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ABSTRACT Avocado is a fruit from Mexico and Central America that is widely distributed worldwide for production and 

consumption. In avocados, ripeness is crucial because it is the primary factor consumers consider, significantly influencing 

their purchasing decisions. The manual ripeness selection is inefficient and inconsistent, so the classification system is essential 

for determining ripeness due to its effectiveness and efficiency compared to manual selection. In this study, we aim to develop 

a model that can classify avocado ripeness using machine learning with optimization. The data consists of avocado images 

categorized into five ripeness stages: underripe, breaking, ripe (first stage), ripe (second stage), and overripe. We utilize a 

Support Vector Machine (SVM) for the classification. Instead of manually choosing the model’s hyperparameters, we use 

Moth Flame Optimization (MFO) to optimize the SVM hyperparameters. The MFO ensures that the proposed model has 

optimal performance. For the input of SVM, we extract the HSV, GLCM, and HOG and apply PCA to the data. In this study, 

we use three SVM kernels: RBF, polynomial, and sigmoid. The MFO finds the model’s hyperparameters based on kernel 

requirements, including C, gamma, degree, and coef0. The MFO-SVM obtains optimal performance with an accuracy of 

82.55%, 82.68%, and 81.23% for SVM kernel RBF, polynomial, and sigmoid, respectively. The results show that our proposed 

model demonstrates adequate performance in identifying the ripeness levels of avocados. The MFO increases model 

performance on all evaluation metrics compared to the baseline model and can be an excellent strategy to improve model 

performance. 

INDEX TERMS Avocado Ripeness, Classification, Moth Flame Optimization, Support Vector Machine

I. INTRODUCTION 

Avocado is a fruit from Mexico and Central America, with a 

wide distribution of production and consumption worldwide 

[1]. Good taste and a variety of serving styles have increased 

avocado consumption globally, making avocado one of the 

famous “superfoods” in the world [2], [3]. In avocados, quality 

is the main factor that influences consumer purchasing 

decisions. Fruit quality standards are crucial because they 

affect fruit sales and marketing [2], [4]. One of the fruit quality 

standards is ripeness. To meet the quality standards of the 

avocado, especially its ripeness, the sorting process of the 

avocado is essential. Sorting ripeness manually by humans is 

inefficient as it demands extensive time and effort, and the 

results are inconsistent [5]. Therefore, the avocado ripeness 

classification system is vital for achieving more effective and 

efficient performance than the manual ripeness selection. 

Many researchers have researched the classification of 

avocado ripeness. In [6], Xavier et al. classified avocado 

ripeness into five classes using AlexNet and ResNet-18. The 

model obtained an average accuracy of 76.9% for AlexNet and 

78.4% for ResNet-18. Cruz and Ramirez [7] classified 

avocados into five classes based on ripeness level and avocado 

size using LabView and CNN. The study obtained an accuracy 

of 60%. In another study, Acevedo et al. [8] classified avocado 

ripeness into three classes using ANN with RGB and contrast 

from GLCM feature extraction, obtaining an accuracy of 88%. 

Although many studies have been conducted, some research 

still has limitations, especially regarding the model’s 

performance. 
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Machine learning can be an effective method for 

classification. Support Vector Machine (SVM) is one of the 

machine learning algorithms that is robust and effective in 

making predictions based on data [9]. In [10], SVM was used 

to classify avocado ripeness based on electrical impedance 

spectroscopy, achieving 90% accuracy. Previous studies have 

also demonstrated the effectiveness of SVM in similar image 

classification problems. In [9], SVM obtained an accuracy of 

95.97% and outperformed ResNet-50 in apple fruit 

classification using a bag of visual words (BoVW) with SIFT, 

SURF, and K-means clustering. In [11], Rahman et al. used 

SVM to classify tomato leaf diseases with GLCM feature 

extraction and obtained an average accuracy of 92.5% across 

all classes. In another study [12], Pothen and Pai classified rice 

leaf diseases using SVM with LBP and HOG feature 

extraction. HOG-SVM obtained an accuracy of 94.6%, 

whereas LBP-SVM obtained an accuracy of 90.23%. 

According to previous research, SVM provides excellent 

performance, so we employed the method in this study. 

