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ABSTRACT Data imbalance is a critical challenge in the classification of medical data, particularly in stroke disease 

prediction, a life-threatening condition requiring immediate intervention. This imbalance arises due to the disproportionate 

number of non-stroke cases compared to stroke cases, which can lead to biased models favoring the majority class. 

Consequently, the model may struggle to correctly identify stroke cases, resulting in lower recall and an increased risk of 

misdiagnosis. This study evaluates the impact of various oversampling techniques, including Synthetic Minority Over-

sampling Technique (SMOTE), Borderline-SMOTE, SMOTE-Edited Nearest Neighbor (SMOTE-ENN), and SMOTE-

Instance Prototypes Filtering (SMOTE-IPF), along with feature selection using Information Gain and Chi-Square, to assess 

their influence on model performance. Oversampling is utilized to address class imbalance by generating synthetic samples, 

thereby improving the representation of the minority class. Feature selection is employed to eliminate irrelevant or redundant 

features, enhancing both interpretability and computational efficiency. The dataset obtained from Kaggle, consists of 5,110 

records and 12 features. Support Vector Machine (SVM) is used as the classification algorithm, with evaluations conducted on 

Linear, Radial Basis Function (RBF), and Polynomial kernels. Experimental results indicate that the highest performance is 

achieved by the combination of Borderline-SMOTE and the RBF kernel, yielding an accuracy of 96.86%, precision of 98.65%, 

recall of 94.99%, and an F1-score of 96.79%. This model outperforms others in stroke disease classification, demonstrating 

that the integration of oversampling techniques can effectively enhance prediction accuracy. Future research could focus on 

implementing deep learning-based models to further optimize stroke classification in the case of imbalanced data. These 

advancements are expected to enhance model performance, leading to a more effective and efficient approach for medical 

datasets. 

INDEX TERMS Stroke, Machine Learning, Imbalanced Data, Oversampling, Feature Selection, Support Vector Machine. 

I. INTRODUCTION 

Stroke is a serious and life-threatening condition for those 

affected. Data from the Institute for Health Metrics and 

Evaluation (IHME) in 2019 shows that stroke is the leading 

cause of death in Indonesia (19.42% of total deaths). Stroke is 

defined by the World Health Organization (WHO) as a rapid 

or sudden clinical manifestation of focal brain function deficits 

that persist for 24 hours or more or result in death, with no 

apparent cause other than vascular factors. Classification can 

aid in identifying the characteristics of stroke in patients. 

Stroke can be diagnosed and classified using technologies 

such as machine learning [1]. 

Data imbalance is a major challenge in stroke disease 

classification, occurring when the number of samples in the 

majority class (patients without stroke) significantly exceeds 

those in the minority class (patients with stroke) [2]. This 

imbalance causes machine learning models to be biased 

toward the majority class, reducing their ability to classify the  

minority class effectively. Consequently, the model may yield 

a low recall for the minority class, increasing the risk of 

undetected stroke patients. To address data imbalance, 

oversampling techniques such as SMOTE (Synthetic Minority 

Oversampling Technique) can generate synthetic data for the 

minority class. This allows the machine learning model to 

learn better from the minority class distribution without 
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disregarding the majority class [3]. In addition to SMOTE, 

several variant techniques focus on harder-to-classify samples, 

such as Borderline-SMOTE, SMOTE-ENN, and SMOTE-IPF 

[4]. Borderline-SMOTE generates synthetic data around the 

decision boundary between the majority and minority classes, 

while SMOTE-ENN combines SMOTE with the Edited 

Nearest Neighbor algorithm to remove overlapping or 

misclassified samples. SMOTE-IPF iteratively eliminates 

majority class samples contributing to imbalance, thereby 

improving class distribution. 

Oversampling is crucial as it enhances the model’s 

sensitivity to stroke patients, ultimately contributing to a more 

accurate diagnosis process. The effectiveness of oversampling 

techniques heavily depends on the characteristics of the 

dataset. In imbalanced datasets, oversampling can 

significantly improve model performance by addressing class 

imbalance, making the model more responsive to the minority 

class. However, in datasets that are already relatively 

balanced, oversampling may not provide additional benefits 

and could even lead to overfitting if the model becomes overly 

focused on the synthetic data generated. Therefore, it is 

essential to carefully assess the dataset’s characteristics before 

deciding to apply oversampling techniques. 

Several studies have explored stroke disease classification 

and the application of oversampling techniques to imbalanced 

datasets. Priyanka Bathla and Rajneesh Kumar [2] compared 

five classification algorithms: Naive Bayes, Support Vector 

Machine (SVM), Random Forest, Adaptive Boosting, and 

XGBoost, while implementing SMOTE to handle class 

imbalance. Their findings indicated that the combination of 

Feature Importance and Random Forest achieved the highest 

accuracy, whereas SVM with Feature Importance yielded a 

lower accuracy of 76.84%. This study highlights the 

importance of thoroughly evaluating oversampling techniques 

and feature selection to enhance SVM model performance. 

Chowdhury et al. [3] compared oversampling techniques like 

ENN, SMOTE-N, SMOTE-Tomek, and SMOTE-ENN on an 

imbalanced BRFSS dataset. The results showed that ENN 

with Gradient Boosting achieved the highest recall in 

detecting the minority class, while SMOTE-Tomek produced 

the best accuracy (74.2%). Additionally, Katerina Iscra et al. 

[5] used SMOTENC and other oversampling techniques on a 

stroke patient dataset with epileptiform EEG patterns, finding 

the best performance with Naive Bayes (72%) and Neural 

Networks (74%). Sushila Paliwal et al. [6] applied various 

classifiers, including Logistic Regression, Decision Tree, 

Random Forest, SVM, Gaussian Naive Bayes, Bernoulli 

Naive Bayes, and Voting Classifier, for stroke disease 

classification. The SVM model achieved an accuracy of 

84.06% using SMOTE and 83.13% using SMOTENC. 

Ashrafuzzaman et al. used a Convolutional Neural Network 

(CNN) model for stroke disease classification and achieved 

the highest accuracy of 95.5% [7]. Another study [8] 

combined clustering techniques (k-means) with classifiers to 

enhance stroke severity prediction, finding that the k-means 

with Artificial Neural Network (ANN) model yielded the best 

results, with 89% sensitivity, 89% specificity, and 90% 

accuracy, and an AUC-ROC of 96%. 

He et al. developed and validated a prediction model for 

ischemic stroke patient discharge outcomes using machine 

learning, with Random Forest performing best, achieving an 

AUC of 90.3% [9]. Another study compared pre-processed 

and non-pre-processed datasets for stroke risk prediction using 

K-Nearest Neighbor (KNN), Decision Tree, and SVM, with 

Decision Tree achieving the highest accuracy (92.05%) and 

precision (96%) on pre-processed data [10]. A study on stroke 

classification using feature extraction techniques such as PCA, 

FA, and FPCA combined with machine learning algorithms 

(Logistic Regression, Random Forest, KNN, SVM, and 

Gradient Boosting) on the Kaggle Stroke Prediction Dataset 

(5,110 records, 12 features) found that Random Forest with 

PCA-FA achieved the best performance, with an accuracy of 

92.55%, precision of 90.53%, and recall of 94.35% [11]. A 

study [12] focused on Random Forest for stroke classification 

using Mutual Information feature selection, achieving a 

classification accuracy of 77.90%. 

Machine learning methods can be combined with feature 

selection to achieve better results [13], [14]. This study also 

evaluates the feature selection techniques Information Gain 

and Chi-Square to assess their impact on model performance. 

Information Gain measures the contribution of each feature in 

reducing data uncertainty by determining the best attributes 

through entropy calculation [15], while Chi-Square evaluates 

the relationship between features and the target class [16]. The 

purpose of feature selection is to analyze whether these 

techniques enhance classification performance or if their 

impact is insignificant for the given dataset. Support Vector 

Machine (SVM) is chosen as the classification algorithm due 

to its strong generalization ability, making it effective for 

classification, regression, and clustering tasks [17]. SVM 

operates by finding an optimal hyperplane that separates 

classes within the dataset and offers flexibility in using various 

kernel types, such as Linear, Radial Basis Function (RBF), and 

Polynomial [18]. Selecting the appropriate kernel is crucial for 

improving model performance, particularly in imbalanced 

datasets. Although several studies have discussed the 

implementation of SMOTE and other oversampling 

techniques on imbalanced datasets, a comprehensive analysis 

of their impact on stroke disease classification performance 

using Support Vector Machine (SVM) with Linear, Radial 

Basis Function (RBF), and Polynomial kernels remains 

limited and requires further exploration. 

