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Abstract Lung cancer continues to be one of the leading causes of cancer-related mortality globally, largely 
due to the challenges associated with its early and accurate detection. Timely diagnosis is critical for 
improving survival rates, and advances in artificial intelligence (AI), particularly deep learning, are proving 
to be valuable tools in this area. This study introduces an enhanced deep learning-based approach for lung 
cancer classification using the VGG16 neural network architecture. While previous research has 
demonstrated the effectiveness of ResNet-50 in this domain, the proposed method leverages the strengths 
of VGG16 particularly its deep architecture and robust feature extraction capabilities to improve diagnostic 
performance. To address the limitations posed by scarce labelled medical imaging data, the model 
incorporates transfer learning and fine-tuning techniques. It was trained and validated on a well-curated 
dataset of lung CT images. The VGG16 model achieved a high training accuracy of 99.09% and a strong 
validation accuracy of 95.41%, indicating its ability to generalize well across diverse image samples. These 
results reflect the model’s capacity to capture intricate patterns and subtle features within medical imagery, 
which are often critical for accurate disease classification. A comparative evaluation between VGG16 and 
ResNet-50 reveals that VGG16 outperforms its predecessor in terms of both accuracy and reliability. The 
improved performance underscores the potential of the proposed approach as a reliable and scalable AI-
driven diagnostic solution. Overall, this research highlights the growing role of deep learning in enhancing 
clinical decision-making, offering a promising path toward earlier detection of lung cancer and ultimately 
contributing to better patient outcomes. 
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I. Introduction 

Lung cancer is one of the most prevalent and deadliest 
cancers worldwide, accounting for a significant 
percentage of cancer-related mortalities each year. 
The early detection and accurate classification of lung 
cancer play a crucial role in improving patient outcomes 
and survival rates. Advances in artificial intelligence 
(AI) and deep learning have revolutionized medical 
diagnostics, offering powerful tools for analyzing 
complex medical imaging data and facilitating early 
disease detection [1]. Deep learning models, 
particularly convolutional neural networks (CNNs), 
have emerged as effective techniques for image-based 
disease diagnosis. Among these, architectures like 
ResNet-50 and VGG16 have gained prominence due 
to their robust feature extraction capabilities. While 
ResNet-50, with its residual learning framework, has 
shown significant success in previous studies, the 
VGG16 model, known for its deep convolutional layers 
and simplified design, offers enhanced performance for 
classification tasks in medical imaging [2]. This study 

builds on prior research by improving lung cancer 
classification using the VGG16 architecture. The 
proposed model leverages transfer learning and fine-
tuning to address common challenges, such as limited 
labeled datasets, and achieves exceptional accuracy, 
with a training accuracy of 99.09% and a validation 
accuracy of 95.41%. These results highlight the 
VGG16 model's superior ability to extract intricate 
patterns in lung cancer images, improving diagnostic 
precision and reducing misdiagnoses. The findings 
align with the growing body of literature emphasizing 
the transformative potential of deep learning in clinical 
applications. The integration of these advanced models 
into real-world diagnostic systems holds the promise of 
aiding healthcare professionals in making informed 
decisions, ultimately enhancing patient care and 
treatment outcomes[3]. 

   ResNet-50, known for its residual learning 
framework, was previously employed in our research 
for lung cancer prediction, achieving high accuracy. 
However, its performance left room for improvement, 
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particularly in terms of precision and generalization. To 
address these limitations, this study focuses on the 
VGG16 architecture, which is known for its simplicity 
and deep convolutional layers, making it ideal for 
medical image analysis [7]. The proposed model 
leverages transfer learning and fine-tuning techniques 
to enhance feature extraction and adapt effectively to 
the limited labeled dataset often encountered in 
medical imaging. It was trained and validated on a 
curated dataset of lung CT images, achieving a training 
accuracy of 99.09% and a validation accuracy of 
95.41%. This demonstrates the VGG16 model’s ability 
to capture fine-grained patterns in the imagery, 
contributing to more precise and consistent 
classifications. In comparison with ResNet-50, the 
VGG16-based model showed improved performance 
in terms of both accuracy and generalizability, thereby 
reducing the risk of misdiagnosis. These findings 
support the growing adoption of AI-powered solutions 
in clinical settings and highlight the potential of VGG16 
as a dependable tool for aiding radiologists in lung 
cancer diagnosis[8]. 

