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ABSTRACT Sign-language recognition (SLR) plays a pivotal role in enhancing communication accessibility and fostering 

the inclusion of deaf communities. Despite significant advancements in SLR systems, challenges such as variability in sign 

language gestures, the need for real-time processing, and the complexity of capturing spatiotemporal dependencies remain 

unresolved. This study aims to address these limitations by proposing an advanced framework that integrates deep learning 

and machine learning techniques to optimize sign language recognition systems, with a focus on the Indian Sign Language 

(ISL) dataset. The framework leverages MobileNetV3 for feature extraction, which is selected after rigorous evaluation against 

VGG16, ResNet50, and EfficientNet-B0. MobileNetV3 demonstrates superior accuracy and efficiency, making it optimal for 

this task. To enhance the model's ability to capture complex dependencies and contextual information, multi-head self-attention 

(MHSA) was incorporated. This process enriches the extracted features, enabling a better understanding of sign language 

gestures. Finally, LightGBM, a gradient-boosting algorithm that is efficient for large-scale datasets, was employed for 

classification. The proposed framework achieved remarkable results, with a test accuracy of 98.42%, precision of 98.19%, 

recall of 98.81%, and an F1-score of 98.15%. The integration of MobileNetV3, MHSA, and LightGBM offers a robust and 

adaptable solution that outperforms the existing methods, demonstrating its potential for real-world deployment. In conclusion, 

this study advances precise and accessible communication technologies for deaf individuals, contributing to more inclusive 

and effective human-computer interaction systems. The proposed framework represents a significant step forward in SLR 

research by addressing the challenges of variability, real-time processing, and spatiotemporal dependency. Future work will 

expand the dataset to include more diverse gestures and environmental conditions and explore cross-lingual adaptations to 

enhance the model’s applicability and impact. 

INDEX TERMS Sign Language Recognition, Gesture Recognition, MobileNetV3, Multi-head Self-Attention (MHSA), 

LightGBM, Indian Sign Language (ISL). 

I. INTRODUCTION 

SLR remains an essential domain in computer vision and 

machine learning, aiming to enhance communication 

accessibility and inclusion for deaf individuals [1]. 

Developing efficient recognition systems is crucial for 

minimizing communication barriers and facilitating seamless 

interactions between deaf communities and a broader society 

[2]. Sign languages inherently comprise complex components, 

including manual gestures, facial expressions, and body 

movements, each of which contains significant semantic and 

syntactic information that necessitates advanced analytical 
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methods for accurate interpretation. Traditional modes of 

communication for Deaf individuals typically depend on 

human interpreters or direct engagement with other sign 

language users. However, these methods are impractical in 

contexts where remote communication or automated systems 

are required [3]. Automated systems capable of instantly 

recognizing and translating sign languages can significantly 

enhance accessibility and foster inclusivity [4]. 

Despite these advancements, building robust sign-language 

recognition systems poses several challenges. Variations in 

signing style, speed, and context among individuals can affect 

the consistency of sign language gestures. Additionally, 

regional and dialectical differences introduce further 

complexity, requiring models that generalize effectively 

across a wide array of signing styles, while maintaining high 

accuracy [5]. Another challenge pertains to the dynamic nature 

of sign language gestures, which encompass manual motions, 

facial expressions, and body positions that require precise 

recording and interpretation. Accurately capturing these 

elements requires models that effectively integrate both spatial 

and temporal information [6]. Advanced models must address 

the chronological progression of gestures, while accurately 

representing the spatial features of hand movements and facial 

expressions. 

Data availability and quality are crucial factors in advancing 

sign language recognition systems. Developing high-quality, 

labelled datasets for training and testing machine learning 

models presents a significant challenge, as it requires 

substantial effort in data collection and annotation, which can 

be resource intensive [7]. The scarcity of comprehensive and 

diverse datasets limits the development of models capable of 

accurately recognizing different sign languages and scenarios, 

thereby underscoring the need for ongoing efforts in data 

acquisition and annotation. Real-time processing is crucial for 

sign language recognition systems to be practical. Systems 

designed for real-time translation or communication 

assistance must operate with low latency, which adds further 

constraints to the model design and implementation. 

Balancing accuracy and computational efficiency is essential 

to ensure that the models perform effectively within the 

required time frames [8]. Consequently, research in this 

domain is increasingly focusing on creating models that 

maintain accuracy and efficiency while optimally managing 

computational resources. 

Sign language recognition (SLR) has emerged as a critical 

domain within the realms of computer vision and ML, 

exhibiting notable advancements while also facing significant 

challenges. A multi-tier framework that amalgamates CNNs 

with LSTM networks achieved a recognition precision of 

98.8% on established benchmark datasets, thereby 

accentuating the efficacy of these computational structures [9]. 

An alternative methodology utilizes CNNs in conjunction 

with image processing techniques, such as the Histogram of 

Oriented Gradients, to facilitate precise, real-time gesture 

detection, thereby contributing to inclusivity and accessibility 

initiatives [10]. Despite these advancements, challenges such 

as the necessity for real-time processing and the absence of 

standardized representations of sign language continue to 

persist [11]. 

The complexity of models significantly influences 

performance, as evidenced by the inflated 3D model, which 

exhibits enhanced word recognition from video frames, 

indicating a correlation between increased complexity and 

improved accuracy [1]. The YOLOv5 architecture was 

implemented to achieve robust real-time sign language 

interpretation, with mean Average Precision (mAP) values 

fluctuating between 92% and 99%, demonstrating potential 

applicability within dynamic settings. Although advancements 

are apparent, additional investigations are warranted to refine 

generalization and real-time functionalities, thereby fostering 

broader societal inclusivity in individuals with hearing 

impairments [12]. 

Developments in attention-based methodologies for SLR 

have further enhanced gesture recognition precision. The 

Intra-inter Gloss Attention model utilizes localized self-

attention to mitigate complexity and noise, achieving a 

competitive word error rate of 20.4% [13]. Hybrid CNN-

LSTM frameworks augmented with attention mechanisms 

have demonstrated efficacy, achieving an average accuracy of 

84.65% on the WLASL dataset, indicative of their efficiency 

and potential for further enhancement [14]. Models that 

concentrate on hand shapes and motion trajectories, such as 

the Top-Down Attention model, have surpassed state-of-the-

art methodologies on extensive datasets [15]. Nevertheless, 

challenges pertaining to real-time applications persist, as 

illustrated by the 3D-CNN system that integrates an attention 

mechanism, achieving an accuracy of 98.49% [16].  

To provide a more comprehensive rationale for the selection 

of MobileNetV3, MHSA, and LightGBM, we emphasize their 

combined advantages in sign language contexts: 

MobileNetV3 exhibits lightweight and efficient properties 

suitable for on-device or real-time applications; MHSA 

incorporates the capacity to capture spatial and context-

specific dependencies crucial in gesture interpretation; and 

LightGBM offers robust and scalable classification with rapid 

convergence. 

This study proposes a novel approach that combines 

MobileNetV3 [17] with MHSA [18] and LightGBM [19] to 

enhance sign language recognition. MobileNetV3 serves as 

the feature extractor, optimizing the computational efficiency 

and performance, as demonstrated in prior studies. MHSA 

enhances the model's capacity to capture intricate relationships 

within the extracted features, whereas LightGBM integrates 

advanced methodologies to improve classification accuracy 

and model robustness. The core contributions of this study can 

be summarized as follows: 

1) Development of an efficient feature extraction pipeline 

utilizing MobileNetV3, focusing on maximizing the 

accuracy of sign language recognition. 
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2) The MHSA was utilized to improve the feature 

representation and capture intricate dependencies within 

the data. 