Previous studies have examined the use of oversampling 

techniques in stroke classification. Priyanka Bathla and 

Rajneesh Kumar [2] compared SMOTE with an SVM model, 

but their study did not explore the impact of different SVM 

kernel types. Similarly, Chowdhury et al. [3] tested SMOTE-

Tomek but did not discuss the application of oversampling 

techniques with different SVM kernels. Therefore, this study 

addresses this research gap by analyzing the effects of various 

oversampling techniques on the performance of SVM with 

different kernels in a single experiment. By exploring the 

interaction between oversampling methods and SVM kernel 
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types, this research aims to provide deeper insights into the 

optimal combination that can enhance model performance 

when handling imbalanced datasets. 

The primary issue addressed in this study is how various 

oversampling techniques, including SMOTE, Borderline- 

SMOTE, SMOTE-ENN, and SMOTE-IPF, influence the 

performance of SVM models on imbalanced datasets. The 

main focus of this research is to evaluate the impact of 

oversampling techniques on stroke classification using three 

different SVM kernels: Linear, RBF, and Polynomial. 

Additionally, this study will assess the effectiveness of feature 

selection methods, namely Information Gain and Chi-Square, 

in improving accuracy, precision, recall, and F1-score on an 

imbalanced dataset.  

Although various studies have applied oversampling 

techniques and SVM in stroke classification, several research 

gaps remain to be explored further. First, previous studies 

primarily used SMOTE without comparing other 

oversampling techniques, such as Borderline-SMOTE, 

SMOTE-ENN, and SMOTE-IPF, which may have different 

effects on stroke classification performance. Second, no study 

has systematically evaluated how different oversampling 

techniques influence the performance of various SVM kernels. 

The choice of kernel is crucial for the effectiveness of 

oversampling, as each kernel handles imbalanced data 

distributions differently. Third, prior research has shown that 

feature selection methods like PCA and RFE reduce the 

accuracy of SVM models. However, it remains unexplored 

whether Information Gain and Chi-Square feature selection 

can enhance model performance when combined with 

oversampling techniques. 

Based on these research gaps, this study contributes by 

evaluating four oversampling techniques, SMOTE, 

Borderline-SMOTE, SMOTE-ENN, and SMOTE-IPF to 

address data imbalance in stroke classification. This study also 

compares the performance of the Support Vector Machine 

(SVM) algorithm with three different kernel types: Linear, 

Radial Basis Function (RBF), and Polynomial, which have not 

been extensively explored in previous literature. Most prior 

studies have only examined one or two oversampling 

techniques and have not simultaneously compared all SVM 

kernels. Some previous studies have reported suboptimal 

results, with low accuracy for SVM algorithms on imbalanced 

datasets. Therefore, this study aims to make a significant 

contribution to improving the accuracy and effectiveness of 

stroke diagnosis through the application of machine learning 

techniques, particularly SVM. Additionally, this study 

integrates feature selection using Information Gain and Chi-

Square to evaluate the impact of feature selection on model 

performance when dealing with imbalanced stroke datasets. 

No prior study has comprehensively compared multiple 

oversampling techniques with different SVM kernels within a 

single experiment for stroke classification. Thus, this research 

is expected to provide new insights into selecting the optimal 

strategy for handling imbalanced datasets. 

This study aims to analyze the impact of oversampling 

techniques on the performance of the SVM algorithm with 

Linear, RBF, and Polynomial kernels on imbalanced stroke 

datasets. This research also compares models using 

oversampling techniques with models that do not understand 

their effects on accuracy, precision, recall, and F1-score. 

This study makes a novel contribution by evaluating four 

oversampling techniques SMOTE, Borderline-SMOTE, 

SMOTE-ENN, and SMOTE-IPF to address data imbalance in 

stroke classification. Additionally, it compares the 

performance of the Support Vector Machine (SVM) algorithm 

with three different kernel types: Linear, Radial Basis 

Function (RBF), and Polynomial, which have not been 

extensively explored in previous studies. Prior research has 

primarily focused on one or two oversampling techniques and 

has not systematically compared all SVM kernels within a 

single study. Moreover, previous studies have reported 

suboptimal results, with low accuracy for SVM models on 

imbalanced datasets. Therefore, this research aims to make a 

significant contribution to improving the accuracy and 

effectiveness of stroke diagnosis through the application of 

machine learning techniques, particularly SVM. Furthermore, 

this study integrates feature selection methods, namely 

Information Gain and Chi-Square, to assess their impact on 

model performance in handling imbalanced stroke datasets. 

 

II. METHODOLOGY 

The research framework is designed to analyze and compare 

the impact of various oversampling techniques and feature 

selection methods on the performance of the Support Vector 

Machine (SVM) algorithm in stroke disease classification on 

an imbalanced dataset, as illustrated in Figure 1. This study 

employs a structured methodology to assess the effects of 

oversampling techniques, feature selection methods, and 

different SVM kernels on the classification performance of 

stroke in an imbalanced dataset.  

The Support Vector Machine (SVM) was selected as the 

primary classification algorithm in this study due to its 

effectiveness in handling limited and imbalanced datasets, as 

well as its strong generalization capabilities. Additionally, 

SVM offers flexibility in utilizing various kernel types, 

allowing the model to adapt class separation based on complex 

data distribution patterns. SVM also excels in constructing 

optimal decision boundaries by maximizing the margin 

between classes, which is particularly crucial for datasets with 

class imbalances. 

Although some prior studies have reported that SVM 

performs worse than other methods, these findings are often 

influenced by suboptimal kernel selection and imbalance-

handling techniques. Therefore, this study focuses on 

analyzing the impact of kernel selection and oversampling 

techniques on model performance rather than comparing 

different algorithms. This approach enables a more in-depth 

evaluation of SVM optimization in stroke classification. 

Several previous studies have evaluated SVM for stroke 

classification, but the results vary, indicating that kernel 

selection and oversampling techniques significantly influence 

model performance. Priyanka Bathla and Rajneesh Kumar [2] 

reported that SVM with SMOTE achieved only 74.72% 

accuracy, whereas Hanqing Zhang [27] found that SVM 

without oversampling reached 79.20% accuracy, albeit with 
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lower precision than recall, suggesting a bias toward the 

majority class. Conversely, other studies have demonstrated 

high accuracy with SVM, such as Aakanshi Gupta et al. [29], 

who achieved 95.04% accuracy, and Windy Junita Sari et al. 

[30], who reached 94.11%. However, these studies did not 

explicitly examine the impact of oversampling techniques on 

model performance, leaving the effect of oversampling 

methods on different SVM kernels for stroke classification 

largely unexplored. 

The research process comprises several key stages, 

including data preprocessing, the application of oversampling 

techniques, feature selection, SVM model development, and 

comprehensive model evaluation. During the data 

preprocessing stage, missing values are addressed, categorical 

variables are encoded, and feature scaling is performed to 

ensure consistency in model training. Oversampling 

techniques are employed to mitigate class imbalance, thereby 

enhancing the model's capability to accurately identify stroke 

cases. Feature selection is conducted to identify the most 

relevant attributes contributing to stroke prediction, reducing 

computational complexity, and improving model 

interpretability. The SVM model is then developed utilizing 

different kernel functions to examine their impact on 

classification performance. Finally, the model's effectiveness 

is assessed using comprehensive performance metrics, 

including accuracy, precision, recall, F1-score, and AUC-

ROC. The findings from this study are expected to provide 

insights into the optimal combination of oversampling 

techniques and SVM kernel functions for stroke classification. 

The research flow is presented in FIGURE 1. 

A.  DATASET 

This study utilizes a public dataset from Kaggle named 

healthcare-dataset-stroke-data, comprising 5,110 records and 

12 features, where one feature serves as the label or target. A 

detailed description of the dataset features is provided in Table 

1. 
TABLE 1 

Attributes of dataset 

No Fitur Data Type 

1 Id Numerical 

2 Gender Categorical 
3 Age Numerical 

4 Hypertension Categorical 

5 Heart_disease Categorical 

6 Ever_married Categorical 

7 Work_type Categorical 
8 Residence_type Categorical 

9 Avg_glucose_level Numerical 

10 Bmi Numerical 

11 Smoking_status Categorical 

12 Stroke Categorical 

 

B.  PRE-PROCESSING DATA 

The data pre-processing steps include data cleaning, 

normalization, and transformation. The dataset cleaning 

process is carried out to remove inconsistent data, 

normalization is applied to standardize the scale of data 

values, and data transformation is performed to enhance the 

quality of features used as input for the model. Additionally, 

categorical features are converted into numerical formats to 

ensure their compatibility with subsequent processes. 