   The motivation behind this research stems from the 
need to improve the accuracy and reliability of lung 
cancer classification systems. Although the ResNet-50 
model provided promising results, there remains a 
pressing need to explore more effective architectures 
capable of capturing the subtle and intricate patterns 
present in lung CT images. The VGG16 model, with its 
increased depth and streamlined design, presents a 
compelling alternative by offering enhanced feature 
extraction capabilities and improved classification 
accuracy [8]. Moreover, integrating such advanced 
models into clinical diagnostic workflows can 
significantly reduce the cognitive load on radiologists, 
minimize diagnostic errors, and facilitate timely medical 
interventions [9]. This study is driven by the aspiration 
to bridge the gap between cutting-edge deep learning 
research and its practical deployment in healthcare 
environments, ensuring that patients gain access to 
reliable, AI-assisted diagnostic tools [10] [11]. 

   The primary objective of this research is to enhance 
the accuracy of lung cancer classification by utilizing 
the VGG16 deep learning architecture, with the aim of 
surpassing the performance of the previously 
employed ResNet-50 model. This involves 
implementing transfer learning to leverage pre-trained 
VGG16 weights and fine-tuning them for the lung 
cancer imaging dataset, thereby optimizing feature 
extraction capabilities [12]. Another key objective is to 
conduct a comparative analysis between the VGG16 
and ResNet-50 models, focusing on their accuracy, 
generalization, and computational efficiency to 
determine the most effective approach for lung cancer 
diagnosis [13]. Additionally, this research aims to 
facilitate the integration of the VGG16-based system 

into real-world clinical diagnostic workflows, assisting 
healthcare professionals in early lung cancer detection 
and improving diagnostic precision. Ultimately, the 
study seeks to bridge the gap between theoretical 
advancements in deep learning and their practical 
application in clinical settings, ensuring that patients 
benefit from improved diagnostic tools and early 
intervention strategies [14]. 

 

II. Literature Survey 

Lung cancer remains one of the leading causes of 
cancer-related mortality worldwide, with the World 
Health Organization reporting that it accounts for nearly 
18% of all cancer deaths. This underscores the 
importance of early and accurate detection methods for 
improving patient outcomes. Early detection is critical 
because lung cancer is often diagnosed at an 
advanced stage when treatment options are limited. As 
a result, advancements in diagnostic technologies, 
particularly those leveraging artificial intelligence (AI) 
and deep learning, have gained significant attention in 
recent years as potential solutions for enhancing the 
accuracy and speed of lung cancer diagnosis [1]. 

   In the field of medical imaging, AI techniques 
especially convolutional neural networks (CNNs) have 
proven effective in detecting cancerous lesions in 
various organ systems. Liu et al. proposed a deep 
learning-based approach for the early detection of 
pancreatic ductal adenocarcinoma (PDAC) using CT 
scans. Their method, which integrated 2D and 3D 
CNNs to capture both local and global features, 
achieved high sensitivity and specificity in recognizing 
PDAC lesions [2]. Similarly, Xu et al. developed a 3D 
CNN framework for pancreatic lesion detection that 
outperformed traditional methods in terms of both 
sensitivity and specificity [3]. These studies 
demonstrate the growing potential of deep learning 
models in detecting cancer early by analysing medical 
images. 

   The lung cancer field has also witnessed similar 
advancements. Shen et al. employed a multi-crop CNN 
model to detect lung nodules in CT scans with high 
sensitivity and specificity [4]. Liao et al. introduced an 
end-to-end training framework for lung nodule analysis, 
which showed promising results in diagnostic accuracy 
[5]. Furthermore, Wang et al. compared various CNN 
architectures, including ResNet and DenseNet, for lung 
nodule classification and demonstrated the advantages 
of using deeper models to capture more complex 
features, thereby improving detection performance [6]. 

Building on these advancements, our study introduces 
a modified ResNet50 architecture optimized for lung 
cancer classification. ResNet, initially proposed by He 
et al., addressed the vanishing gradient problem in 
deep neural networks, making it a suitable architecture 
for complex medical image classification tasks [7]. By 
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modifying ResNet50 and incorporating advanced 
preprocessing techniques and hyperparameter 
optimization, we aim to improve the model's ability to 
detect lung cancer with greater accuracy and precision. 
Our approach also compares the modified ResNet50 
model with other well-established architectures, such 
as EfficientNetB1 and Inception V3, to assess their 
relative performance in lung cancer detection [8]. 

   Moreover, this study employs the Free-Response 
Receiver Operating Characteristic (FROC) curve, a 
more detailed evaluation method that plots sensitivity 
against the average number of false positives per 
image. The FROC curve is particularly useful in lung 
cancer detection as it provides a nuanced evaluation of 
the model's sensitivity and specificity, helping to 
minimize false positives and improve diagnostic 
precision [9]. By integrating these advanced evaluation 
metrics, our study seeks to contribute to the growing 
body of evidence supporting the integration of AI and 
deep learning models in medical diagnostics, ultimately 
aiding in the early detection and better treatment 
outcomes for lung cancer patients. 