In machine learning for image classification, feature 

extraction is commonly used to capture patterns from the 

images. Features representing an image, such as shape, 

texture, and color, are often used to extract image 

characteristics [11-16]. Feature extraction techniques such as 

HSV, GLCM, and HOG have shown strong results in ripeness 

classification [13], [15], [16]. In [15], KNN with HSV 

effectively classifies the maturity of palm oil fruit with an 

average accuracy of 94,16%. In [16], HOG with KNN 

obtained 100% accuracy in classifying papaya ripeness. In 

[13], the combination of HSV and GLCM has excellent 

performance in classifying banana ripeness with 98,89% 

accuracy. These three methods have demonstrated effective 

performance in fruit ripeness classification. We adapted the 

methods for avocados as they have similar characteristics of 

changing color and texture with the ripeness phase. 

In addition to feature extraction, hyperparameters are 

critical aspects of the machine learning model that affect its 

performance. Manual tuning hyperparameters is ineffective 

and highly resource-intensive [17]. To address this, many 

researchers use optimization algorithms to find the model’s 

hyperparameters and to improve the overall model’s 

performance [14], [18]. One of the optimization algorithms 

that can be used in the hyperparameters tuning process is Moth 

Flame Optimization (MFO). MFO is an optimization method 

based on the behavior of moths towards light sources [19]. The 

classification of fruit ripeness using MFO-SVM has not been 

explored widely previously. However, research [20] in 

predicting the mortality of Tilapia fish has shown that MFO 

can improve SVM model performance through 

hyperparameter selection. MFO was used to optimize C and 

gamma parameters in SVM, and it obtained better 

performance than SVM models without optimization with an 

accuracy of 99,98%. The results also surpassed SVM with 

other optimization algorithms, such as GA and PSO. The 

study shows that MFO can improve model performance by 

finding the optimal hyperparameter. 

In this study, we aim to develop a model that can classify 

the ripeness of avocado fruit using the SVM method with 

MFO for optimization, which differentiates this study from the 

previous research. The MFO ensures that the proposed model 

demonstrates better results than the baseline model. The 

contributions of this study include the following: 

a. Build the MFO-SVM model that can classify 

avocado ripeness 

b. Provide knowledge about the performance 

comparison of the MFO-SVM and baseline SVM in 

various kernels 

c. Provide knowledge on the effectiveness of MFO in 

enhancing the accuracy of the baseline model 

 
II. MATERIALS AND METHODS 

The MFO-SVM classification system was developed 

through several phases. These phases include preprocessing, 

data splitting, data augmentation, feature extraction, 

dimensionality reduction, model training with 

hyperparameter optimization, and evaluating the proposed 

model’s performance. FIGURE 1 illustrates the development 

stages of the MFO-SVM classification system. 

 

FIGURE 1.  Methodology flowchart of our proposed model 

A. DATASET 
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This study used the Hass Avocado Ripening Photographic 

data [21] (https://data.mendeley.com/datasets/3xd9n945v8/1), 

comprising 14,710 images. The dataset comprises images with 

sizes of 800x800 pixels. The dataset consists of five classes: 

the underripe class, which includes avocados with a firm 

texture and yellowish-green color; the breaking class, 

consisting of avocados with a hard texture, starting to darken; 

the ripe (first stage) class, which is avocado with purple spots 

and a softened texture; the ripe class (second stage), avocados 

with uniform purple color without damage (peak shelf life); 

and the overripe class, that is avocados that have passed the 

peak shelf life characterized by spots on the skin and stalk. The 

data distribution for each ripeness category is shown in 

TABLE I, while FIGURE 2 shows sample images for each 

class in the dataset.  
TABLE I 

Distribution of Dataset 

Class Number of Instances 

Underripe 3568 

Breaking 2228 

Ripe (first stage) 2756 

Ripe (second stage) 3294 

Overripe 2864 
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FIGURE 2.  (a) Underripe (b) Breaking (c) Ripe (first stage) (d) Ripe 
(second stage) (e) Overripe 

B. PREPROCESSING 

High-resolution images such as 800x800 pixels enhance 

visual details but are resource-intensive. Resizing image 

dimensions is a common technique to improve computational 

efficiency. Image resizing in preprocessing is an important 

stage to reduce computational complexity, standardize image 

dimensions, and retain essential spatial characteristics [22]. 

While smaller image sizes increase computational efficiency, 

they may also result in the loss of visual details. Therefore, it 

is important to achieve a balance between computational 

efficiency and retained information. In this study, we resized 

the images from 800x800 to 128x128 pixels, a size that 

improves computational efficiency while preserving most of 

the features in the image. 