1) MISSING VALUE 

Incomplete data can significantly affect the performance of 

machine learning models. To address missing values, 

SimpleImputer was employed with the mean strategy to fill  

in the missing values in the BMI column. This technique was 

selected to maintain the distribution of the numerical data 

without introducing significant bias. 

3) DATA TRANSFORMATION 

Comparison of Results

Best Classification 
Model

Modeling with SVM
FEATURE SELECTION

Information Gain

Chi-Square

OVERSAMPLING

SMOTE-ENN

SMOTE

BORDERLINE-SMOTE

SMOTE-IPF

PRE-PROCESSING DATA

Data Cleaning
Data

Transformation
Data

Normalization

Accuracy

Precision

Recall

F1-Score

Evaluation

DATASET

Training: 80%

Testing: 20%

SPLIT DATA

 
FIGURE 1.  Methodology for Stroke Classification using SVM, Oversampling, and Feature Selection 
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In the data transformation process, numerical features such 

as age, hypertension, heart_disease, avg_glucose_level, and 

bmi are handled using imputation to address missing values. 

Categorical features like gender, ever_married, work_type, 

Residence_type, and smoking_status are transformed into 

binary columns using One-Hot Encoding. For example, the 

gender column is split into two columns, representing 'Male' 

and 'Female'. This transformation prepares the dataset for 

model training with numerical representations suitable for 

machine learning algorithms. 

2) DATA NORMALIZATION 

Normalization transforms numerical features into a uniform 

scale, ensuring that no single feature dominates the model 

training process. In this study, the MinMaxScaler method is 

applied to rescale the data within the range of 0 to 1. 

Normalization is performed on the age, avg_glucose_level, 

and bmi features. This process is particularly important for 

machine learning algorithms such as SVM, which are 

sensitive to feature scaling. 

 
C.  OVERSAMPLING DATA 

Oversampling is a technique aimed at addressing class 

imbalance by enhancing the representation of the minority 

class to improve model performance. This approach works 

by generating synthetic samples or duplicating existing ones 

from the minority class, thereby increasing its presence in the 

dataset. The distribution of data before applying SMOTE can 

be observed in FIGURE 2, while the balanced data after the 

SMOTE process is presented in FIGURE 3. 

 

FIGURE 2. Imbalanced Data Before SMOTE 

 

FIGURE 3.  Balance Data After SMOTE 

The dataset utilized in this study comprises two classes: 

"stroke" and "no-stroke," with a highly imbalanced 

distribution where the "no-stroke" class significantly 

outnumbers the "stroke" class. Before applying SMOTE, the 

dataset contained only 249 instances in the "stroke" class 

compared to 4,861 instances in the "no-stroke" class. To 

address this imbalance, the study employs various 

oversampling techniques, including the Synthetic Minority 

Over-Sampling Technique (SMOTE), Borderline-SMOTE, 

SMOTE-ENN, and SMOTE-IPF. 

1) SMOTE (SYNTHETIC MINORITY OVER-SAMPLING 
TECHNIQUE) 

SMOTE (Synthetic Minority Over-Sampling Technique) is a 

technique used to address the problem of data imbalance in 

datasets. SMOTE generates synthetic samples for the minority 

class by interpolating existing data, thereby increasing the 

number of samples in the minority class and enabling the 

model to better recognize patterns associated with that class 

[19]. The formula for this can be represented as shown in Eq. 

(1). 

𝑥𝑛𝑒𝑤 = 𝑥𝑝 +  𝑟𝑎𝑛𝑑 (0,1). (𝑥𝑞 −  𝑥𝑝)   (1) 

 
Where 𝑥𝑝 represents an instance from the minority class, 𝑥𝑞 is 

one of the kk-nearest neighbors of 𝑥𝑝 (also from the minority 

class), 𝑟𝑎𝑛𝑑 (0,1) is a random number between 0 and 1 that 

determines the magnitude of the difference between 𝑥𝑞 and 𝑥𝑝 

and 𝑥𝑛𝑒𝑤  is the synthetic sample generated. 

2) BORDERLINE-SMOTE 

Borderline-SMOTE is a variant of SMOTE that focuses on 

samples located near the decision boundary between the 

majority and minority classes. This technique aims to 

enhance the model's ability to differentiate between classes 

that are more challenging to separate  [20]. Borderline-

SMOTE performs oversampling exclusively on samples 

situated near the boundary between the majority and 

minority classes, referred to as borderline samples. A sample 

is considered borderline if the number of majority class 

samples among its kk-nearest neighbors exceeds half of the 

total neighbors. The formula for this can be represented as 

shown in Eq. (2). 

 

𝑛 ≥ 𝑥𝑝  
𝑘

2
    (2) 

 

Where 𝑛  represents the number of majority class (negative) 

samples included in the 𝑘-nearest neighbors (kNN) of a 

minority sample, and 𝑘 denotes the total number of nearest 

neighbors used to calculate the distance, typically set to 𝑘=5 

[21]. After identifying the borderline samples, the SMOTE 

process is applied to generate synthetic data for the minority 

class. 

3) SMOTE-ENN 

SMOTE-ENN combines the SMOTE technique with the 

Edited Nearest Neighbor (ENN) algorithm to eliminate 

overlapping or misclassified samples after oversampling, 

resulting in a cleaner dataset and enabling the model to learn 

more effectively [5]. After oversampling with SMOTE, the 

dataset is refined using ENN, which removes the majority 
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class samples deemed misclassified or irrelevant based on 

distance and nearest neighbor voting. The formula is 

presented in Eq. (3). 

 

ENN(D) = {𝑥𝑖  ∈  𝐷| 𝑦𝑖  ≠ 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦(𝑘𝑁𝑁 (𝑥𝑖))} (3) 

 

𝐷 represents the original dataset, where 𝑥𝑖   is a sample within 

the dataset and 𝑦𝑖  denotes the class label of sample 𝑥𝑖. 𝑘𝑁𝑁 

is the k-Nearest Neighbors function used to determine the 

majority class of the nearest neighbors of 𝑥𝑖. Misclassified 

samples from the majority class are removed, resulting in a 

cleaner dataset [22]. 

3) SMOTE-IPF 

SMOTE-IPF combines SMOTE with Iterative Proportional 

Fitting (IPF) to iteratively address the class imbalance by 

removing majority class samples that influence the class 

distribution and generating synthetic samples for the 

minority class. The steps involved in SMOTE-IPF [23]  are 

as follows: 

Determining KNN (K-Nearest Neighbors): Similar to 

SMOTE, SMOTE-IPF utilizes KNN to identify the nearest 

neighbors for each sample in the minority class.   

a) Minority Sample Selection: Specific samples from the 

minority class are selected to generate synthetic 

samples. 

b) Iterative Process: SMOTE-IPF performs iterations for 

each selected minority sample. During each iteration, 

the sample is used to create synthetic data, and the 

synthetic class distribution is updated based on the 

actual distributions of the minority and majority classes. 

c) Distribution Update: The synthetic class distribution is 

updated to reflect the original distribution of the 

minority and majority classes. This step ensures that the 

synthetic samples are not only concentrated in dense 

areas of the feature space but also mirror the actual 

distribution of the minority class.   

 
D.  FEATURE SELECTION 

In this study, the evaluation was conducted on models with 

and without feature selection. Feature selection was 

performed using two distinct methods, each with different 

functions and objectives.   

1) Information Gain, this method ranks each feature to 

identify the most relevant ones that exhibit a strong 

relationship with other features [24].  The formula is 

presented in Eq. (4). 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐿) = ∑  

𝑐

𝑖

− 𝑃𝑖  𝑙𝑜𝑔2 𝑃𝑖     
 

(4) 

Where c   represents the total number of classification classes, 

 𝑃𝑖    is the proportion of samples belonging to the class  i . 

Once the Entropy value is obtained, the Information Gain 

can be calculated using the formula shown in Eq. (5). 

  

𝐺𝑎𝑖𝑛 (𝐿, 𝑓) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐿) − ∑  𝑣
𝑣=1

|𝐿𝑣|

|𝐿|
 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐿𝑣)   (5) 

 

where 𝐺𝑎𝑖𝑛 (𝐿, 𝑓) represents the Gain value of the feature 𝑓, 

𝑣 denotes a possible value of the feature 𝑓, values (f) is the 

set of all possible values of 𝑓, |𝐿𝑣| is the number of examples 

in the subset 𝐿𝑣 , |𝐿| is the total number of data samples, and 

Entropy (𝐿𝑣) is the entropy of the examples with value 𝐿𝑣. 