3) The optimized LightGBM classifier was used to enhance 

the classification accuracy and ensure the reliability of 

the recognition system. 

The remainder of this paper is organized as follows. Section 

2 describes the methodology, MobileNetV3 architecture, 

MHSA integration, and use of LightGBM for classification. 

Section 3 details the experimental setup and dataset. Section 4 

discusses the results and analyses. Finally, Section 5 concludes 

the paper. 

 
II. MATERIAL AND METHODS 

This section describes the methodologies employed to develop 

an effective sign-language recognition system. The proposed 

framework integrates MobileNetV3 [17] for feature 

extraction, multihead self-attention [18] mechanisms to 

enhance feature representations, and a LightGBM classifier to 

achieve precise classification [19]. The architecture of the 

proposed SLR system comprises four primary components 

1) Data Preprocessing and Augmentation: The dataset 

undergoes a series of preprocessing steps, including 

cleaning, normalization, and augmentation, applied to 

the images to enhance the model's performance. 

2) Feature Extraction using MobileNetV3: MobileNetV3 is 

employed to extract robust and discriminative features 

from preprocessed images, leveraging its efficient 

architecture tailored for mobile and edge devices [17]. 

3) Feature Enhancement using Multihead Self-Attention: 

The extracted features are subsequently refined through 

multihead self-attention mechanisms, which capture 

complex interdependencies and contextual information 

within the feature space [18]. 

4) Classification with LightGBM: Finally, the enhanced 

features are classified using a LightGBM classifier, 

which contributes to an improved accuracy and 

robustness in the recognition process [19]. 

FIGURE 1 illustrates the architecture of the proposed 

system. The input images were processed using MobileNetV3 

to extract pertinent features. These features were passed 

through a multihead self-attention module to incorporate 

contextual information. The refined features were then fed into 

the LightGBM classifier for the final classification of sign 

language gestures. 

A. PREPROCESSING 

Preprocessing techniques were applied to the sign-language 

image dataset to ensure consistency and enhance the 

performance of the recognition system. The preprocessing 

pipeline included image scaling, normalization, and 

augmentation. Initially, the images were uniformly scaled to 

comply with the input specifications of MobileNetV3, 

specifically resizing them to 224 × 224 pixels. Following 

scaling, the pixel values were normalized to facilitate efficient 

training [20].  

In our data augmentation pipeline, images were first 

uniformly resized to 224 × 224 pixels to ensure consistent 

input dimensions and facilitate batching. We subsequently 

applied ColorJitter to introduce slight variations in brightness, 

contrast, saturation, and hue, which aided the model in 

learning robust color-invariant features. Next, random 

 
FIGURE 1.  Hybrid Sign Language Recognition Model. 
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FIGURE 2.  (a) the original image, (b) resizing, (c) color jitter, (d) 
random horizontal flip, (e) random vertical flip, (f) random rotation, (g) 
conversion to a tensor. 
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horizontal and vertical flips were implemented to introduce 

spatial diversity by mirroring the image, while random 

rotation up to 35° was employed to mitigate the sensitivity to 

object orientation. Each image was converted into a PyTorch 

tensor to standardize the data format, after which 

normalization was applied with the mean and standard 

deviation values. These data augmentation techniques 

collectively expand the effective size of the training set, reduce 

overfitting, and enhance the generalization capability of the 

model. FIGURE 2 illustrates the sequential data augmentation 

steps applied to an ISL image. 

B. MOBILENETV3 ARCHITECTURE 

MobileNetV3 [17] was optimized for both mobile and edge 

devices. Building on the foundations of MobileNetV2, 

MobileNetV3 incorporates novel architectural elements that 

enhance performance without significantly compromising 

computational efficiency. The MobileNetV3 architecture is 

shown in FIGURE 3. 

 

FIGURE 4(a) illustrates the depth-wise separable 

convolution, while FIGURE 4(b) demonstrates the 

functionality of squeeze-and-excitation (SE) blocks, which are 

integral to the MobileNetV3 architecture. 

1) INVERTED RESIDUAL BLOCKS 

The inverted residual blocks are fundamental to the 

MobileNetV3 architecture. These blocks employ a bottleneck 

structure in which the input is first expanded into a higher-

dimensional space, processed through depth-wise separable 

convolutions, and subsequently projected back to a lower-

dimensional space. This approach contrasts with traditional 

residual blocks, which directly process the input. The 

utilization of inverted residuals facilitates more efficient 

feature extraction, enabling the capture of intricate patterns 

without a substantial increase in the computational overhead. 

Additionally, skip connections within these blocks enhance 

computational efficiency by allowing the direct addition of 

inputs to outputs. 

2)  DEPTH-WISE SEPARABLE CONVOLUTIONS 

Depth-wise separable convolutions are employed to reduce 

the computational costs and model complexity by 

decomposing standard convolutions into depthwise and 

pointwise operations. 

Depth-wise Convolution: This operation involves applying 

a single convolutional filter to each input channel 

independently. If  𝑋  is the input tensor with dimensions 

(𝐻, 𝑊, 𝐶)  (height, width, channels), and  𝐾 is a is a depthwise 

convolutional kernel with dimensions (𝑘, 𝑘, 𝐶), then the 

depthwise convolution process is as follows Eq. (1) [17] 

𝑌𝑖,𝑗,𝑘 = ∑ 𝑋𝑖+𝑚,𝑗+𝑛,𝑘 ⋅ 𝐾𝑚,𝑛,𝑘𝑚,𝑛  (1) 

Pointwise Convolution: Following depthwise convolution, 

a 1 × 1 convolution is applied across all channels. If  𝑋  is the 

tensor resulting from the depthwise layer with shape 

(𝐻′, 𝑊′, 𝐶) , and  𝐾  is a pointwise kernel with shape 

(1, 1, 𝐶, 𝐶′), the pointwise convolution operation is as follows 

Eq. (2) [17] 

𝑌𝑖,𝑗,𝑘′ = ∑ 𝑋𝑖,𝑗,𝑐 ⋅ 𝐾1,1,𝑐,𝑘′𝑐  (2) 

where Y is the final output tensor of the shape (𝐻′, 𝑊 ′, 𝐶 ′). 

3)  SQUEEZE-AND-EXCITATION (SE) BLOCKS 

SE [23] blocks dynamically modulate channel-specific feature 

responses, thereby enhancing the representational capacity of 

the network. For a feature map 𝑋 with 𝐶 channels, the SE 

block performs two primary operations.  

Squeeze: Aggregates spatial information into a channel 

descriptor 𝑧 by performing global average pooling is as 

follows Eq. (3) [23] 

𝑧𝑐 =
1

𝐻⋅𝑊
∑ ∑ 𝑋𝑖,𝑗,𝑐

𝑊
𝑗=1

𝐻
𝑖=1  (3) 

Excitation: Utilizes a fully connected neural network to 

model channel-wise dependencies, producing a scaling vector 

𝑠 is as follows Eq. (4) [23] 

𝑠𝑐 = 𝜎(𝑊2 ⋅ 𝛿(𝑊1 ⋅ 𝑧 + 𝑏1) + 𝑏2) (4) 

 

FIGURE 3.  MobileNetV3 Architecture. 

 

 

 

(a) (b) 

FIGURE 4.  (a) Depthwise Separable Convolution, (b) Squeeze-
and-Excitation (SE) Blocks 
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where 𝛿 is ReLU and 𝜎 is sigmoid activation function, and 

𝑊1, 𝑊2, 𝑏1 and 𝑏2 are learned parameters. 

