0.92 F1-score, Vision Transformers (ViTs) show 

competitive performance. With an accuracy of 94.6%, 

precision of 93.8%, and F1-score of 0.95, the combined AGU-

Net, DWSN, and ViT model achieves the highest 

performance, so demonstrating the superiority of this 

integrated approach for glaucoma prediction. Table 2 shows 

the performance comparison of various methods. Ablation 

research by methodically eliminating specific components  is 

done in order to illustrate the efficacy of different elements in 

the framework. The findings, which are displayed in Table 3, 

emphasize how each module contributes to the total 

performance. The Figure 5 shows the Orginal image from the 

dataset, the optic cup and optic disc extraction. The qualitative 

findings, in addition to quantitative assessments, would also 

show how feasible the suggested glaucoma detection method 

is in terms of performance. Visualizations of the segmented 

optic disc and cup from the fundus images of the retinas are 

used to present this illustrations show how our framework 

accurately segments the optic disc and the optic cup for 

TABLE 2 

Performance Comparison of Various Methods. 

Method Accuracy (%) Sensitivity (%) Specificity (%) F1 Score 

CNN-based glaucoma 

classification 
85.4 82.1 88.0 0.83 

ResNet and DenseNet 86.2 84.0 89.2 0.85 

Attention-gated U-Net for 

optic disc segmentation 
90.7 87.2 91.9 0.88 

U-Net for optic cup 

segmentation 
89.6 86.5 90.4 0.87 

DWSN 93.4 90.5 94.1 0.92 

U-Net with dilated 

convolutions 
91.3 88.3 92.8 0.90 

ViT 93.5 90.8 94.0 0.92 

AGU-Net DWSN ViT 94.6 93.8 95.2 0.95 

 

TABLE 3 

Ablation study Results 

Configuration Accuracy (%) Sensitivity (%) Specificity (%) F1 Score AUC 

Without Attention 

Mechanism 
88.4 85.5 90.5 0.87 0.92 

Without Data 

Augmentation 
89.1 86.3 91.0 0.88 0.93 

AGU-Net DWSN ViT 91.5 88.9 93.5 0.91 0.95 
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improved CDR computation, one of the primary glaucoma 

diagnostics.  

To statistically prove the performance difference between 

the hybrid model proposed (AGU-Net + DWSN + ViT) and 

existing models (e.g., ResNet, DenseNet), a hypothesis-based 

significance test was performed. As we are comparing mean 

values of model performance (accuracy and specificity) over 

the same data set (test set of 240 images), we used a paired 

two-tailed T-test. T-test was used because it determines 

whether the mean difference between paired observations 

differs significantly from zero. Accuracy and specificity of 

each model were determined for repeated runs (n = 5) to 

achieve robustness and minimize randomness. The null 

hypothesis (H₀) was that there is no significant variation in 

mean performance across models. α = 0.05 was chosen as the 

significance level for the analysis. The test yielded a p-value 

of 0.003 for accuracy and 0.01 for specificity, indicating 

statistically significant improvements over ResNet and 

DenseNet at a 95% confidence level (α = 0.05). 

 

IV. DISCUSSION 

The experimental results confirm that the envisioned deep 

learning framework—integration of Attention-Gated U-Net 

with Dilated Convolutions, Deep Wavelet Scattering Network 

(DWSN), and Vision Transformers (ViTs)—achieves state-

of-the-art performance in glaucoma detection. The 

outstanding accuracy (94.6%), sensitivity (93.8%), specificity 

(95.2%), and F1-score (0.95) confirm the robustness of the 

hybrid pipeline for glaucomatous image detection and the 

prevention of misclassifications. The better performance is not 

only in quantitative comparison but also the scope in real-

world implications. In health applications, preventing false 

negatives is crucial in enabling timely diagnosis and 

preventing false positives to preclude unnecessary patient 

worry or procedure. Cumulated performance across multiple 

measures also showcases durability against divergent test 

circumstances and data sets. The attention-gated U-Net 

significantly helps in facilitating accurate segmentation of the 

optic disc and optic cup, which are necessary for calculating 

the Cup-to-Disc Ratio (CDR)–a critical diagnostic indicator in 

glaucoma. The dilated convolutions enable the capture of both 

local edge information and structural context at larger scales, 

resulting in improved boundary detection. The DWSN 

component adds a multiscale texture analysis feature, sensing 

fine-grained structural information easily lost in CNNs. The 

Vision Transformer builds on this pipeline by modeling global 

dependencies in the fundus image, resulting in improved 

classification performance over the classifiers based on CNN. 