2) Chi-Square aims to eliminate less significant features 

without compromising the overall accuracy of the 

model. The purpose of this feature selection method is 

to measure the relevance and influence of each feature 

on the classification outcome, thereby enhancing the 

efficiency and performance of the developed model. The 

formula is shown in Eq. (6). 

𝑥𝑐
2 =

∑  (𝑂𝑖−𝐸𝑖) 2

 𝐸𝑖
        (6) 

where c represents the degrees of freedom for each variable, 

𝑂𝑖  represents the observed value in cell i, and 𝐸𝑖 represents 

the expected value in cell i [25]. 

 

E.  MODELING SVM 

Support Vector Machine (SVM) is a robust machine learning 

algorithm widely applied for both classification and 

regression tasks. The primary goal of SVM is to find the 

optimal hyperplane that effectively separates two classes in 

the feature space by maximizing the margin between them. 

This hyperplane acts as a decision boundary, enabling the 

prediction of classes for new data points. By transforming 

data, SVM constructs an ideal hyperplane that minimizes 

classification risk while maintaining high generalization 

capabilities [25], [18]. The mathematical formulation of the 

hyperplane is presented in Eq. (7). 

 

𝑔(𝑥) = 𝑤𝑇𝑥 + 𝑏 (7) 

Where 𝑤𝑇represents an n-dimensional vector, and 𝑏 is the 

bias term. 

SVM employs several kernels to map data into higher-

dimensional feature spaces, making class separation more 

straightforward. Kernel functions enable SVM to operate 

efficiently in complex or even infinite-dimensional feature 

spaces without explicitly calculating transformations into 

higher-dimensional spaces. The linear kernel is used when 

the analyzed data is linearly separable. The polynomial 

kernel transforms input data into a higher-dimensional space. 

The RBF (Radial Basis Function) kernel is utilized to 

classify data that is not linearly separable [18]. The formula 

is presented in Eq. (8) – (10). 

 

1)  Linear Kernel     𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 (8) 

 

2)  RBF Kernel     𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖
𝑇𝑥𝑗 + 1) 𝑑 (9) 

 

3)  Polynomial  𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝜎||𝑥𝑖 − 𝑥𝑗|| 2)     (10) 

 

Where 𝑥𝑖 , 𝑥𝑗 are the feature vectors of two data points 

being compared, 𝑇 denotes the transpose to simplify the dot 

product operation, 𝑑 represents the polynomial order in the 

Polynomial Kernel, and 𝜎 is the kernel width or scale in the 

Gaussian Kernel. 

In this study, 39 models were evaluated, derived from the 

combination of four main scenarios, three types of SVM 

kernels, and various oversampling techniques. The four main 
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scenarios in this research consist of: (1) models without 

feature selection and without oversampling (baseline 

model), (2) models without feature selection with 

oversampling, (3) models with Information Gain feature 

selection and oversampling, and (4) models with Chi-Square 

feature selection and oversampling. Each scenario was 

assessed using three types of SVM kernels: Linear, RBF, and 

Polynomial to determine the impact of each kernel on 

classification performance.  For scenarios that applied 

oversampling (scenarios 2, 3, and 4), four oversampling 

techniques were used: SMOTE, Borderline SMOTE, 

SMOTE ENN, and SMOTE IPF. In the scenario without 

oversampling (scenario 1), only three models were 

evaluated, as models were tested solely with the three SVM 

kernels. Meanwhile, in scenarios that applied oversampling 

(scenarios 2, 3, and 4), each combination of an oversampling 

technique with an SVM kernel resulted in 12 models (3 

kernels × 4 oversampling techniques). Thus, the combination 

of the four scenarios, three types of kernels, and four 

oversampling techniques resulted in a total of 39 models 

evaluated in this study. This evaluation aims to identify the 

best combination of feature selection methods, oversampling 

techniques, and SVM kernel types to enhance stroke disease 

classification performance. 

 
F.  CONFUSION MATRIX 

This study compares the effectiveness of oversampling 

techniques, including SMOTE, Borderline-SMOTE, 

SMOTE-ENN, and SMOTE-IPF, in addressing data 

imbalance issues using evaluation metrics such as accuracy, 

precision, recall, and F1-score, while also analyzing their 

impact on the performance of Support Vector Machine 

(SVM) models with various kernel types, such as linear, 

polynomial, and RBF, to identify the most effective 

combination for stroke disease classification. 

To ensure a reliable evaluation of model performance, 

this study employs 5-fold cross-validation. The dataset is 

randomly partitioned into five equal subsets (folds), where 

each fold is used once as the test set, while the remaining 

four folds are used for training. This process is repeated five 

times, ensuring that every data point is used for both training 

and testing. 

The formulas for each evaluation metric are presented in Eq. 

(11) – (14) [26]. 

 

1)  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
=

𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
 

(11) 

 

 

2)  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
=

𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

(12) 

 

 

3)  𝑅𝑒𝑐𝑎𝑙𝑙 
=

𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

(13) 

 

 

4)  𝐹1 − 𝑠𝑐𝑜𝑟𝑒 
= 2 𝑥 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(14) 

 

 

True Positive (TP) refers to the number of cases correctly 

predicted as positive, while True Negative (TN) represents 

the number of cases correctly predicted as negative. False 

Positive (FP) indicates the number of cases predicted as 

positive but are actually negative, whereas False Negative 

(FN) refers to the number of cases predicted as negative but 

are actually positive. 

III.  RESULT  

This study utilizes a stroke disease dataset characterized by 

data imbalance. The dataset is split into 80% training data 

and 20% testing data using the stratified splitting method to 

ensure balanced class distribution. The preprocessing steps 

include data cleaning, data transformation, and 

normalization of numerical features. To address data 

imbalance, four oversampling techniques are evaluated: 

SMOTE, Borderline-SMOTE, SMOTEENN, and SMOTE-

IPF.  

Additionally, the study assesses the impact of feature 

selection techniques, namely Information Gain and Chi-

Square, on the dataset. Experiments are conducted using 

SVM with three different kernels: Linear, RBF, and 

Polynomial. Four main testing scenarios are considered: (1) 

models without oversampling and feature selection, (2) 

models with oversampling but without feature selection, (3) 

models with oversampling and feature selection using 

Information Gain, and (4) models with oversampling and 

feature selection using Chi-Square. For each of the four main 

models, experiments are carried out with the three SVM 

kernels, resulting in 39 testing scenarios. This 

comprehensive setup enables an in-depth analysis of the 

effects of feature selection and oversampling techniques on 

model performance. The evaluation metrics employed 

include Accuracy, Precision, Recall, and F1-score, which are 

compared to identify the model with the best performance. 

 
A.  MODEL WITHOUT FEATURE SELECTION AND 
WITHOUT OVERSAMPLING 

This model serves as a baseline for comparison. In this 

configuration, the original dataset is utilized without 

applying any feature selection or oversampling techniques. 

The primary objective is to evaluate the model’s 

performance using the raw dataset, identifying potential 

limitations caused by data imbalance or irrelevant features.  

By analyzing the outcomes without oversampling, this 

study examines the extent to which class imbalance affects 

key performance metrics, including accuracy, precision, 

recall, and F1-score in the Support Vector Machine (SVM) 

model. If the baseline model exhibits poor performance in 

recognizing the minority class, oversampling techniques are 

expected to enhance predictive balance. 

The results provide a reference point for evaluating the 

impact of advanced techniques in subsequent models, 

ensuring that any observed performance improvements stem 

from the applied preprocessing methods. The findings for the 

model without feature selection and oversampling are 

presented in TABLE 2. 
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TABLE 2 presents the evaluation results for data without the 

use of oversampling or feature selection techniques in stroke 

disease classification. The linear kernel achieved an accuracy 

of 81.80%, precision of 17.62%, recall of 74.00%, and F1-

score of 28.46%. In contrast, both the RBF and polynomial 

kernels attained the same high accuracy of 95.11%, with 100% 

precision. However, these two kernels exhibited recall and F1-

score values of 0.00%, indicating their inability to detect the 

minority class (stroke). 

The recall of 0% without oversampling occurs because the 

model fails to identify any instances of the stroke class. This 

issue arises due to data imbalance, where the number of 

majority class samples (non-stroke) significantly outweighs 

the minority class (stroke). Consequently, the model primarily 

learns patterns from the majority class, leading it to classify 

nearly all instances as non-stroke. While this strategy may 

yield high accuracy, it compromises the model’s ability to 

recognize stroke cases, which is the primary objective of the 

classification task. 