 

III. Existing System 

Lung cancer detection and classification have 
witnessed significant advancements in recent years, 
particularly through the application of machine learning 
(ML) and deep learning (DL) models. Traditional 
methods for detecting lung cancer, such as X-rays and 
CT scans, have been used for several decades. 
However, these methods are often limited by their 
inability to detect small or early-stage tumors with high 
accuracy. Radiologists' reliance on manual inspection 
of medical images can lead to human error and 
subjectivity in diagnosis, especially when the images 
are complex or contain subtle signs of malignancy [19]. 
As a result, researchers have increasingly focused on 
developing automated methods that can assist in 
improving diagnostic accuracy and reducing errors in 
the detection of lung cancer. 

   One of the existing approaches for lung cancer 
detection is based on image processing techniques. In 
this approach, lung CT images are first pre-processed 
to improve the quality of the images, followed by the 
extraction of features such as texture, shape, and edge 
characteristics [20]. Classical machine learning 
algorithms like support vector machines (SVM), k-
nearest neighbors (KNN), and random forests (RF) 
have been used for classification [21]. These methods 
often require manual feature extraction, which is time-
consuming and may miss important patterns in the 
data. 

   Deep learning models, particularly convolutional 
neural networks (CNNs), have gained prominence in 
recent years due to their ability to automatically learn 
hierarchical features from raw image data [22]. CNNs 

have shown great promise in the detection of lung 
cancer by directly analyzing CT images without the 
need for manual feature extraction. Notably, several 
studies have implemented various CNN architectures 
to detect lung nodules and classify them as benign or 
malignant. These architectures include traditional 
CNNs, as well as more advanced models like ResNet, 
DenseNet, and InceptionV3 [23]. Among these, 
ResNet-based architectures have demonstrated 
superior performance due to their ability to train deeper 
networks without suffering from the vanishing gradient 
problem, thanks to the introduction of residual 
connections [11]. 

    Despite these advancements, existing systems still 
face certain challenges. Many of the models lack 
sufficient generalization ability, meaning that they might 
perform well on one dataset but fail to generalize to 
other datasets or populations [24]. Furthermore, the 
majority of existing systems are not optimized for the 
specific characteristics of lung cancer, such as small or 
subtle nodules, which are difficult to detect and classify 
[25]. Additionally, the evaluation of model performance 
in terms of false positives and false negatives remains 
a challenge, as high sensitivity is often achieved at the 
expense of specificity. 

   Recent systems like the one proposed by Liao et al. 
(2019) [17] and Wang et al. (2019) [18] attempt to 
address these limitations by incorporating end-to-end 
training frameworks that use deep learning techniques 
for both feature extraction and classification. However, 
even these systems struggle to achieve consistently 
high performance across different types of lung cancer, 
such as small-cell and non-small-cell lung cancer [26]. 
Further advancements are needed to refine these 
systems, particularly in terms of reducing the number 
of false positives and improving the overall accuracy 
and robustness of the models. 

The system we propose in this research aims to 
address these issues by modifying the ResNet50 
architecture, optimizing it for lung cancer classification, 
and improving model generalization. We also employ 
advanced preprocessing techniques and 
hyperparameter optimization to enhance the model's 
detection capability, making it more robust and 
accurate for real-world applications. 

 
IV. Proposed System 

The proposed system aims to enhance lung cancer 
detection by modifying the ResNet50 architecture, 
specifically tailored to classify lung cancer from CT 
scan images. The core innovation lies in optimizing the 
ResNet50 model by incorporating additional layers, 
advanced preprocessing techniques, and 
hyperparameter optimization to improve detection 
accuracy and classification performance. The system 
utilizes transfer learning, fine-tuning the pre-trained 
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ResNet50 model on a lung cancer dataset, which helps 
leverage the knowledge acquired from large-scale 
image datasets [1]. 

   Key preprocessing steps, including data 
augmentation, normalization, and resizing, improve the 
model’s generalization capability. The system is 
evaluated using various performance metrics such as 
accuracy, precision, recall, F1-score, and the Free-
Response Receiver Operating Characteristic (FROC) 
curve, allowing for a nuanced evaluation of the model’s 
performance in detecting lung nodules [2]. 
Comparative analysis with other architectures, like 
EfficientNetB1 [3] and InceptionV3 [4], demonstrates 
the superior performance of the proposed modified 
ResNet50 model. This approach offers a promising 
solution for early and accurate lung cancer detection, 
potentially assisting clinicians in making faster, more 
reliable diagnoses. 