C. MULTI-HEAD SELF ATTENTION (MHSA) 

MHSA enables the model to attend to different segments of 

the input feature map concurrently, thereby capturing a 

comprehensive range of contextual information [18].  MHSA 

captures long-range dependencies and intricate relationships 

within the feature space, which are critical for distinguishing 

highly similar gestures that vary in subtle spatial details. The 

features extracted from the previous steps were passed to the 

MHSA layer to enhance the features. Extracted feature tensor 

X with shape (N, T, D), where N is the batch size, T is the 

sequence length, and D is the dimensionality of each feature 

vector. The input tensor is projected into query Q, key K, and 

value V matrices using learned weight matrices is represented 

by Eq. (5) [18] 

𝑄 = 𝑋𝑊𝑄 ,     𝐾 = 𝑋𝑊𝐾 ,     𝑉 = 𝑋𝑊𝑉 (5) 

where 𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉 are weight matrices with shapes 

(𝐷, 𝑑𝑞), (𝐷, 𝑑𝑘), and (𝐷, 𝑑𝑣), respectively, and 𝑑𝑘  and 𝑑𝑣 are 

the dimensions of the key and value vectors. The attention 

output using the query, key, and value vectors is given by Eq. 

(6) [18] 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 (6) 

where √𝑑𝑘 serves as the scaling factor, and Softmax 

normalizes the scores. The outputs from multiple attention 

heads are concatenated within the MHSA layer, and the 

amalgamating features from the diverse representation 

subspaces is represented by Eq. (7) [18] 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ1, ℎ2, … , ℎℎ)𝑊𝑂 (7) 

where each head is ℎ𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄𝑖
, 𝐾𝑊𝐾𝑖

, 𝑉𝑊𝑉𝑖
) and 

𝑊𝑂 is the output projection matrix. In our study, we used four 

attention heads with eight layers, and a dropout rate of 0.2. The 

ability of the self-attention mechanism to evaluate the 

significance of diverse image regions was harnessed by this 

structural design, facilitating a refined analysis of the input 

data. Through the integration and synthesis of multiple 

attention head outputs, the model discerns more elaborate and 

subtle correlations within the information. Subsequent 

processing via feedforward networks and normalization layers 

further refines these representations, ensuring a 

comprehensive understanding of the input sequence. This 

thorough approach ultimately yields more accurate final 

predictions by enabling the model to develop a nuanced 

understanding of the data [24]. 

D. LIGHTGBM 

LightGBM [19] is a gradient-boosting framework renowned 

for its efficiency and scalability in handling large-scale 

datasets. LightGBM distinguishes itself by its ability to train 

models more rapidly and with lower memory consumption 

than traditional gradient boosting methods. The framework 

incorporates several innovative techniques, including leafwise 

tree growth, Exclusive Feature Bundling (EFB), and Gradient-

based One-Side Sampling (GOSS), to enhance both 

performance and accuracy. LightGBM constructs an ensemble 

of decision trees in a stage-wise manner to minimize a 

specified loss function. Each subsequent tree was added to the 

model to correct the errors made by the preceding trees, with 

the final prediction being an aggregation of the outputs from 

all individual trees. In LightGBM, model at the t-th iteration is 

as follows Eq. (8) [19]. 

𝐹𝑡(𝑋) = 𝐹𝑡−1(𝑋) + 𝜂ℎ𝑡(𝑋) (8) 

where 𝐹𝑡−1(𝑋) is the model from the previous iteration, ℎ𝑡(𝑋) 

is the new tree added at iteration t, and 𝜂 is the learning rate. 

LightGBM employs a leaf-wise growth strategy, as opposed 

to the traditional level-wise approach. This strategy selects the 

leaf with the maximum loss reduction for splitting, thereby 

resulting in deeper and potentially more accurate trees. Leaf-

wise growth involves selecting the leaf 𝑙∗ that maximizes the 

gain Δ𝐿, represented by Eq. (9) [21] 

𝑙∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑙∈𝐿

𝛥𝐿𝑙  (9) 

where Δ𝐿𝑙  is the reduction in loss by splitting leaf l. A notable 

feature of LightGBM is GOSS, enhances the training 

efficiency by retaining all instances with large gradients while 

performing random sampling on instances with small 

gradients. This approach preserves the accuracy of the 

information gain estimation while reducing the number of data 

instances to be processed. To efficiently manage datasets with 

a vast number of features, LightGBM employs EFB, 

consolidates mutually exclusive features, and consolidates 

those that do not take non-zero values simultaneously into 

single features. This technique significantly reduces the 

dimensionality of the dataset without compromising the 

essential information. The objective function in LightGBM 

incorporates regularization to control model complexity, 

thereby preventing overfitting. The objective function is 

expressed by Eq. (10) [19] 

𝐿 = ∑ 𝑙(𝑦𝑖 , �̂�𝑖) +𝑛
𝑖=1 ∑ 𝛺(ℎ𝑡)𝑇

𝑡=1                                       (10) 

where 𝑙(𝑦𝑖 , �̂�𝑖) is the loss function and Ω(ℎ𝑡) is the 

regularization term for tree ℎ𝑡. The regularization term is 

given by Eq. (11) [22] 

𝛺(ℎ) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝓌𝑗

2𝑇
𝑗=1                                               (11) 

where 𝛾 is the penalty for adding a new leaf, T is the number 

of leaves in the tree, 𝜆 is the L2 regularization term on leaf 

weights, and 𝓌𝑗 are the leaf weights [22]. During training, the 

LightGBM employs a second-order Taylor expansion to 

approximate the loss function, facilitating more accurate and 

efficient optimization. The optimization objective at iteration 

t is represented by Eq. (12) [19] 

𝐿(𝑡) ≈ ∑ [𝑙(𝑦𝑖 , �̂�𝑖
(𝑡−1)

) + 𝑔𝑖ℎ𝑡(𝑥𝑖) +
1

2
ℎ𝑖ℎ𝑡

2(𝑥𝑖)] +𝑛
𝑖=1

𝛺(ℎ𝑡)                                                                               (12) 
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where 𝑔𝑖  and ℎ𝑖  are gradients of the loss function with respect 

to the predictions. We conducted a stratified 5-fold cross-

validation to optimize the key LightGBM hyperparameters 

(learning rate, max_depth, subsampling) in the ranges 𝜂 ∈
{0.001, 0.01},  max _depth {4 …  10} and subsample ∈
[0.5,1.0}. LightGBM exhibits expeditious training and robust 

performance, leveraging leaf-wise tree growth and 

sophisticated sampling techniques (GOSS and EFB). In our 

comparative evaluation, LightGBM outperformed other 

gradient boosting classifiers (CatBoost and XGBoost) and 

traditional models (Random Forest, SVM) [19, 22].  

III. EXPERIMENTAL SETUPS 

A. DATASETS 

The dataset utilized in this study comprises a total 42745 

images representing 35 distinct categories of Indian Sign 

Language (ISL) [25]. These categories include numerals 1-9 

and letters A-Z, covering a comprehensive range of gestures 

used in the ISL. Each class contains 1200 images, with slight 

variations in the number of images for certain classes. 

Specifically, classes C, I, and O contained 1447, 1379, and 

1429 images, respectively. TABLE 1 provides a summary of 

the dataset. This dataset provides a clear and concise overview 

of its composition, preprocessing steps, and splitting criteria, 

ensuring transparency and reproducibility. 