These findings emphasize the critical importance of 

employing oversampling techniques to address data 

imbalance. By increasing the number of minority class 

samples, oversampling enables the model to learn patterns 

from both classes more effectively, thereby enhancing recall 

and F1-score. Without oversampling, the model tends to 

exhibit bias toward the majority class, resulting in suboptimal 

classification performance in detecting stroke cases. 

 
B.  MODEL USING OVERSAMPLING AND FEATURE 
SELECTION ON SVM KERNEL 

This section examines the impact of combining oversampling 

techniques SMOTE, Borderline-SMOTE, SMOTE-ENN, and 

SMOTE-IPF with feature selection methods, namely 

Information Gain and Chi-Square, in SVM classification for 

stroke prediction. The evaluation results presented in TABLE 

3 demonstrate that incorporating oversampling methods and 

feature selection substantially improves the performance of 

SVM models across all kernel types: Linear, RBF, and 

Polynomial. 

Among all tested models, the Borderline-SMOTE with the 

RBF kernel yielded the highest classification performance, 

achieving an accuracy of 96.86%, precision of 99.14%, recall 

of 94.55%, and F1-score of 96.79%. These results indicate that 

Borderline-SMOTE is particularly effective in addressing the 

class imbalance issue, as it significantly enhances recall and 

F1-score. Notably, recall is a critical metric in medical 

diagnosis, as it measures the model’s ability to correctly 

identify stroke patients, reducing the risk of false negatives. 

The increase in recall suggests that the model successfully 

learns from minority class samples without overfitting to the 

majority class. 

For the Linear kernel, applying SMOTE, Borderline-

SMOTE, SMOTE-ENN, and SMOTE-IPF resulted in 

moderate improvements, with accuracy values consistently 

around 96%. However, precision was generally lower 

compared to the RBF kernel, indicating a potential trade-off 

between correctly identifying positive cases and minimizing 

false positives. Meanwhile, the Polynomial kernel exhibited 

higher sensitivity to minority class samples when combined 

with SMOTE and Borderline-SMOTE, but its performance 

remained inferior to the RBF kernel. This suggests that the 

RBF kernel is more effective in capturing complex patterns in 

the dataset, particularly after the application of oversampling 

techniques. 

Feature selection using Information Gain (IG) and Chi-

Square (Chi2) produced varying effects across different 

kernels. While some models benefited from feature selection, 

particularly in terms of recall and F1-score, the overall trend 

suggests that applying oversampling without feature selection 

tends to yield more stable and optimal performance, especially 

with the RBF kernel. This may be due to the fact that 

oversampling techniques already mitigate the class imbalance 

issue, reducing the need for additional feature filtering. 

Moreover, in some cases, feature selection may inadvertently 

remove features that contribute to the discrimination of stroke 

cases, leading to slight performance degradation. 

The Borderline-SMOTE technique, particularly when 

paired with the RBF kernel, consistently outperforms other 

models in terms of overall classification metrics. This 

combination effectively enhances the model’s sensitivity to 

the minority class while maintaining high precision and 

accuracy. Evaluation based on accuracy, precision, recall, and 

F1-score demonstrates that the Borderline-SMOTE with the 

RBF kernel is the most robust and reliable approach for stroke 

classification. These findings reinforce the importance of 

selecting the appropriate oversampling strategy and kernel 

function in SVM classification, particularly in medical 

datasets where class imbalance is a prevalent issue. 

Furthermore, this approach improves the model’s stability 

across different data distributions, ensuring consistent 

performance. It also effectively balances the trade-off between 

recall and precision, leading to more optimal classification 

results. As a result, Borderline-SMOTE with the RBF kernel 

stands out as a highly recommended strategy for developing 

accurate and reliable stroke prediction models.

TABLE 2 
Model without feature selection and without oversampling 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

No Oversampling + Linear 81.80 17.62 74.00 28.46 

No Oversampling + RBF 95.11 100 00.00 00.00 

No Oversampling + Polynomial 95.11 100 00.00 00.00 
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C.  COMPARISON OF THE BEST MODEL WITH THE 
MODEL WITHOUT OVERSAMPLING 

The findings of this study demonstrate a significant 

improvement in performance with the application of 

oversampling techniques to an imbalanced dataset compared 

to models without oversampling. The analysis focuses on the 

best-performing model, Borderline-SMOTE with the RBF 

kernel, and the corresponding SVM models without 

oversampling for each kernel. The results of the best model 

with the model without oversampling are presented in 

TABLE 4.

TABLE 3 
Model using oversampling and feature selection on SVM kernel 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

BORDERLINE SMOTE + RBF 96.86 99.14 94.55 96.79 

SMOTE + RBF 96.50 99.13 93.83 96.41 

SMOTE IPF + RBF  96.50 99.13 93.83 96.41 

BORDERLINE SMOTE + Linear 96.30 97.87 94.65 96.23 

SMOTEENN + RBF  96.24 99.18 93.01 96.00 

SMOTE + Linear 96.14 98.59 93.62 96.04 

SMOTE IPF + Linear 96.14 98.59 93.62 96.04 

BORDERLINE SMOTE + Polynomial 95.73 96.54 94.86 95.69 

SMOTEENN + Linear 95.55 97.41 94.54 95.59 

SMOTE-ENN +Polynomial 95.15 95.83 95.41 95.62 

RBF Kernel 95.11 100 0.00 0.00 

Polynomial Kernel 95.11 100 0.00 0.00 

SMOTE IPF +Polynomial 94.96 94.50 95.47 94.98 

SMOTE +Polynomial 94.69 94.50 95.47 94.98 

SMOTE + IG + RBF 94.96 95.14 94.75 94.95 

BORDERLINE SMOTE + IG + RBF 94.76 93.67 95.99 94.82 

SMOTEENN + IG + RBF 94.88 95.47 95.15 95.31 

SMOTEENN + IG + Polynomial 94.48 96.61 93.12 94.83 

SMOTE IPF + IG + RBF 94.40 94.90 93.83 94.36 

BORDERLINE SMOTE + Chi2 + RBF 94.24 96.24 92.08 94.11 

BORDERLINE SMOTE + IG + Polynomial 93.32 94.98 91.46 93.19 

BORDERLINE SMOTE + Chi2 + Polynomial 93.32 94.98 91.46 93.19 

SMOTEENN + Chi2 + RBF 92.91 95.60 91.16 93.33 

SMOTE IPF + IG + Polynomial 92.24 95.36 88.79 91.96 

SMOTE IPF + Chi2 + RBF 92.08 92.69 91.36 92.02 

SMOTE + IG + Polynomial 91.98 94.74 88.89 91.72 

SMOTEENN + Chi2 + Polynomial 91.93 95.96 88.89 92.29 

SMOTE + Chi2 + RBF 91.57 96.87 85.91 91.06 

SMOTE + Chi2 + Polynomial 90.18 95.67 84.16 89.55 

SMOTE IPF + Chi2 + Polynomial 90.18 95.67 84.16 89.55 

SMOTEENN + IG + Linear 85.95 85.24 89.92 87.52 

BORDERLINE SMOTE + Chi2 + Linear 83.91 81.11 88.37 88.37 

BORDERLINE SMOTE + IG + Linear 83.86 80.81 88.79 84.61 

SMOTEENN SMOTE + Chi2 + Linear 83.43 83.79 86.17 84.96 

Linear Kernel 81.80 17.62 74.00 28.46 

SMOTE + IG + Linear 78.87 76.14 84.05 79.90 

SMOTE IPF + IG + Linear 77.99 75.52 82.82 79.00 

SMOTE + Chi2 + Linear 77.48 75.77 80.76 78.19 

SMOTE IPF + Chi2 + Linear 77.48 75.77 80.76 78.19 
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TABLE 4 presents a detailed comparison of models using 

oversampling techniques versus those without oversampling 

on the imbalanced stroke dataset. The Borderline-SMOTE 

with the RBF kernel demonstrated the highest performance 

among all models, achieving an accuracy of 96.86%, precision 

of 99.14%, recall of 94.55%, and F1-score of 96.79%. These 

results highlight the model’s superior classification ability, 

effectively detecting true stroke cases (high recall) while 

maintaining a low false positive rate (high precision). The 

well-balanced F1-score further confirms that the model 

successfully balances sensitivity and specificity, making it 

highly suitable for real-world applications where both metrics 

are crucial in medical diagnostics. 