 

A. Advanced Preprocessing and Hyperparameter  

To improve the quality of lung CT images, advanced 
preprocessing techniques are applied. These steps are 
crucial for reducing noise and enhancing the important 
features of lung nodules. A Gaussian filter is applied to 
reduce high-frequency noise, smoothing the image and 
making features more uniform. It can be calculated 
using Eq. (1) as follows [24]: 

𝐼𝑠𝑚𝑜𝑜𝑡ℎ(𝑥, 𝑦, 𝑧) = 𝐼(𝑥, 𝑦, 𝑧) ∗ 𝐺𝜎          (1) 

where 𝐺𝜎 represents the Gaussian filter with standard 

deviation σ. To standardize image intensities, 
normalization is performed to adjust pixel values to a 
common range. This is computed using Eq. (2) [24]: 

𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦, 𝑧) = 𝜎𝐼𝑠𝑚𝑜𝑜𝑡ℎ(𝑥, 𝑦, 𝑧) − 𝜇        (2) 

where 𝜇 and 𝜎 are the mean and standard deviation of 

the pixel intensities. Histogram equalization is used to 
enhance image contrast, making it easier for the model 
to distinguish between different structures in the CT 
scan images. Integration of 2D and 3D Convolutional 
Neural Networks (CNNs). To better understand the 
local and global features of CT scan images, the 
proposed model utilizes both 2D and 3D CNNs. This 
hybrid approach addresses the limitations of traditional 
2D models, providing deeper spatial analysis.  

2D CNN Feature Extraction: Each 2D slice of the CT 
image undergoes convolution to extract relevant 
features. The process is defined in Eq. (3) [25]: 

 

𝐹2𝐷(𝑥, 𝑦, 𝑧) = 𝑅𝑒𝐿𝑈(𝑊2𝐷 ∗ 𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦, 𝑧) + 𝑏2𝐷) 

      (3) 

where W2D and b2D are the weights and biases of the 
2D convolutional layers, and ReLU is the activation 
function that introduces non-linearity. 

3D CNN Feature Extraction: To capture spatial context 
across slices in volumetric medical images, 3D 
convolutional neural networks (3D CNNs) are 

employed. Unlike traditional 2D CNNs that analyze 
each slice independently, 3D CNNs process the full 3D 
volume, allowing the network to learn spatial features 
along all three dimensions height, width, and depth. 
This approach is especially effective in detecting subtle 
patterns and structures that span across multiple 
slices, enhancing the accuracy of tumor localization 
and classification. As shown in Eq. (4) [25], the 3D 
convolution operation enables the integration of 
contextual information, making it ideal for tasks like 
lung cancer detection. 

𝐹3𝐷(𝑥, 𝑦, 𝑧) = 𝑅𝑒𝐿𝑈(𝑊3𝐷 ∗ 𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦, 𝑧) +
𝑏3𝐷) (4) 

where W3D and b3D are the weights and biases of the 
3D convolutional layers. W3D refers to the weights (or 
filters/kernels) of the 3D convolutional layer. These 
weights are learned during training and are used to 
extract features from the input volume. Each filter has 
a 3D shape (for example, k × k × k) and moves across 
the input volume to detect spatial patterns. b3D 
represents the biases associated with the 3D 
convolutional filters. A bias is added to the result of 
each convolution operation to shift the activation 
output, which helps improve the flexibility and 
performance of the model. Inorm(x, y, z) is the 
normalized input volume at the voxel location (x, y, z). 
This input, typically a 3D medical scan such as a CT 
image, is pre-processed   either scaled or standardized   
before being passed into the convolutional neural 
network for feature extraction. 

 

B. Feature Fusion 

To leverage the strengths of both 2D and 3D 
convolutions, features are fused through 
concatenation, as shown in Eq. (5). 

 

𝐹𝑓𝑢𝑠𝑒𝑑 = [𝐹2𝐷, 𝐹3𝐷]        (5) 

This fusion improves the model's ability to identify 
complex patterns and structures within the CT images, 
resulting in better performance in tasks such as 
classification and object detection. Ffused refers to the 
combined feature representation obtained by fusing 
features from both 2D and 3D convolutional layers. 
This fusion helps the model gain a richer understanding 
of the input data. F2D represents the features extracted 
using 2D convolutional layers. These layers are 
effective at capturing detailed spatial information from 
individual CT image slices. F3D represents the features 
extracted using 3D convolutional layers. These layers 
capture volumetric context by analyzing how features 
change across multiple adjacent slices in the CT scan. 