 
TABLE 1  

Description of ISL dataset 

Attribute Details 

Total Images 42745 
Classes 35 (Numerals 1-9 and Letters A-Z) 

Images per class ~1200 (C: 1447, I: 1379, O: 1429 

Train Set 34196 (80% of total dataset) 

Validation Set 8749 20% of total dataset) 

B. IMPLEMENTATION DETAILS 

The proposed pipeline was implemented on a Linux-based 

platform equipped with 16 GB of RAM and an 8GB NVIDIA 

RTX 4060 GPU. We used Python 3.9 with PyTorch (v1.12) 

for the deep learning modules and LightGBM (v3.3) for 

gradient boosting. The training process leveraged the Indian 

Sign Language (ISL) dataset and employed MobileNetV3 for 

feature extraction because of its optimal balance between 

computational efficiency and accuracy. To further refine the 

feature representations, an MHSA layer with four attention 

heads and a dropout rate of 0.2 was integrated into the 

MobileNetV3 architecture. This integration enables the model 

to capture complex dependencies and contextual information, 

thereby improving the quality of the extracted features prior to 

classification. The Adam optimizer was employed with a 

learning rate of 0.001 and batch size of 32 for both 

MobileNetV3 and the MHSA modules.  

The model begins with an initial convolution followed by 

batch normalization and HardSwish activation, and then 

proceeds through a series of inverted residual blocks. Each 

inverted residual block progressively refines the spatial 

dimensions and channel depth, which are reflected in the 

changing output shapes. An attention module appears near the 

end, applying MHSA over a feature space of size [1, 960, …], 

presumably enabling the network to focus on important 

regions. Finally, the model applies adaptive average pooling, 

followed by several linear activation layers. The total number 

of parameters is approximately 8.51 million, all of which are 

trainable. TABLE 2 provides a summary of the proposed 

model. 
TABLE 2  

Summary of the proposed model 

Layer (type: depth - idx ) Output Shape Param # 

MobileNetV3WithAttention [1, 960]  -- 

Sequential: 1 - 1 [1, 960, 7, 7]  -- 

 

Conv2dNormActivation:  2 -1 [1, 16, 112, 112]  -- 

 
Conv2d: 3 - 1 [1, 16, 112, 112] 432 

BatchNorm2d: 3 - 2 [1, 16, 112, 112] 32 

Hardswish: 3 - 3 [1, 16, 112, 112]  -- 

InvertedResidual: 2 - 2 [1, 16, 112, 112]  -- 
 Sequential: 3 - 4 [1, 16, 112, 112] 464 

InvertedResidual : 2 - 3 [1, 24, 56, 56]  -- 
 Sequential: 3 - 5 [1, 24, 56, 56] 3, 440 

InvertedResidual : 2 - 4 [1, 24, 56, 56]  -- 
 Sequential: 3 - 6 [1, 24, 56, 56] 4, 440 

InvertedResidual : 2 - 5 [1, 24, 56, 28]  -- 
 Sequential: 3 - 7 [1, 24, 56, 28] 10, 328 

InvertedResidual : 2 - 6 [1, 24, 56, 28]  -- 
 Sequential: 3 - 8 [1, 24, 56, 28] 20, 992 

InvertedResidual : 2 - 7 [1, 24, 56, 28]  -- 
 Sequential: 3 - 9 [1, 24, 56, 28] 20, 992 

InvertedResidual : 2 - 8 [1, 80, 14, 14]  -- 
 Sequential: 3 - 10 [1, 80, 14, 14] 32, 080 

InvertedResidual : 2 - 9 [1, 80, 14, 14]  -- 
 Sequential: 3 - 12 [1, 80, 14, 14] 34, 760 

InvertedResidual : 2 - 10 [1, 80, 14, 14]  -- 
 Sequential: 3 - 12 [1, 80, 14, 14] 31, 992 

InvertedResidual : 2 - 11 [1, 80, 14, 14]  -- 
 Sequential: 3 - 13 [1, 80, 14, 14] 31, 992 

InvertedResidual : 2 - 12 [1, 112, 14, 14]  -- 
 Sequential: 3 - 14 [1, 112, 14, 14] 214, 424 

InvertedResidual : 2 - 13 [1, 112, 14, 14]  -- 
 Sequential: 3 - 15 [1, 112, 14, 14] 386, 120 

InvertedResidual : 2 - 14 [1, 160, 7, 7]  -- 
 Sequential: 3 - 16 [1, 160, 7, 7] 429, 224 

InvertedResidual : 2 - 15 [1, 160, 7, 7]  -- 
 Sequential: 3 - 17 [1, 160, 7, 7] 797, 360 

InvertedResidual : 2 - 16 [1, 160, 7, 7]  -- 
 Sequential: 3 - 18 [1, 160, 7, 7] 797, 360 

Conv2dNormActivation:  2 -17 [1, 160, 7, 7]  -- 

 
Conv2d: 3 - 19 [1, 160, 7, 7] 153, 600 

BatchNorm2d: 3 - 20 [1, 160, 7, 7] 1, 920 

Hardswish: 3 - 21 [1, 160, 7, 7]  -- 

AdaptiveAvgPool2d: 1 - 2 [1, 160, 1, 1]  -- 

AttentionRefinement: 1 - 3 [1, 1, 960]  -- 

 

MultiheadAttention: 2 - 18 [1, 1, 960] 
3, 690, 

240 

LayerNorm: 2 - 19 [1, 1, 960] 1, 920 

Sequential: 2 - 20 [1, 1, 960]  -- 

 

Linear: 3 - 22 [1, 1, 960] 922, 560 
ReLU: 3 - 23 [1, 1, 960]  -- 

Dropout: 3 - 24 [1, 1, 960]  -- 

Linear: 3 - 25 [1, 1, 960] 922, 560 

LayerNorm: 2 - 21 [1, 1, 960] 1, 920 

Total Params: 8, 511, 152     
Trainable Params: 8, 511, 152   

Non - trainable Params: 0   

Total mult-adds (M): 215, 96     

Input size (MB): 0.60     

Forward/backward pass size (MB): 
70.47 

  

Params size (MB): 19.28   

Estimated Total Size (MB): 90.35     
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For classification, LightGBM was selected owing to its 

efficiency and robust performance in gradient-boosting 

scenarios. The LightGBM model was fine-tuned using 

GridSearchCV, optimizing key hyperparameters, such as a 

learning rate of 0.001, maximum tree depth of 7, and 

subsample ratio of 0.8 in 100 epochs. An early stopping 

criterion was applied after ten rounds of no improvement in 

the validation set to prevent overfitting. This configuration 

effectively integrates MobileNetV3’s feature extraction 

capabilities with MHSA and LightGBM’s classification 

functionality, culminating in a robust sign language 

recognition system. TABLE 3 summarizes the 

hyperparameters used in the proposed framework, including 

those of the MobileNetV3, MHSA, and LightGBM.  
 

TABLE 3 
Hyperparameters for MobileNetV3, MHSA, and LightGBM 

Components Hyperparameter Value 

MobileNetV3 

Input Resolution 224 x 224 pixels 

Learning Rate  0.001 

Batch Size 32 

Optimizer Adam 

MHSA 

Number of Attention 

Heads 
4 

Number of layers 8 

Dropout Rate 0.2 

LightGBM 

Learning Rate 0.001 

Maximum Depth 7 

Sabample Ratio 0.8 

Early Stopping Rounds 10 

Number of epochs 100 

C. EVALUATION METRICS 

We evaluated our model using the accuracy, precision, recall, 

and F1-score. Additionally, we computed 95% confidence 

intervals for each metric in five randomized trials (Eq. (13) to 

Eq. (16)).  