Compared to recent research works, the introduced model 

evidently moves the field forward. Mahum et al. [27] obtained 

91.5% accuracy with a CNN-based method, while Chen et al. 

[33] obtained 93.5% with ViTs. Neither of them used a 

combined preprocessing-segmentation-classification pipeline, 

though. Parashar & Agrawal [31] used DWSN without the 

attention mechanism for segmentation. Kashyap et al. [30] and 

George et al. [29] used U-Net and attention U-Net 

respectively, but at lower segmentation accuracies of 89.6% 

and 90.7%. Shyamalee & Meedeniya [24] employed CNNs 

for classification but reported overfitting problems on small 

datasets. Thainimit et al. [13] utilized GANs for augmentation 

and attained +2% over baseline but did not employ multiscale 

learning. In comparison to all these, our combined approach 

performs better than each in classification metrics and overall 

robustness. The proposed work is not without limitations 

despite its high performance. First, while the model works 

well with public datasets, these might not match clinical 

variability in real life, e.g., varied stage of disease, imaging 

machine, or population. Second, the design brings 

computational complexity, which could be a potential 

bottleneck in low-resource environments. Third, while 

contrast enhancement by CLAHE enhances segmentation for 

most images, it can enhance noise in already good-quality 

images. These problems indicate the necessity of model 

optimization and clinical verification prior to real-world 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6. Heatmap Visualization of Glaucoma Detection 
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usage. The findings of this research have significant 

implications for glaucoma diagnosis. The framework 

presented here provides a scalable and reliable means for 

automated screening, especially in primary care or tele-

ophthalmology settings. Through the integration of noise 

reduction, structural segmentation, multiscale feature 

extraction, and long-range classification modeling, this 

framework has the potential to significantly alleviate the 

workload on ophthalmologists and facilitate earlier, more 

precise detection in underserved areas. The statistical 

significance of the proposed model's improvement, as 

confirmed through the t-test reported in the Results section, 

further supports the robustness of our approach in both 

accuracy and specificity metrics. Figure 7 shows a low P-

Value representing that our proposed model correctly 

identifies the non glaucomatous case. A quantitative analysis 

of model errors on the test set (240 images: 100 glaucomatous, 

140 non-glaucomatous) identified 6 false negatives and 7 false 

positives. These translate to a sensitivity of 93.8% and 

specificity of 95.2%, in line with our reported figures. The 

majority of false negatives (6%) were in borderline glaucoma 

cases, where early-stage structural changes were subtle and 

difficult to detect, even with preprocessing. These images 

tended to have little optic nerve cupping and low contrast, so 

optic cup boundaries were hard to resolve. False positives 

(5%) occurred with high CDRs in normal images because of 

anatomical variation or imaging artifacts. These errors indicate 

that although the model performs well in general, borderline 

or outlier cases remain challenging. The inclusion of 

complementary clinical parameters like intraocular pressure 

(IOP) or OCT may minimize misclassifications in subsequent 

work. 

 

V. CONCLUSION  

 

The aim of this research was to create an effective and reliable 

glaucoma detection system by combining state-of-the-art deep 

learning architectures: an Attention-Gated U-Net with Dilated 

Convolutions for segmentation, a Denoising GAN for 

preprocessing, a Deep Wavelet Scattering Network (DWSN) 

for feature extraction, and Vision Transformers (ViTs) for 

classification. The overall objective was to overcome 

significant limitations in segmentation performance, noise 

robustness, and global dependency modeling, which are 

typical of classical CNN-based approaches. The suggested 

hybrid model obtained state-of-the-art performance with 

94.6% accuracy, 93.8% sensitivity, 95.2% specificity, and 

0.95 F1-score. Statistical verification via paired t-test asserted 

the improvement in performance over baseline models to be 

significant, as p-values for accuracy and specificity were 0.003 

and 0.01, respectively, substantiating the robustness of the 

approach. Future directions include optimizing computational 

efficiency for real-time deployment, testing performance with 

varied clinical data sets, and further inclusion of relevant 

clinical parameters like intraocular pressure (IOP) or optical 

coherence tomography (OCT) to minimize borderline 

misclassifications. Real-time integration with ophthalmic 

imaging devices and deployment in tele-ophthalmology 

systems also are possibilities to be investigated. 
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