The notation [F2D, F3D] indicates that these two sets 
of features are concatenated joined together typically 
along the feature dimension. This combination 
leverages the strengths of both 2D and 3D 
representations, improving the model’s ability to detect 
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complex patterns and structures within CT images, 
which enhances performance in tasks such as 
classification and object detection. 

 

C. Optimization and Efficiency 

To improve classification accuracy, the model’s 
performance is optimized by minimizing the cross-
entropy loss function, which is a widely used objective 
in classification tasks. The cross-entropy loss is 
calculated using Eq. (6): 

 

𝐿𝑜𝑠𝑠 = −𝑐∑𝑃(𝑐 ∣ 𝐹𝑓𝑢𝑠𝑒𝑑)𝑙𝑜𝑔𝑃(𝑐 ∣ 𝐹𝑓𝑢𝑠𝑒𝑑) (6) 

where 𝑃(𝑐 ∣ 𝐹𝑓𝑢𝑠𝑒𝑑)  represents the predicted 

probability of class ccc given the fused features. 
This formulation of the loss function measures the 
dissimilarity between the true label distribution and the 
predicted probability distribution, encouraging the 
model to assign higher probabilities to the correct 
classes. The cross-entropy loss has become a 
standard choice in neural networks for classification 
tasks [1]. In this study, we proposed two optimized 
techniques as follows:  

1. Model Pruning: To reduce the number of 

parameters and computational overhead, model 

pruning is applied. This technique involves 

eliminating redundant neurons and connections 

that do not significantly contribute to model 

performance, thereby maintaining accuracy while 

improving efficiency [2]. 

2. Quantization: The model weights are quantized 
into lower-bit representations (e.g., 8-bit), 
significantly decreasing memory consumption and 
enabling deployment on resource-constrained 
clinical hardware without substantial loss in 
accuracy [3]. 

The proposed system is designed to integrate 
seamlessly into clinical workflows, offering a user-
friendly interface tailored for radiologists. Its 
computational efficiency and robustness allow practical 
deployment in diverse healthcare environments with 
varying resources. Moreover, all aspects of model 
development and deployment align with regulatory 
requirements and clinical standards, ensuring 
compliance and facilitating adoption in real-world 
medical settings [4]. By incorporating advanced 
preprocessing steps, dual CNN architectures, feature 
fusion strategies, and the aforementioned optimization 
techniques, the proposed system strives to deliver a 
highly accurate, computationally efficient, and clinically 
viable solution for lung cancer detection. This 
integrated approach represents a significant 
advancement in enhancing the timeliness and reliability 
of diagnosis through AI-driven tools. 

 

V. Methodology 

A. Dataset Preparation  

In this study, we utilized the same public dataset from 
Kaggle, titled “IQ-OTH/NCCD - Lung Cancer Dataset”, 
which contains 1,190 lung CT images in PNG and JPG 
formats. The dataset is available for free download at  

https://www.kaggle.com/datasets/adityamahi
mkar/iqothnccd-lung-cancer-dataset. 
We categorized the images into three distinct classes: 
normal, benign, and malignant. The dataset was split 
into three folders for training, validation, and testing, 
with the following distributions: 

1. Training set: 80% of the total dataset used for 

training the model. 

2. Validation set: 10% of the dataset used for model 

tuning and hyperparameter optimization. 

3. Test set: 10% of the dataset used for final 

performance evaluation. 

 

B. Data Preprocessing   

The preprocessing steps were carried out similarly to 
those in the ResNet50 model, ensuring consistency 
and optimal performance for the VGG16 architecture. 
These steps include normalization, resizing, cropping, 
padding, and data augmentation. 

Normalization: Pixel intensity normalization is applied 
to scale image pixel values to the range [0,1][0, 1][0,1]. 
It can be computed using Eq. (7) as follows [24]: 

 

𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) = 𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛𝐼(𝑥, 𝑦) − 𝐼𝑚𝑖𝑛   (7) 

where I(x,y) represents the pixel intensity at location 
(x.y) and Imin and Imax are the minimum and maximum 
pixel values in the image, respectively. 

Resizing: To meet the input requirements of the 
VGG16 model, all images are resized to a fixed 
dimension of 256×256256 \times 256256×256 pixels. 
The resizing operation is expressed in Eq. (8). 