Accurcy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
        (13) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (14) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (15) 

F1 − score =
2⋅𝑇𝑃

2⋅𝑇𝑃+𝐹𝑃+𝐹𝑁
       (16) 

 

where TP represents true positives, TN stands for true 

negatives, FP indicates false positives, and FN indicates false 

negatives. 

IV. RESULTS 

The performance of the proposed hybrid sign language 

recognition model was evaluated using the ISL dataset.  First, 

we conducted experiments to identify the most suitable deep 

learning model for feature extraction within our sign language 

recognition system. The evaluated models included VGG16, 

VGG19, ResNet50, InceptionNet, EfficientNet-B0, and 

MobileNetV3, and the results are presented in TABLE 4. 

TABLE 4 compares the performance of various DL models 

for feature extraction on the ISL dataset. Among the tested 

models, MobileNetV3 exhibited the highest testing accuracy 

of 96.11%, with a training accuracy of 96.50%. This high 

accuracy, along with a precision of 96.00%, recall of 96.20%, 

and F1-score of 96.10%, suggests that MobileNetV3 

effectively captured relevant features with minimal 

overfitting. These metrics highlight MobileNetV3’s strength 

in extracting the discriminative features necessary for accurate 

sign language recognition. Its superior performance compared 

to other models, such as EfficientNet-B0 (95.56% testing 

accuracy) and ResNet50 (94.15% testing accuracy), validates 

its selection as the most suitable feature extractor for further 

experimentation. 

 
TABLE 4 

Performance of Various Deep Learning Models for Feature Extraction on 
the ISL Dataset 

Model 
Accuracy 

Precision Recall F1-score 
Train Test 

VGG16 
94.11 

±1.2 

93.23 

±1.1 
92.10 93.0 92.55 

VGG19 
94.45 
±1.3 

93.67 
±1.2 

93.20  93.50  93.35 

ResNet50 
95.22 

±1.0 

94.15 

±0.8 
94.10 94.30 94.20 

InceptionN

et 

95.10 

±1.1 

94.12 

±1.0 
93.84 94.01 93.92 

EfficientNe

t-B0 

96.11 

±0.9 

95.56 

±0.8 
95.53 95.71 95.61 

MobileNet

V3 

96.53 

±0.7 

96.11 

±0.6 
96.00 96.21 96.11 

 

After selecting MobileNetV3 as the optimal extractor, an 

experiment was conducted to determine the most effective 

machine learning classifier for sign language recognition 

using the extracted features. The classifiers tested included a 

Gradient Boosting Machine (GBM), XGBoost (XGB), 

LightGBM (LGBM), CatBoost (CAT), Support Vector 

Machine (SVM), and Random Forest (RF). The performance 

of each classifier was evaluated without parameter 

optimization to identify the classifier that maximized the 

recognition performance when paired with MobileNetV3.  

 
TABLE 5 

Performance of Various Classifiers on Features Extracted by 
MobileNetV3 

Model 
Accuracy 

Precision Recall F1-score 
Training Testing 

GBM 
97.21 

±0.7 

96.84 

±0.6 
96.51 96.74 96.62 

CAT 
97.54 

±0.6 

97.12 

±0.5 
97.00 97.13 97.06 

LGBM 
98.12 

±0.4 

97.81 

±0.4 
97.71 97.83 97.77 

XGB 
97.69 
±0.7 

97.45 
±0.5 

97.30 97.40 97.35 

RF 
96.95 

±0.6 

96.78 

±0.6 
96.66 96.84 96.75 

SVM 
96.79 
±0.7 

96.66 
±0.7 

96.44 96.58 96.51 

 

TABLE 5 presents the performance of various classifiers 

applied to the features extracted by MobileNetV3. LightGBM 

achieved the highest testing accuracy of 97.81% with a 
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training accuracy of 98.12%. Additionally, the LightGBM’s 

precision of 97.71%, recall of 97.83%, and F1-score of 

97.77% demonstrated its ability to provide a balanced and 

reliable classification. These results indicate that LightGBM is 

particularly effective in leveraging the features provided by 

MobileNetV3, surpassing other classifiers, such as XGBoost 

(97.45% testing accuracy) and CatBoost (97.12% testing 

accuracy). The balanced performance across all metrics, 

particularly the precision and recall values, confirms 

LightGBM’s capability to minimize both false positives and 

false negatives, making it the most effective classifier for SLR. 

Following the selection of MobileNetV3 as the feature 

extractor and LightGBM as the classifier, an additional 

experiment was conducted where Multi-head Self-Attention 

(MHSA) was integrated to enhance the extracted features. By 

incorporating MHSA, the model captured more complex 

dependencies within the data, thereby improving the overall 

performance when combined with the LightGBM. The results 

of the enhanced setup are listed in TABLE 6. 

 
TABLE 6 

Performance of MobileNetV3 + MHSA with LightGBM Classifier. 

Model 
Accuracy 

Precision Recall F1-score 
Training Testing 

Mobile

NetV3 
+ 

LGBM 

98.12 
±0.4 

97.81 
±0.4 

97.71 97.83 97.77 

Mobile

NetV3 

+ 

MHSA 

+ 

LGBM 

99.54 

±0.3 

98.42 

±0.4 
98.19 98.81 98.15 

V. DISCUSSION 

The classification reports of proposed model are presented in 

TABLE 7. Based on the classification report, the model 

performs exceptionally well in recognizing Indian Sign 

Language (ISL) gestures, achieving an overall macro-average 

precision, recall, and F1-score of 0.98. The high performance 

across all metrics suggests that the model is highly accurate, 

precise, and robust in classifying 35 sign language gestures. 

The precision and recall values remained consistently high 

across all classes, indicating that the model produced very few 

false positives and false negatives. Some classes, such as Class 

6 (0.94 precision, 0.92 recall, 0.93 F1-score) and Class 14 

(0.88 precision, 0.90 recall, 0.89 F1-score), showed relatively 

lower scores than others. This indicated a slightly higher 

misclassification rate for these classes. Several classes 

achieved 100% precision and recall, meaning that the model 

never misclassified them. TABLE 8 presents a confusion 

matrix for the proposed hybrid model. The majority of the 

classes exhibited strong diagonal dominance, but common 

errors arose in gestures with very similar hand configurations 

or under poor lighting conditions. The proposed sign language 

recognition framework, integrating MobileNetV3, MHSA, 

and LightGBM, demonstrated state-of-the-art performance 

compared to existing methods. As shown in TABLE 9, our 

proposed model achieved an impressive accuracy of 99.54 %, 

surpassing methods such as HOG + CABM-based CNN [26] 

with 99.22 %, and an Attention-based Hybrid CNN [27] with 

97.67 %. This high accuracy highlights the effectiveness of the 

model in minimizing the classification errors across diverse 

sign gestures. Additionally, the proposed method achieves a 

precision of 98.19 %, which is slightly lower than SE-

YOLOv5x [8] with 98.9 %, and maintains a strong balance 

between precision and recall, ensuring reliable classification. 

Notably, a recall of 98.81 % outperforms models such as SE-

YOLOv5x (96.5 %) and Hybrid CNN-LSTM [14] with 87.4 

%), indicating that the proposed method effectively reduces 

false negatives and accurately identifies relevant sign gestures. 

Furthermore, the F1-score of 98.15 % surpasses that of Hybrid 

CNN-LSTM by 84.4 % and is comparable to the Attention-

based Hybrid CNN by 97.42 %, demonstrating robustness in 

handling imbalanced datasets. 