The Linear kernel model, in contrast, achieved a lower 

accuracy of 81.80%, which, despite appearing reasonable, was 

accompanied by a very low precision of 17.62% and an F1-

score of only 28.46%. While the model exhibited a moderately 

high recall of 74.00%, its inability to correctly classify positive 

cases (stroke patients) significantly weakened its overall 

predictive performance. This suggests that the Linear kernel 

struggles to handle imbalanced data effectively, resulting in 

many false positive predictions. 

For the RBF and Polynomial kernels without 

oversampling, although their accuracy was seemingly high at 

95.11%, their actual classification ability was severely 

compromised. Both models achieved a precision of 100% but 

had a recall and F1-score of 0.00%, indicating a complete 

failure in identifying any stroke cases. This stark contrast 

underscores the limitations of these models when dealing with 

class imbalance, as they tend to focus entirely on the majority 

class (non-stroke cases), completely neglecting the minority 

class. Such behavior renders these models unsuitable for 

medical applications, where accurately detecting stroke cases 

is critical. 

The comparison clearly demonstrates the necessity of 

employing oversampling techniques such as Borderline-

SMOTE in handling class imbalance. By generating synthetic 

samples for the minority class, Borderline-SMOTE allows the 

model to learn the characteristics of stroke cases more 

effectively, resulting in substantial improvements across all 

classification metrics. For instance, when comparing 

Borderline-SMOTE + RBF to the No Oversampling + Linear 

model, there was an 18.44% increase in accuracy (from 

81.80% to 96.86%), a remarkable 81.52% improvement in 

precision (from 17.62% to 99.14%), a 20.55% boost in recall 

(from 74.00% to 94.55%), and an F1-score enhancement of 

68.33% (from 28.46% to 96.79%). 

Furthermore, even models with higher baseline accuracy, 

such as No Oversampling + RBF and No Oversampling + 

Polynomial, exhibited significant performance improvements 

after incorporating Borderline-SMOTE. The accuracy for 

these models increased by 1.75% (from 95.11% to 96.86%), 

and the recall and F1-score, initially at 0.00%, experienced 

dramatic enhancements. While the precision for the RBF 

kernel decreased slightly by 0.86%, this trade-off is 

insignificant compared to the overall improvement in model 

reliability and robustness. The increase in recall is particularly 

valuable in stroke prediction, as it ensures that fewer actual 

stroke cases are missed. 

These findings highlight that the combination of 

oversampling and an appropriate kernel function, such as 

RBF, is essential for handling class imbalance effectively. The 

Borderline-SMOTE + RBF model consistently delivers 

superior results, making it the optimal approach for stroke 

classification. This study strongly supports the adoption of 

oversampling techniques in future research and real-world 

applications, particularly in medical datasets where class 

imbalance is prevalent and early detection is crucial for patient 

outcomes. Additionally, these results emphasize the need for 

careful selection of both the oversampling method and the 

SVM kernel, as their interplay significantly impacts overall 

classification performance. 

 
D.  MODEL EVALUATION 

1) CONFUSION MATRIX RESULT 

The evaluation in this study utilizes a confusion matrix to 

assess the model's performance in classifying stroke disease. 

The confusion matrix provides a comprehensive breakdown 

of correctly and incorrectly classified instances for each class, 

including True Positives (TP), True Negatives (TN), False 

Positives (FP), and False Negatives (FN). By analyzing the 

confusion matrix, essential evaluation metrics such as 

accuracy, precision, recall, and F1-score can be derived to 

quantify the model’s effectiveness, particularly in addressing 

class imbalance. This analysis is crucial to ensure that the 

model not only achieves high overall accuracy but also 

effectively identifies cases from the minority class. The results 

from the confusion matrix are presented in FIGURE 4. 

 

TABLE 4 
Comparison of the best model with the model without oversampling 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

BORDERLINE SMOTE + RBF 96.86 99.14 94.55 96.79 

No Oversampling + Linear 81.80 17.62 74.00 28.46 

No Oversampling + RBF 95.11 100 00.00 00.00 

No Oversampling + Polynomial 95.11 100 00.00 00.00 
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The results of the confusion matrix indicate that the 

Borderline-SMOTE method (Figure d) achieved the highest 

performance for Model 2 with the RBF kernel. This model 

successfully classified 919 stroke cases correctly (True 

Positive/TP) and 965 non-stroke cases correctly (True 

Negative/TN), yielding a high accuracy of 96.86% and the 

best F1-score of 96.79%. Moreover, the False Negative (FN) 

count was reduced to 53, compared to other methods, 

demonstrating an improved ability to detect stroke cases, 

while the False Positive (FP) count remained low at 8. 

In contrast, the evaluation of Model 10, Model 11, and 

Model 12 revealed suboptimal performance in stroke 

classification when no feature selection or SMOTE was 

applied. Model 10 (Figure a) with a linear kernel achieved an 

accuracy of 81.80%, yet exhibited a low precision of 17.62% 

due to a high number of false positives, indicating a substantial 

proportion of incorrect positive predictions. Despite having a 

relatively high recall of 74.00%, the imbalance between 

precision and recall resulted in a low F1-score of 28.46%. The 

confusion matrix for this model indicates that the number of 

true positives is 37, true negatives is 799, false positives is 173, 

and false negatives is 13, underscoring the model’s limited 

reliability in making accurate positive predictions.   

Furthermore, Model 11 and Model 12, utilizing RBF and 

polynomial kernels, respectively, achieved a high accuracy of 

95.11% and a perfect precision score of 100%. However, both 

models exhibited 0% recall and F1-score, indicating a 

complete failure to detect any stroke cases within the dataset. 

The confusion matrices for these models (Figures b and c) 

show that the number of true positives is 0, true negatives is 

972, false positives is 0, and false negatives is 50, signifying 

an inability to identify the minority class (stroke cases) 

effectively. Although these models may appear to perform 

well based on accuracy and precision, their overall 

effectiveness is inadequate due to their inability to classify 

positive cases.  

The application of oversampling techniques such as 

Borderline-SMOTE has been demonstrated to significantly 

enhance stroke detection performance. Conversely, models 

trained on imbalanced data without appropriate balancing 

techniques tend to fail in recognizing minority class instances, 

leading to misleadingly high accuracy but poor recall and F1-

score. 

  
(a)  (b)  

 
 

(c) (d)  
 FIGURE 4.   Confusion Matrix Result: A detailed comparison between the baseline and best model. (a) Model no over sampling with linear kernel, 

(b) Model no over sampling with RBF kernel, (c) Model no over sampling with polynomial kernel, (d) Model Borderline-SMOTE with RBF kernel 

 

FIGURE 4.  Confusion Matrix Result 
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2) RECEIVER OPERATING CHARACTERISTIC (ROC) 
CURVE AND AREA UNDER THE CURVE (AUC) 
ANALYSIS 

FIGURE 5.  ROC Curve of the Optimal Model with Borderline SMOTE 

 

FIGURE 5 illustrates the ROC curve of the Borderline 

SMOTE RBF Kernel model, which represents the optimal 

model. It demonstrates that the SVM model with an RBF 

kernel utilizing the Borderline SMOTE technique exhibits 

excellent performance in distinguishing between positive and 

negative classes. This is evidenced by the high AUC (Area 

Under the Curve) values, specifically 99.42% on the training 

data and 99.03% on the testing data. The minimal difference 

between the AUC scores for training and testing datasets 

indicates that the model possesses strong generalization 

capabilities and does not suffer from overfitting. If overfitting 

were present, a significant drop in the AUC score on the 

testing data would be expected compared to the training data. 

However, in this case, both values remain consistently high 

and stable.  

Furthermore, the ROC curve, which closely approaches 

the top-left corner, suggests that the model achieves a high 

True Positive Rate (TPR) while maintaining a low False 

Positive Rate (FPR), signifying that it effectively identifies 

positive cases with minimal misclassification of negative 

cases.   

Within the context of imbalanced data, the ROC curve also 

serves as a critical indicator that the model does not exhibit 

overfitting. Overfitted models trained on oversampled data 

often demonstrate excellent performance on training data but 

significantly poorer performance on testing data [27], which is 

typically reflected in a large discrepancy between the AUC 

scores. However, in this case, the consistently high AUC 

values above 99% for both datasets indicate that the 

application of Borderline SMOTE has not led to excessive 

adaptation to synthetic data. Instead, it has enhanced the 

model's ability to handle class imbalance while maintaining 

robust performance on unseen data.   

Therefore, based on this ROC curve analysis, it can be 

concluded that the application of Borderline SMOTE in the 

SVM model with an RBF kernel successfully enhances 

classification performance without inducing overfitting, 

making it an optimal model for stroke prediction on an 

imbalanced dataset. 