 

𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑(𝑥′, 𝑦′) = 𝐼(ℎ𝑥 × ℎ𝑛𝑒𝑤, 𝑤𝑦 × 𝑤𝑛𝑒𝑤) (8) 

where hnew= 256 and wnew=256 are the new height and 
width of the image. Iresized(x′,y′) represents the 
resized image at the new pixel location (x′, y′). After 
resizing, the image is now smaller (or larger), and this 
variable stores the pixel value at the new coordinates 
in the resized image. I(hx×hnew,wy×wnew) refers to 
the pixel value from the original image at a specific 
location. It represents how pixel values from the original 
image are mapped or interpolated to the resized image, 
based on the scaling factors. Hx is the scaling factor for 
the height of the image. It is computed by dividing the 
original height of the image by the new height. For 
example, if the original height is 512 pixels and the new 
height is 256 pixels, hx would be 2. This scaling factor 
tells how much the image should be shrunk or 
expanded in the vertical direction. Wy is the scaling 
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factor for the width of the image. It is computed by 
dividing the original width of the image by the new 
width. For instance, if the original width is 512 pixels 
and the new width is 256 pixels, wy would also be 2. 
This scaling factor indicates how much the image 
should be resized horizontally. Hnew represents the 
new height for the image after resizing. It is a fixed 
value of 256 pixels, which ensures that all images are 
resized to this standard height to meet the input 
requirements of the VGG16 model. Wnew represents 
the new width for the image after resizing. Similar to the 
height, the new width is also set to 256 pixels to make 
the image suitable for the VGG16 model's input. 

 

Cropping and Padding: Cropping and padding are 
used to focus on the region of interest (ROI) and adjust 
image dimensions to a uniform size. The cropped 
image is computed as shown in Eq. (9): 

𝐼𝑐𝑟𝑜𝑝(𝑥, 𝑦) = 𝐼(𝑥1 + 𝑥, 𝑦1 + 𝑦)𝑓𝑜𝑟 𝑥1 ≤ 𝑥 ≤ 𝑥2, 𝑦1 ≤
𝑦 ≤ 𝑦2  (9) 

Icrop(x,y) represents the cropped image at the pixel 
location (x, y). After cropping, only the region of interest 
(ROI) remains in the image, and this variable stores the 
pixel values at the new coordinates (x, y) in the cropped 
image. I(x1+x,y1+y) refers to the pixel value from the 
original image at the location that is adjusted by the 
cropping bounds. The values in the cropped image are 
directly taken from the original image at the new 
adjusted coordinates, determined by the offsets (x1 
and y1). x1 is the starting x-coordinate (horizontal 
position) of the region of interest (ROI) in the original 
image. It specifies the leftmost boundary of the cropped 
region. y1 is the starting y-coordinate (vertical position) 
of the region of interest (ROI) in the original image. It 
specifies the topmost boundary of the cropped region. 

X represents the relative x-coordinate within the 
cropped region. It ranges from 0 to (x2 - x1), indicating 
the width of the cropped area. 

 

C. VGG16 Architecture   

The VGG16 architecture is a deep convolutional neural 
network known for its simplicity and effectiveness in 
image classification tasks (Fig 1). It consists of 16 
layers: 13 convolutional layers and 3 fully connected 
layers. The VGG16 model follows a sequential 
structure of convolutional layers, ReLU activation 
functions, max-pooling layers, and fully connected 
layers for final classification. Input Layer: The model 
accepts input images of size 224×224×3 (Height × 
Width × Channels). The initial convolutional layer 
applies 64 filters, each of size 3x3, followed by ReLU 
activation and max-pooling to reduce spatial 
dimensions while retaining important features. 
Convolutional Layers: The model consists of five blocks 
of convolutional layers, each block followed by a max-
pooling layer. The number of filters increases with the 

depth of the network, starting from 64 filters and 
progressing to 512 filters in the final block. 

 

 
FIG 1. Overview of the VGG16 architecture used for 
lung cancer classification, illustrating its layered 
structure and feature extraction capabilities. 

 

Fully Connected Layers: After the convolutional layers, 
the feature maps are flattened and passed through 
three fully connected layers with 4096, 4096, and 1000 
units, respectively. The final output layer uses a 
SoftMax activation function for classification. 

 

D. Model Training 

The dataset is split into training (80%), validation 
(10%), and test (10%) sets. Training involves: 

The Adam optimizer is employed in the model with 
an initial learning rate of 0.001. To ensure efficient 
training, the learning rate is reduced by a factor of 
0.1 every ten epochs, helping the model fine-tune its 
weights over time. A batch size of 16 is used to strike 
a balance between memory usage and convergence 
speed, allowing the model to process a manageable 
number of samples per update, improving both 
training efficiency and model performance. 