 
TABLE 7 

Classification reports of proposed models 
class precision recall f1 support 

0 1.00 0.96 0.98 227 

1 0.98 1.00 0.99 244 
2 1.00 0.95 0.97 241 

3 0.97 0.98 0.97 239 

4 1.00 1.00 1.00 233 

5 1.00 1.00 1.00 230 

6 0.94 0.92 0.93 275 
7 0.92 0.96 0.94 237 

8 1.00 1.00 1.00 239 

9 1.00 1.00 1.00 236 

10 1.00 1.00 1.00 267 

11 0.99 0.97 0.98 252 
12 0.90 1.00 0.95 235 

13 1.00 1.00 1.00 240 

14 0.88 0.90 0.89 220 

15 1.00 1.00 1.00 265 

16 1.00 1.00 1.00 267 
17 0.99 1.00 0.99 221 

18 0.98 0.99 0.98 256 

19 1.00 1.00 1.00 233 

20 1.00 1.00 1.00 244 

21 1.00 1.00 1.00 238 
22 0.92 0.88 0.90 256 

23 1.00 1.00 1.00 222 

24 1.00 1.00 1.00 242 

25 1.00 1.00 1.00 256 

26 0.95 0.92 0.93 253 
27 1.00 1.00 1.00 229 

28 1.00 1.00 1.00 223 

29 1.00 1.00 1.00 229 

30 1.00 1.00 1.00 213 
31 0.99 0.99 0.99 227 

32 1.00 1.00 1.00 222 

33 1.00 1.00 1.00 254 

34 1.00 1.00 1.00 235 

    8400 
macro average 0.98 0.98 0.98  

weighted 

average 0.98 0.98 0.98  

 

Overall, the results confirm that the proposed 

MobileNetV3, Multi-Head Self-Attention, and LightGBM 

frameworks effectively capture both spatial and temporal 

dependencies in sign language recognition, leading to 

improved feature extraction and classification. While SE-

YOLOv5x achieves a slightly higher precision, the proposed 
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method offers a more balanced performance across all metrics, 

making it highly suitable for real-world applications where 

both precision and recall are crucial. 
 

TABLE 8 
Confusion matrix of proposed models 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

0 227 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 244 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

2 0 0 241 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

3 0 1 0 239 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 233 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 2 0 0 0 2 0 275 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

7 0 0 0 0 0 1 0 237 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 239 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 236 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 267 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 1 0 0 0 0 0 252 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 

12 0 0 0 0 0 0 0 0 1 0 0 0 235 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 1 0 0 0 2 0 0 0 0 0 0 0 1 220 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 265 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 267 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 221 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 256 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 233 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 244 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 238 0 0 0 0 0 0 0 0 0 0 0 0 0 

22 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 256 0 0 3 0 0 0 0 0 0 1 0 0 

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 222 0 0 0 0 0 0 0 0 0 0 0 

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 242 0 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 256 0 0 0 0 0 0 0 0 0 

26 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 253 0 0 0 0 0 0 0 0 

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 229 0 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 223 0 0 0 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 229 0 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 213 0 0 0 0 

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 227 0 1 0 

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 222 0 0 

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 254 0 

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 235 
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TABLE 9 

Performance of MobileNetV3 + MHSA with LightGBM Classifier. 

Model Accuracy Precision Recall F1-score 

SE-YOLOv5x [8] - 98.9 96.5 - 

Hybrid CNN-LSTM [14] 84.65 86.8 87.4 84.4 
HOG + CABM based 
CNN [26] 

99.22 - - - 

Attention based Hybrid 
CNN [27] 

97.67 97.47 97.35 97.42 

Proposed Method  99.54 98.19 98.81 98.15 

 

Our results imply that near-real-time performance is 

achievable on a consumer GPU, suggesting the potential for 

on-device deployment on mobile or embedded hardware. 

From the perspective of deaf communities, real-world 

usability depends on both accuracy and responsiveness. 

Achieving 98.42% accuracy with minimal latency is a 

promising step toward practical applications, such as live sign 

language translation in public services, educational settings, 

and healthcare interactions. 

Despite its overall strong performance, our dataset does not 

cover all regional ISL dialects or extensive demographic 

variations. Additionally, certain environmental conditions, 

extreme lighting changes, and cluttered backgrounds were 

underrepresented, which may account for some errors. A more 

diverse dataset could further bolster generalizability. 

Although we have shown strong accuracy, the exploration 

of 3D or temporal attention models can capture dynamic 

gestures more effectively. Cross-lingual adaptations are 

another natural extension, as deaf communities worldwide use 

distinct sign languages. Incorporating body posture or facial 

cues as well as real-world longitudinal testing would also 

provide deeper insights into the model’s stability and 

robustness over time. 

VI. CONCLUSION 

This paper presented a hybrid SLR framework integrating 

MobileNetV3, Multi-Head Self-Attention (MHSA), and 

LightGBM. Experimental evaluations on the ISL dataset 

confirmed MobileNetV3’s effectiveness as a feature extractor, 

achieving a testing accuracy of 96.11%. LightGBM emerged 

as the best classifier, achieving 97.81% accuracy when used 

directly on MobileNetV3 features. The incorporation of 

MHSA further improved the performance, reaching a testing 

accuracy of 98.42%. In addition to the performance metrics, 

we performed statistical significance tests and provided 

confidence intervals, confirming the reliability of our results. 

Regarding practical implications, the near real-time 

performance of our approach is suitable for on-device 

deployment, addressing real-world constraints often 

encountered by deaf communities.  Despite these 

advancements, these limitations persist. Our dataset, although 

sizable, does not cover all demographic or environmental 

variations. We also observed certain misclassifications under 

the extreme lighting conditions. Moreover, although our 

approach performed consistently over multiple runs, long-

term or longitudinal studies would further validate 

performance stability under varying conditions. Future work 

will explore transformer-based 3D CNNs for enhanced 

spatiotemporal modeling, extend recognition to multiple sign 

languages, and integrate facial expressions, body poses, and 

depth sensors to reduce gesture ambiguity. Additionally, 

longitudinal and on-device testing will assess the model 

stability across time, environments, and hardware platforms, 

ensuring real-world applicability. 

 

CONFLICTS OF INTEREST 

The authors and co-authors declare that they have no conflicts  

of interest. 

FUNDING INFORMATION 

This study received no funding for this research article. 

REFERENCES 
[1] M. Mahyoub, F. Natalia, S. Sudirman, and J. Mustafina, “Sign 

Language Recognition using Deep Learning,” 2021 14th 

International Conference on Developments in eSystems Engineering 

(DeSE), pp. 184–189, Jan. 2023, doi: 

10.1109/dese58274.2023.10100055. 

[2] Koller, O. (2020). Quantitative Survey of the State of the Art in Sign 

Language Recognition. arXiv (CornellUniversity). 

https://doi.org/10.48550/arxiv.2008.09918 

[3] Padden, C., & Humphries, T. (2009). Inside Deaf Culture. 

https://doi.org/10.2307/j.ctvjz83v3 

[4] Stokoe, W. C. (2004). Sign Language Structure: An Outline of the 

Visual Communication Systems of the American Deaf. The Journal 

of Deaf Studies and Deaf Education, 10(1), 3–37. 

https://doi.org/10.1093/deafed/eni001 

[5] Cooper, H., Holt, B., & Bowden, R. (2011). Sign Language 

Recognition. In Springer eBooks (pp. 539–562). 

https://doi.org/10.1007/978-0-85729-997-0_27  

[6] Cui, R., Liu, H., & Zhang, C. (2019). A Deep Neural Framework for 

Continuous Sign Language Recognition by Iterative Training. IEEE 

Transactions on Multimedia, 21(7), 1880–1891. 

https://doi.org/10.1109/tmm.2018.2889563 

[7] Bragg, D., Koller, O., Bellard, M., Berke, L., Boudreault, P., 

Braffort, A., Caselli, N., Huenerfauth, M., Kacorri, H., Verhoef, T., 

Vogler, C., & Morris, M. R. (2019). Sign Language Recognition, 

Generation, and Translation. In Proceedings of the 21st 

International ACM SIGACCESS Conference on Computers and 

Accessibility (pp. 16–31). https://doi.org/10.1145/3308561.3353774 

[8] Attia, N. F., Ahmed, M. T. F. S., & Alshewimy, M. A. (2023). 