IV.  DISCUSSION 

Oversampling techniques play a crucial role in enhancing the 

model's sensitivity to the minority class, which contributes to 

improving accuracy in stroke disease prediction. The 

application of this technique helps the model recognize 

patterns in the minority class more effectively. Further 

analysis is provided in FIGURE 6. 

 
 

FIGURE 6.  Comparison Model with Oversampling and Without Oversampling 
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The bar chart (FIGURE 6) presents a comparative analysis of 

models with and without oversampling techniques, 

specifically evaluating accuracy, precision, recall, and F1-

score across different configurations. The Borderline-SMOTE 

with the RBF kernel demonstrates the highest overall 

performance, achieving an accuracy of 96.86%, a precision of 

99.14%, a recall of 94.55%, and an F1-score of 96.79%. These 

results indicate that the combination of Borderline-SMOTE 

and the RBF kernel is highly effective in handling class 

imbalance while maintaining a balanced trade-off between 

precision and recall. 

In contrast, models without oversampling techniques 

exhibit a substantial decline in performance, particularly in 

recall and F1-score. The Linear SVM without oversampling 

shows a significant drop, with a recall of 74% and an F1-score 

of only 28.46%, indicating a severe inability to correctly 

identify positive instances. More notably, both the RBF and 

Polynomial SVMs without oversampling fail to detect the 

minority class entirely, as reflected in their recall and F1-score 

values of zero. This highlights the critical impact of class 

imbalance, where the model becomes biased toward the 

majority class, rendering it ineffective for stroke classification. 

The results strongly emphasize the necessity of 

oversampling techniques in addressing class imbalance. The 

Borderline-SMOTE method effectively enhances recall, 

ensuring that the model correctly identifies a greater number 

of stroke cases without significantly compromising precision. 

Additionally, the strong performance of the RBF kernel 

suggests that stroke classification exhibits non-linear 

characteristics, making it more suitable than linear or 

polynomial alternatives.  Overall, the findings demonstrate 

that applying Borderline-SMOTE significantly improves 

classification performance, particularly with the RBF kernel, 

ensuring both robust generalization and reduced bias toward 

the majority class. 

 
A. COMPARISON OF BORDERLINE-SMOTE AND COST-
SENSITIVE LEARNING IN SVM MODELS 

The Support Vector Machine (SVM) model with cost-

sensitive learning was implemented to assess its effectiveness 

in handling class imbalance in stroke classification. This 

approach modifies the misclassification penalty by assigning 

higher costs to the minority class, aiming to enhance the 

model’s ability to detect positive cases without relying on 

oversampling techniques. This study specifically investigates 

whether Borderline-SMOTE remains the superior technique 

compared to cost-sensitive learning in addressing class 

imbalance. By incorporating cost-sensitive learning into the 

SVM model, this experiment evaluates its impact on accuracy, 

precision, recall, and F1-score, particularly in detecting 

instances of the minority class. 

The comparison between Borderline-SMOTE and cost-

sensitive learning provides valuable insights into the most 

effective method for improving model performance on an 

imbalanced dataset. While oversampling techniques generate 

synthetic minority instances to balance class distribution, cost-

sensitive learning directly influences the decision boundary by 

imposing penalties on misclassifications. The results of this 

evaluation will determine whether cost-sensitive learning 

alone is sufficient or if oversampling remains the more robust 

approach for stroke classification. The results of the SVM 

model with cost-sensitive learning are presented in Table 5, 

while the comparison of the performance between the cost-

sensitive learning model and Borderline-SMOTE is illustrated 

in FIGURE 7. 

The evaluation results of the SVM model with cost-

sensitive learning reveal a significant disparity between the 

training and testing phases. During training, the model 

achieved an accuracy of 99.93%, a precision of 98.51%, a 

recall of 100%, and an F1-score of 99.25%, indicating that it 

performed exceptionally well in classifying the data within a 

controlled environment. However, when tested on unseen 

data, there was a drastic decline in precision, recall, and F1-

score, with values dropping to 2.33%, 2.00%, and 2.15%, 

respectively, despite maintaining a relatively high accuracy of 

91.10%. 

This sharp contrast suggests that the model suffers from 

overfitting, meaning it has learned patterns from the training 

data too well but fails to generalize effectively to new data. 

The low recall and F1-score indicate that the model struggles 

to detect minority class instances (stroke cases), increasing the 

risk of misclassification for positive cases. 

Compared to Borderline-SMOTE, which achieved a 

precision of 99.14%, a recall of 94.55%, and an F1-score of 

96.79%, the cost-sensitive learning approach showed 

significantly lower performance, particularly in identifying the 

minority class. While cost-sensitive learning can address class 

imbalance by adjusting misclassification penalties, it may not 

be sufficient for handling highly imbalanced data 

distributions. In contrast, Borderline-SMOTE enhances the 

representation of the minority class by generating synthetic 

samples, enabling the model to better capture the patterns of 

the underrepresented class. This technique has proven to be 

more effective in improving model performance on 

imbalanced datasets, as it allows for better generalization and 

pattern detection in the minority class. Furthermore, 

Borderline-SMOTE provides a more robust solution by 

focusing on the boundary areas where the minority and 

majority classes are most likely to overlap, which can lead to 

improved decision-making by the model. As a result, the 

integration of Borderline-SMOTE helps mitigate the risks of 

misclassification in the minority class. 

TABLE 5 

Evaluation results of the model using cost-sensitive learning 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Training 99.93 98.51 100 99.25 

Testing 91.10 02.33 02.00 02.15 
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B. ANALYSIS OF THE BORDERLINE-SMOTE MODEL 
WITH RBF KERNEL 

Overfitting occurs when a model performs exceptionally well 

on training data but fails to generalize effectively to unseen 

data, resulting in a significant decline in test performance. In 

this study, the Borderline-SMOTE RBF kernel model 

demonstrates consistent performance across both training and 

testing phases, indicating the absence of overfitting. The 

evaluation metrics, including accuracy, precision, recall, and 

F1-score for both phases, are presented in FIGURE 8.

 

 
FIGURE 7.  Comparison of Borderline-SMOTE Oversampling and Cost-Sensitive Learning Models 
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FIGURE 8.  Training and Testing Performance of the Borderline-SMOTE Model 
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The evaluation results of the Borderline-SMOTE model with 

the RBF kernel indicate that the model exhibits excellent 

performance in stroke classification, with minimal differences 

between evaluation metrics on the training and testing 

datasets. On the training dataset, the model achieved an 

accuracy of 96.99%, precision of 99.57%, recall of 94.39%, 

and F1-score of 96.91%. These results remain consistent in the 

testing phase, with an accuracy of 96.86%, precision of 

99.14%, recall of 94.55%, and F1-score of 96.79%. 

The minimal discrepancy between training and testing 

performance suggests that the model possesses strong 

generalization capability and does not suffer from overfitting. 

In the case of overfitting, a significant gap would be expected 

between the training and testing metrics, where the model 

performs exceptionally well on training data but experiences a 

drastic performance drop on unseen data. However, the 

obtained results demonstrate that the model successfully 

identifies relevant patterns rather than memorizing training 

data, allowing it to maintain optimal performance on new data. 

The visualization in FIGURE 8 further supports this claim, 

as the evaluation metrics exhibit a balanced distribution across 

both the training and testing phases. Consequently, the 

Borderline-SMOTE model with the RBF kernel can be 

considered an effective solution for addressing data imbalance 

while simultaneously mitigating the risk of overfitting and 

underfitting. 

Overfitting typically occurs when a model is excessively 

complex, capturing noise in the training data, leading to high 

training performance but poor generalization on unseen data 

[27]. However, in this model, the stability of precision, recall, 

and F1-score across both phases indicates that it does not 

merely memorize the training data but instead effectively 

extracts meaningful patterns. Furthermore, the integration of 

Borderline-SMOTE mitigates data imbalance by generating 

synthetic samples near the decision boundary, allowing the 

model to learn in a more representative manner without 

introducing excessive bias toward the majority class. Thus, the 

combination of oversampling techniques and the RBF kernel, 

which is well-suited for capturing non-linear patterns, 

contributes to enhanced generalization, ensuring that the 

model maintains optimal performance on new data. 

In the healthcare-dataset-stroke-data, which consists of 

5110 samples, there is a significant class imbalance, where the 

number of minority class samples (stroke) is considerably 

lower than that of the majority class (non-stroke). This 

imbalance often causes machine learning models to be biased 

toward the majority class, leading to low recall and F1-score 

in stroke classification. Various oversampling techniques have 

been explored to address this issue, with Borderline-SMOTE 

proving to be the most effective method in this study. 