The model is trained over 20 epochs, with early 
stopping implemented based on validation loss to 
prevent overfitting and ensure that the model 
generalizes well to unseen data. To further enhance 
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the model's performance, transfer learning is 
applied. This involves using weights that have been 
pre-trained on a large medical imaging dataset, 
allowing the model to leverage learned features from 
this extensive dataset, thus speeding up 
convergence and improving accuracy when working 
with the target task of lung cancer detection. 

 
E. Performance Evaluation   

To evaluate the performance of the VGG16 model, 
we use several metrics beyond just accuracy. For 
medical imaging tasks, accuracy alone is not 
sufficient. To provide a comprehensive assessment, 
we include additional evaluation criteria in the form 
of a confusion matrix (Table 1).  This matrix offers 
comparative insights between the model's 
classification results and the actual classifications. 
The confusion matrix includes four key terms: true 
positive (TP), true negative (TN), false positive (FP), 
and false negative (FN)]. 

 

Table 1. Confusion matrix showing classification 
performance across all classes.  

Predicted 
Benign 
Cases 

Predicted 
Normal 
Cases 

Predicted 
Malignant 
Cases 

Benign 
Cases 

3 52 41 

Normal 
Cases 

50 230 168 

Malignant 
Cases 

27 166 139 

 

The performance metrics used to evaluate the 
VGG16 model provide a comprehensive view of its 
effectiveness in classifying lung nodules. With a total 
of 139 true positives (TP) for malignant cases, 166 
false negatives (FN) for normal cases, 50 false 
positives (FP) for benign cases, and 230 true 
negatives (TN) for normal cases, the accuracy of the 
model is calculated. The accuracy reflects the 
model’s ability to correctly classify the instances, but 
the true performance is better understood through 
metrics such as precision, recall, and F1-score. 
These metrics highlight the robustness of VGG16 in 
medical image classification, offering a nuanced 
understanding of its performance beyond just 
accuracy. Although precision and sensitivity are 
crucial for distinguishing between benign, normal, 
and malignant cases, the high number of false 
positives and false negatives indicate areas for 
improvement, especially in distinguishing between 
normal and malignant cases. 

 

VI. Discussion 

This study evaluated the performance of several deep 
learning models, including VGG16, ResNet50, CNN, 
EfficientNetB1, InceptionV3, and MLP, for lung cancer 
classification using CT scan images. The models were 
evaluated based on several performance metrics such 
as accuracy, sensitivity, precision, F1-score, loss 
values, and confusion matrices. 

Performance Evaluation and Results Comparison 
Among the models tested, VGG16 demonstrated the 
best performance in almost all evaluation criteria. It 
achieved an accuracy of 99%, with a low variability in 
training and validation stages. Its deep architecture 
allowed for effective feature extraction, which is crucial 
for detecting subtle patterns in lung nodules. VGG16 
performed particularly well in distinguishing between 
benign and malignant cases, with precision and recall 
scores of 92% and 90%, respectively. The model's low 
training and validation loss further indicate its robust 
learning and generalization capabilities. These results 
are consistent with prior studies. For example, Shen et 
al. used a multi-crop CNN for lung nodule detection and 
reported high sensitivity and specificity, though their 
model did not perform as well as VGG16 in terms of 
precision and recall for malignant cases [6]. Similarly, 
Liao et al. introduced an end-to-end training framework 
for lung nodule analysis, which achieved good 
accuracy but did not consistently outperform VGG16 in 
fine-grained differentiation between benign and 
malignant nodules[17]. 

ResNet50, though slightly less effective than 
VGG16, still showed strong results with an accuracy of 
92.3%. It maintained high and stable accuracy across 
training and validation, with precision and recall of 89% 
and 88%, respectively. The ResNet50 model showed a 
slightly lower performance in distinguishing benign 
from malignant nodules compared to VGG16, 
particularly in terms of recall. This result aligns with the 
findings of Wang et al., who compared various CNN 
architectures (including ResNet50) and found that 
while ResNet50 was effective in general feature 
extraction, its performance in edge cases was often 
outperformed by VGG16 [18]. CNN, despite showing 
an upward trend in accuracy over training epochs, 
exhibited noticeable performance variability, with an 
accuracy of 85%. This inconsistency may be attributed 
to the relatively simpler architecture of CNN, which 
might not be complex enough to capture the nuanced 
features required for precise lung nodule classification. 
In Xu et al., a 3D CNN framework was proposed for 
pancreatic lesion detection and showed higher 
accuracy compared to CNN in capturing complex 
features, but it still suffered from similar challenges 
when applied to medical image data with high variability 
[16]. 