Efficient deep learning models based on tension techniques for sign 

language recognition. Intelligent Systems With Applications, 20, 

200284. https://doi.org/10.1016/j.iswa.2023.200284 

[9] Kumar, C. M. N., Vanitha, A., Lavanya, N. Y., Lekhana, N. C., 

Tasmiya, R., & Nisarga, L. D. (2024). Deep learning-based 

recognition of sign language. Second International Conference on 

Data Science and Information System, 1–6. 

https://doi.org/10.1109/icdsis61070.2024.10594011 

[10] Kothadiya, D., Bhatt, C., Sapariya, K., Patel, K., Gil-González, A., 

& Corchado, J. M. (2022). Deepsign: Sign Language Detection and 

Recognition Using Deep Learning. Electronics, 11(11), 1780. 

https://doi.org/10.3390/electronics11111780 

[11] Ashrafi, A., Mokhnachev, V. S., & Harlamenkov, A. E. (2024). 

Improving Sign Language Recognition with Machine Learning and 

Artificial Intelligence. 2022 4th International Youth Conference on 

https://jeeemi.org/index.php/jeeemi/index
https://doi.org/10.48550/arxiv.2008.09918
https://doi.org/10.2307/j.ctvjz83v3
https://doi.org/10.1093/deafed/eni001
https://doi.org/10.1007/978-0-85729-997-0_27
https://doi.org/10.1109/tmm.2018.2889563
https://doi.org/10.1145/3308561.3353774
https://doi.org/10.1016/j.iswa.2023.200284
https://doi.org/10.1109/icdsis61070.2024.10594011
https://doi.org/10.3390/electronics11111780


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 7, No. 2, April 2025, pp: 318-329;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                              328               

Radio Electronics, Electrical and Power Engineering (REEPE), 1–

6. https://doi.org/10.1109/reepe60449.2024.10479844 

[12] Rajasekhar, N., Yadav, M. G., Vedantam, C., Pellakuru, K., & 

Navapete, C. (2023). Sign Language Recognition using Machine 

Learning Algorithm. In International Conference on Sustainable 

Computing and Smart Systems (ICSCSS) (Vol. 9, pp. 303–306). 

https://doi.org/10.1109/icscss57650.2023.10169820  

[13] Ranjbar, H., & Taheri, A. (2024). Continuous Sign Language 

Recognition Using Intra-inter Gloss Attention. arXiv (Cornell 

University). https://doi.org/10.48550/arxiv.2406.18333 

[14] Kumari, D., & Anand, R. S. (2024). Isolated Video-Based Sign 

Language Recognition Using a Hybrid CNN-LSTM Framework 

Based on Attention Mechanism. Electronics, 13(7), 1229. 

https://doi.org/10.3390/electronics13071229  

[15] Sarhan, N., Wilms, C., Closius, V., Brefeld, U., & Frintrop, S. 

(2023). Hands in Focus: Sign Language Recognition Via Top-Down 

Attention. 2022 IEEE International Conference on Image 

Processing (ICIP), 2555–2559. 

https://doi.org/10.1109/icip49359.2023.10222729  

[16] Ma, Y., Xu, T., & Kim, K. (2022). A Digital Sign Language 

Recognition based on a 3D-CNN System with an Attention 

Mechanism. 2022 IEEE International Conference on Consumer 

Electronics-Asia (ICCE-Asia), 1–4. https://doi.org/10.1109/icce-

asia57006.2022.9954810 

[17] Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L., Tan, M., 

Chu, G., Vasudevan, V., Zhu, Y., Pang, R., Adam, H., & Le, Q. 

(2019). Searching for MobileNetV3. 2021 IEEE/CVF International 

Conference on Computer Vision (ICCV), 1314–1324. 

https://doi.org/10.1109/iccv.2019.00140  

[18] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., 

Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is All 

you Need. arXiv (Cornell University), 30, 5998–6008. 

https://arxiv.org/pdf/1706.03762v5 

[19] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., 

& Liu, T. (2017). LightGBM: A Highly Efficient Gradient Boosting 

Decision Tree. In 31st International Conference on Neural 

Information Processing Systems. https://hal.science/hal-03953007  

[20] LeCun, Y. A., Bottou, L., Orr, G. B., & Müller, K. (2012). Efficient 

BackProp. In Lecture notes in computer science (pp. 9–48). 

https://doi.org/10.1007/978-3-642-35289-8_3  

[21] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet 

classification with deep convolutional neural networks. 

Communications of the ACM, 60(6), 84–90. 

https://doi.org/10.1145/3065386  

[22] Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree 

Boosting System. In Proceedings of the 22nd ACM SIGKDD 

International Conference on Knowledge Discovery and Data 

Mining (pp. 785–794). https://doi.org/10.1145/2939672.2939785  

[23] Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-Excitation 

Networks. In 2018 IEEE/CVF Conference on Computer Vision and 

Pattern Recognition. https://doi.org/10.1109/cvpr.2018.00745  

[24] Kumar, H., Dwivedi, A., Mishra, A. K., Shukla, A. K., Sharma, B. 

K., Agarwal, R., & Kumar, S. (2024). Transformer-based decoder 

of melanoma classification using hand-crafted texture feature fusion 

and Gray Wolf Optimization algorithm. MethodsX, 13, 102839. 

https://doi.org/10.1016/j.mex.2024.102839 

[25] Indian Sign Language (ISL). (2021, June 4). Kaggle. 

https://www.kaggle.com/datasets/prathumarikeri/indian-sign-

language-isl 

[26] D. Kumari and R. S. Anand, “Fusion of Attention-Based 

Convolution Neural Network and HOG features for static sign 

language recognition,” Applied Sciences, vol. 13, no. 21, p. 11993, 

Nov. 2023, doi: 10.3390/app132111993. 

[27] S. Biswas, R. Saw, A. Nandy, and A. K. Naskar, “Attention-enabled 

hybrid convolutional neural network for enhancing human–robot 

collaboration through hand gesture recognition,” Computers & 

Electrical Engineering, vol. 123, p. 110020, Dec. 2024, doi: 

10.1016/j.compeleceng.2024.110020. 

AUTHOR’S BIOGRAPHY 

 
Hemant Kumar is an Assistant Professor in 

the Department of Information Technology, 

School of Engineering and Technology 

(UIET), Chhatrapati Shahu Ji Maharaj 

University Kanpur, with over 10 years of 

academic and research experience. His 

research interests include Artificial 

Intelligence, Machine Learning, Image Processing, and Data 

Science. He has authored numerous research papers in 

reputed journals, international conferences, and book 

chapters. He holds an M.Tech. from Devi Ahilya 

Vishwavidyalaya and an MCA from Uttar Pradesh Technical 

University. He is currently pursuing his Ph.D. from the 

Harcourt Butler Technical University, Kanpur. Beyond his 

academic engagement, he is a lifetime member of the 

Association for Computing Machinery (ACM) and actively 

contributes to the research community as a reviewer for SCI-

indexed journals. His dedication to advancing knowledge in 
his field earned him recognition among peers and 

researchers. 