In contrast to standard SMOTE, which generates synthetic 

data randomly across the feature space, Borderline-SMOTE 

specifically targets minority class samples located in the 

decision boundary or borderline region, where 

misclassification is most likely to occur. By generating 

synthetic data only around borderline samples, this technique 

ensures that the SVM model becomes more sensitive to 

minority class patterns without disrupting the overall data 

distribution. 

The primary advantage of Borderline-SMOTE over other 

oversampling methods lies in its ability to identify minority 

class samples situated near the decision boundary between the 

two classes. Machine learning models often struggle to 

classify samples in this region, and Borderline-SMOTE helps 

establish a clearer decision boundary. Consequently, SVM 

models can significantly improve recall, F1-score, and overall 

accuracy, particularly in detecting stroke cases that were 

previously difficult to classify correctly. 

In this study, Borderline-SMOTE utilizes the k-Nearest 

Neighbors (k-NN) algorithm with 𝑘 = 5 to determine whether 

a minority class sample is within the borderline region. 

Suppose more than half (≥ 3) of its five nearest neighbors 

belong to the majority class. In that case, the sample is 

categorized as a borderline sample, indicating that it is in a 

decision region prone to misclassification. By generating 

synthetic data exclusively around these samples, Borderline-

SMOTE maintains a balanced data distribution while avoiding 

the creation of irrelevant synthetic samples. 

The combination of Borderline-SMOTE with the Radial 

Basis Function (RBF) kernel in SVM has proven to be the 

most effective approach in this study. The RBF kernel is 

capable of capturing complex relationships in data that are not 

linearly separable. With the presence of more representative 

synthetic data in the borderline region, SVM with the RBF 

kernel can establish a more flexible and accurate decision 

boundary compared to other kernels. This results in a 

significant improvement in recall and F1-score, making this 

combination the most effective method for handling class 

imbalance in stroke classification. 

Based on the studies conducted by Han et al. [28], Anna 

Glazkova [29], Brandt and Lanzen [30], and Elreedy and 

Atiya [31], the application of oversampling techniques such as 

SMOTE, Borderline-SMOTE, and other resampling methods 

has been shown to significantly improve the performance of 

classification models in imbalanced datasets. These studies 

indicate that implementing oversampling techniques enhances 

the model’s sensitivity to the minority class, resulting in 

notable improvements in accuracy, precision, recall, and F1-

score. Furthermore, models utilizing oversampling 

consistently outperform those trained on imbalanced data 

without resampling, particularly in medical classification tasks 

such as stroke prediction, where accurate detection of the 

minority class is critical. 

 
C. COMPARISON OF RESEARCH USING THE SVM 
METHOD WITH PREVIOUS STUDIES 

This section presents a comparative analysis between the 

proposed study and previous research that employed the 

Support Vector Machine (SVM) method for stroke 

classification on healthcare datasets. The objective of this 

comparison is to evaluate the effectiveness of the proposed 

approach in relation to prior studies that utilized the same 

classification technique. The comparison of previous research 

with the proposed method is presented in Table 6.
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TABLE 6 shows a comparison between the proposed method 

and previous studies that used healthcare stroke datasets for 

stroke disease classification using the Support Vector 

Machine (SVM) method. The studies listed utilized SVM for 

classification, with some applying oversampling techniques 

such as SMOTE, SMOTENC, and Borderline-SMOTE to 

address class imbalance in the datasets. The accuracies 

recorded in these studies vary, with studies using SMOTE 

showing results between 74.72% and 95.04%. The proposed 

method using Borderline-SMOTE with the RBF kernel 

achieved the highest accuracy at 96.86%, with a precision of 

99.14%, recall of 94.55%, and F1-score of 96.79%. These 

results indicate that Borderline-SMOTE with the RBF kernel 

is a more effective approach for handling class imbalance, 

significantly contributing to the improvement of the SVM 

classification model's performance in stroke disease 

classification. The limitations of this study lie in the dataset 

used, which consists of 5,110 samples and 12 features that 

may not fully represent a broader population. Future research 

could utilize a larger dataset to improve the generalizability of 

the findings. Additionally, this study can be further developed 

by implementing deep learning models to enhance 

classification accuracy and performance, particularly in 

handling imbalanced datasets. 

 

V.  CONCLUSION 

This study evaluated the impact of oversampling techniques 

on the performance of stroke classification models using 

Support Vector Machine (SVM) in addressing data imbalance 

issues. The dataset consisted of 5,110 samples with 12 

features, and 39 models were tested under four primary 

scenarios: no feature selection with oversampling, feature 

selection using Information Gain with oversampling, feature 

selection using Chi-Square with oversampling, and no feature 

selection and no oversampling. The results demonstrated that 

oversampling techniques, including SMOTE, Borderline-

SMOTE, SMOTE-ENN, and SMOTE-IPF, significantly 

enhanced the model's ability to recognize patterns in the 

minority class. Additionally, feature selection methods, such 

as Information Gain and Chi-Square, improved model 

performance by selecting relevant features and mitigating the 

risk of overfitting. Among the tested SVM kernels, the Radial 

Basis Function (RBF) kernel exhibited the best performance, 

with the combination of Borderline-SMOTE and the RBF 

kernel achieving the highest accuracy (96.86%), precision 

(99.14%), recall (94.55%), and F1-score (96.79%). 

Class imbalance in the stroke dataset causes machine 

learning models to be biased toward the majority class, leading 

to low recall and F1-score in stroke classification. Therefore, 

the application of oversampling techniques is crucial in 

enhancing the model’s sensitivity to the minority class. 

Borderline-SMOTE proved to be the most effective method in 

this study, as it not only generates synthetic data randomly like 

standard SMOTE but also specifically targets minority class 

samples near the decision boundary, where misclassification 

is most likely to occur. This approach enables the model to 

better recognize minority class patterns without disrupting the 

overall data distribution. 

The evaluation results indicate that the Borderline-

SMOTE model with the RBF kernel exhibits excellent 

classification performance with minimal differences between 

evaluation metrics on the training and testing datasets. During 

training, the model achieved an accuracy of 96.99%, precision 

of 99.57%, recall of 94.39%, and F1-score of 96.91%. 

Similarly, in the testing phase, the model maintained a high 

accuracy of 96.86%, with a precision of 99.14%, recall of 

94.55%, and F1-score of 96.79%. The minimal discrepancy 

between these metrics suggests strong generalization 

capability, indicating that the model does not suffer from 

overfitting. If overfitting were present, a significant drop in 

performance on unseen data would be expected. However, the 

stable performance across both datasets confirms that the 

model effectively learns meaningful patterns rather than 

memorizing training data. 

The ROC curve analysis further supports this finding, as 

the Borderline-SMOTE RBF model achieved high AUC 

TABLE 6 
Comparison with previous studies 

Previous Studies Metode Oversampling 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Priyanka Bathla and Rajneesh 

Kumar [2] 
SVM SMOTE 74.72 78.15 73.13 75.56 

Saad Sahriar et al. [11] SVM SMOTE 90.36 85.18 95.02 89.83 

Hanqing Zhang [32] SVM - 79.20 71.20 91.2 80.0 

Yifan Feng [33] SVM - 77.00 74.00 73.0 78.0 

Aakanshi Gupta et al. [34] SVM - 95.04 90.33 95.04 92.63 

Windy Junita Sari et al. [35] SVM - 94.11 88.57 99.41 - 

Arya Syifa Hermiati et al. [36] SVM SMOTE 87.75 - - - 

Proposed Method SVM 
Borderline-

SMOTE (RBF) 
96.86 99.14 94.55 96.79 
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values of 99.42% for training and 99.03% for testing, with 

minimal deviation between the two. This demonstrates the 

model's ability to distinguish between positive and negative 

cases effectively without overfitting. The ROC curve, which 

closely approaches the top-left corner, also indicates a high 

True Positive Rate (TPR) while maintaining a low False 

Positive Rate (FPR), confirming the model's reliability in 

stroke classification. In the context of imbalanced data, the 

consistently high AUC values suggest that the application of 

Borderline-SMOTE has enhanced model robustness without 

excessive adaptation to synthetic data. 

The findings of this study suggest that the combination of 

Borderline-SMOTE and the RBF kernel is the most effective 

approach for improving stroke classification in imbalanced 

datasets. This study highlights the importance of oversampling 

techniques in addressing class imbalance while ensuring 

strong generalization capabilities. Future research could 

explore deep learning approaches, such as convolutional 

neural networks (CNNs) or recurrent neural networks 

(RNNs), to further enhance classification accuracy. 
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