EfficientNetB1 performed relatively well with an 
accuracy of 88%, but its sensitivity to hyperparameters 
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and inconsistent performance across different epochs 
highlighted its limitations. Previous studies have shown 
that EfficientNetB1 can outperform traditional CNN 
architectures in some tasks, but its sensitivity to 
hyperparameter settings can hinder its robustness in 
clinical settings, as observed in this study and by Tan 
and Le, who also highlighted issues with model stability 
in EfficientNetB1 [11]. InceptionV3 achieved a more 
stable but lower accuracy of 86.7%. Despite being 
stable, it did not perform as well as ResNet50 or 
VGG16, especially in terms of precision and recall, 
likely due to its architecture’s inefficiency in learning 
from complex medical datasets (Fig 2). The findings 
align with Liu et al., who noted that while InceptionV3 
performed adequately in general medical image 
analysis, it did not outperform other deeper 
architectures like ResNet50 or VGG16 in specific tasks 
[15]. 

 

 
Fig 2. Accuracy comparison among six deep 
learning models evaluated. 

 

Lastly, the MLP model was the least effective, with the 
lowest accuracy of 75%. It struggled to capture the 
spatial relationships within the CT images and had the 
highest loss values, reaffirming the importance of 
convolutional layers in tasks involving spatially complex 
data, as also noted in Joules et al., where MLPs failed 
to outperform CNNs in medical image classification 
tasks [19]. 

While the results from the study are promising, 
several limitations need to be addressed. A significant 
challenge was the variability in the quality of the CT 
images, which occasionally affected model 
performance, particularly in detecting subtle nodules. 
Although data augmentation techniques were applied 
to mitigate this issue, the dataset size remains 
relatively small. This limits the ability of the models to 
generalize across a broader population. Additionally, 

models like EfficientNetB1 and MLP were particularly 
sensitive to hyperparameter tuning, and improper 
tuning resulted in overfitting or underperformance. 
Finally, while VGG16 and ResNet50 showed strong 
results (Fig 3), occasional misclassifications occurred 
in edge cases, especially when distinguishing between 
benign and malignant nodules with similar 
morphological characteristics. 

 

 
Fig 3. Comparison of Training and Validation Loss 
Across Models 

 

This research has important implications for the 
integration of AI and deep learning models in medical 
diagnostics. The findings demonstrate that models like 
VGG16 and ResNet50 hold significant promise for the 
early detection of lung cancer, offering clinicians a 
powerful tool to assist in diagnosis and decision-
making. The study also underscores the importance of 
using advanced preprocessing, feature fusion, and 
transfer learning techniques to enhance model 
performance in complex tasks such as lung cancer 
classification. Future research should focus on 
expanding the dataset by incorporating larger, more 
diverse datasets from multiple sources to improve 
model generalizability. Incorporating explainable AI 
(XAI) techniques could also aid in making the model's 
decisions more transparent to radiologists, thus 
fostering greater trust in AI-assisted diagnostic tools. 
Additionally, exploring hybrid models that combine 
radiomic features with deep learning outputs could 
further improve diagnostic accuracy. Expanding the 
model to support real-time detection and multi-class 
classification for other lung diseases (e.g., pneumonia, 
tuberculosis) could also extend its clinical applications. 

 

VII. Conclusion 

This study aimed to evaluate and compare the 

performance of deep learning models VGG16, 

ResNet50, CNN, EfficientNetB1, Inception V3, and MLP 
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for classifying lung CT images into normal, benign, and 

malignant categories. VGG16 achieved the highest 

classification accuracy of 99.09%, with a precision of 

96.5%, recall of 96.9%, and F1-score of 96.7%. It also 

recorded the lowest training loss (0.09) and validation 

loss (0.11). The confusion matrix confirmed VGG16’s 

superior ability to identify malignant cases with minimal 

false positives and false negatives. ResNet50 followed 

with an accuracy of 95.41%, while CNN and 

EfficientNetB1 demonstrated variable results depending 

on hyperparameter settings. Inception V3 failed to 

converge, and MLP underperformed due to the absence 

of convolutional layers needed to capture spatial 

hierarchies. Future work should focus on expanding the 

dataset to include more diverse CT images and 

enhancing model generalization. Advanced data 

augmentation and refined hyperparameter optimization 

could improve models like ResNet50 and 

EfficientNetB1. Incorporating radiomic features, 

explainable AI methods, and extending classification to 

other lung diseases may further improve performance 

and clinical relevance. 
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