 

Rishabh Sachan is an accomplished 

professional in the fields of Artificial 

Intelligence and Data Science. He holds an 

M.Tech from the prestigious Indian Institute 

of Technology (IIT) Jodhpur, where he 

specialized in the Department of School of 

Artificial Intelligence with a focus on Data Science. With 

nearly four years of experience working in multinational 

corporations, Rishabh has collaborated with renowned 

organizations such as Cognizant, partnering with clients like 

TCS, Samsung Research, and the World Bank Group. His 

diverse professional background has endowed him with a 

robust skill set and a profound understanding of industry 

practices. Currently, Rishabh serves as an Assistant 

Professor at KIET, Ghaziabad, where he is dedicated to 

imparting his knowledge and expertise to the next generation 

of professionals in Artificial Intelligence and Data Science. 

Through his academic contributions, he continues to shape 

the future of these dynamic fields. 

 

Dr. Mamta Tiwari is an Assistant Professor 

at the School of Engineering and 

Technology, Chhatrapati Shahu Ji Maharaj 

University, Kanpur, with over 22 years of 

experience in teaching and research. She 

holds an MCA, M.Tech., and Ph.D., with 

expertise in programming languages such as C and Python, 

and core subjects including Operating Systems, Databases, 

Data Mining, and Data Science. She has published 10 

research papers in reputed international and national 

https://jeeemi.org/index.php/jeeemi/index
https://doi.org/10.1109/reepe60449.2024.10479844
https://doi.org/10.1109/icscss57650.2023.10169820
https://doi.org/10.48550/arxiv.2406.18333
https://doi.org/10.3390/electronics13071229
https://doi.org/10.1109/icip49359.2023.10222729
https://doi.org/10.1109/icce-asia57006.2022.9954810
https://doi.org/10.1109/icce-asia57006.2022.9954810
https://doi.org/10.1109/iccv.2019.00140
https://arxiv.org/pdf/1706.03762v5
https://hal.science/hal-03953007
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1145/3065386
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/cvpr.2018.00745
https://doi.org/10.1016/j.mex.2024.102839
https://www.kaggle.com/datasets/prathumarikeri/indian-sign-language-isl
https://www.kaggle.com/datasets/prathumarikeri/indian-sign-language-isl


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 7, No. 2, April 2025, pp: 318-329;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                              329               

journals, Scopus, and UGC Care-listed journals, along with 

a book chapter. Actively involved in academic and 

professional development, she has served as a member of 

organizing committees in international and national 

conferences, attended 21 FDPs and webinars, and has 

mentored over 250 BCA and MCA students' projects. Her 

commitment to research, technical education, and student 

mentorship makes her a distinguished academic in her field. 

 

Amit Kumar Katiyar is an Assistant 

Professor at the Department of Electronics 

and Communication Engineering, School of 

Engineering and Technology (UIET), 

Chhatrapati Shahu Ji Maharaj University 

Kanpur, with over 15 years of experience in 

academia and research. He is currently pursuing his Ph.D. in 

Electronics and Communication Engineering. He obtained 

his M.Tech. in Electronics and Communication Engineering 

in 2011 from Harcourt Butler Technical University (HBTI), 

Kanpur. His research interests include optical networks, 

digital filters, and communication systems. He holds seven 

patents in various areas of electronic and communication 

engineering, and has published numerous research papers in 

journals and conferences. His extensive experience and 

significant contributions to both research and teaching have 

established him as a prominent figure in his field. 

 

Namita Awasthi is an Assistant Professor in 

the Department of Computer Science and 

Engineering at Allenhouse Institute of 

Technology, Kanpur, with over eight years of 

academic and research experience. She has 

made significant contributions to Artificial 

Intelligence, Machine Learning, and Image Processing, 

authoring and co-authoring numerous research papers 

published in Scopus-indexed and international journals. She 

holds an M.Tech. from Kanpur Institute of Technology, 

affiliated with Dr. A.P.J. Abdul Kalam Technical University, 

and an MCA from Amity School of Computer Sciences, 

Noida, affiliated with Uttar Pradesh Technical University. 

Her research focuses on developing advanced computational 

techniques to enhance AI applications, bridging theoretical 

advancements with real-world solutions. Through her 

relentless efforts, she continues to inspire future 

technologists, foster innovation, and shape the evolution of 

AI-driven solutions in the field of computer science. 

 

Dr. Pushpa Mamoria has over 20 years of 

academic and administrative experience and 

is currently an Associate Professor in the 

Department of Computer Applications, 

School of Engineering and Technology, 

Chhatrapati Shahu Ji Maharaj University 

Kanpur. She was previously associated with IIIT Allahabad 

between 2005 and 2007. She has held various key roles, 

including Head of the Department, Proctorial Board 

Member, Convener of the Alumni Association, Hostel 

Warden, and Program Officer for NSS. Her research 

interests include Digital Image Processing, Artificial 

Intelligence (AI), Machine Learning (ML), Fuzzy Logic, 

Soft Computing, IoT, Big Data, Data Science, Indian 

Knowledge System, and Social Studies. She has published 

numerous research papers in renowned international and 

national journals, conferences, and symposia. Dr. Mamoria 

earned her Ph.D. in Computer Science from Babasaheb 

Bhimrao Ambedkar University, Lucknow (2018), an 

M.Tech. from Devi Ahilya Vishwavidyalaya, Indore, and a 

B.E. in Computer Science and Engineering from Shri G. S. 

Institute of Technology and Science, Indore (SGSITS). She 

supervised several M. Tech., MCA, and B. Tech. theses, and 

are currently guiding MCA, BCA, and Ph.D. students. 

 

Mr. Ramnayan Mishra is an Assistant 

Professor in the Department of Information 

Technology, School of Engineering and 

Technology (UIET), CSJM University, 

Kanpur, with over 10 years of academic and 

research experience. He is a dedicated 

academic and researcher in the field of Computer Science and 

Engineering with expertise in Blockchain, Machine Learning, 

and Image Processing. He holds an M.Tech. in Information 

Technology and B.Tech. in Computer Science and 

Engineering. He is currently pursuing his Ph.D. from the 

Chhatrapati Shahu Ji Maharaj University, Kanpur, where he 

also serves as a faculty member. He has authored several 

research papers in reputed international and national journals, 

and conferences. Active engagement in academic mentorship 

and research contributes to innovative developments in 

computing. His dedication to scholarly research, technical 

excellence, and student guidance made him a distinguished 

figure in his field. 

 

 

https://jeeemi.org/index.php/jeeemi/index

	I. INTRODUCTION
	II. MATERIAL AND METHODS
	A. PREPROCESSING
	B. MOBILENETV3 ARCHITECTURE
	1) INVERTED RESIDUAL BLOCKS
	2)  DEPTH-WISE SEPARABLE CONVOLUTIONS
	3)  SQUEEZE-AND-EXCITATION (se) BlOCKS

	C. MULTI-HEAD SELF ATTENTION (MHSA)
	D. LIGHTGBM

	FIGURE 1.  Hybrid Sign Language Recognition Model.
	III. EXPERIMENTAL SETUPS
	A. DATASETS
	B. IMPLEMENTATION DETAILS
	C. EVALUATION METRICS
	F1−score=,2⋅𝑇𝑃-2⋅𝑇𝑃+𝐹𝑃+𝐹𝑁.       (16)


	IV. RESULTS
	V. DISCUSSION
	VI. CONCLUSION
	CONFLICTS OF INTEREST
	FUNDING INFORMATION
	REFERENCES
	AUTHOR’S BIOGRAPHY