C. DATA AUGMENTATION 

Data augmentation is a method that can enhance model 

performance by increasing the number of training data [23]. It 

can also be used to solve the class imbalance problem by 

increasing the amount of minority classes [24]. Data 

augmentation can be performed through two methods: 

geometric transformation (classic transformation) and 

techniques to generate new data using generative models 

(synthetic augmentation) [23]. In this study, we applied 

geometric transformations to augment the training data, 

especially for classes with a minority number. The 

transformations from image I to the transformed image T can 

be represented as 𝑇(𝑢, 𝑣) = 𝐼(𝑡(𝑢, 𝑣)), where 𝑡(𝑢, 𝑣) defines 

the mapping of the pixel coordinate in the original image I to 

the new coordinates in the transformed image T [25]. The 

transformations can improve the model’s performance by 

adding more variations to the data, helping the model 

recognize new patterns without collecting additional data. In 

this study, the images were rotated, shifted, and flipped until 

each class in the training data had a total of 2500 images. 

TABLE 2 compares the number of training data before and 

after augmentation for each class. 

 
TABLE 2 

Comparison of the Number of Training Data Before and After 
Augmentation 

Ripeness Classes Original Data Augmented Data 

Underripe 2497 2500 

Breaking 1560 2500 

Ripe (first stage) 1929 2500 

Ripe (second stage) 2306 2500 

Overripe 2005 2500 

  

D. FEATURE EXTRACTION 

Feature extraction is needed to produce data features that 

describe the pattern or characteristics of the image. We use the 

avocado fruit’s color, texture, and shape features through 

HSV, GLCM, and HOG feature extraction. 

1) HSV 

HSV feature extraction can capture the color changes in each 

phase of avocado ripeness. HSV is a color space consisting of 
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hue, saturation, and value. Hue is a feature that describes the 

chromatic properties of a color related to the dominant 

wavelength of the color [26]. Saturation measures the purity 

of color, with lower saturation indicating that the color 

contains grayer [26]. Value is the brightness or the intensity of 

the color [26]. HSV is good at handling images with different 

lighting conditions using color, chroma, and values [27].  

This study used the histogram and color moments for each 

channel. Color histogram distributes the color into several 

ranges of values (bins), whereas color moments are a measure 

that can differentiate images based on their color 

characteristics [28]. The histogram of an image is denoted as 

𝐻 = [ℎ1 ,  ℎ2,   ..., ℎ𝑛], where n denotes the number of  bins, 

ℎ𝑖 =  𝑁𝑖/𝑁 represents the probability of a pixel in the image 

falling within the i-th bin, 𝑁𝑖 refers to the total pixel count in 

the i-th bin, and N represents the total pixel count in the 

image [29]. We extracted the histogram channel H for 180 

bins, whereas channels S and V are 256 bins. Additionally, the 

color moments were computed for each channel. The mean, 

standard deviation, and skewness are calculated from the 

images using Eq. (1), Eq. (2), and Eq. (3), respectively [28]. A 

total of 701 data features were obtained from HSV feature 

extraction.  

 

𝑀𝑗 = ∑
1

𝑁

𝑁
𝑖=1 𝑃𝑗,𝑖 (1) 

 

𝜎𝑗 = √
1

𝑁
∑ (𝑃𝑗,𝑖 − 𝑀𝑗)2𝑁

𝑖=1   (2) 

 

𝑆𝑗 = √
1

𝑁
 ∑ (𝑃𝑗,𝑖 − 𝑀𝑗)3𝑁

𝑖=1

3
 (3) 

 

𝑀𝑗, 𝜎𝑗, and 𝑆𝑗 represent the mean, standard deviation, and 

skewness of the j-th color channel, respectively. 𝑃𝑗,𝑖 represents 

the value of the i-th pixel in the j-th color channel, and N 

denotes the total number of pixels in the image. 

  

2) GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM) 

GLCM captures image texture changes and patterns using 

second-order statistics [30]. In GLCM, the image is mapped 

into a table representing the frequency of occurrence of pixel 

value pairs at a specified distance and angle [31]. The second-

order statistics used in this study include ASM, energy, 

dissimilarity, contrast, correlation, and homogeneity. ASM 

and energy represent the uniformity of the image represented 

by Eq. (4) [30] and Eq. (5) [31]. Dissimilarity represents the 

diversity of textures in the image, represented by Eq. (6) [31]. 

Contrast measures the difference between the highest and the 

lowest pixel values in a group of pixels in the image, 

represented by Eq. (7) [31]. Correlation represents the 

consistency of image textures, represented by Eq. (8) [30]. 

Homogeneity measures the similarity of pixel pairs in the 

image, represented by Eq. (9) [31]. Before performing GLCM 

feature extraction, the image is converted into grayscale. In 

this study, we used four angles consisting of [0°. 45°, 90°, 

135°] with a distance of [1, 2, 3, 4]. The GLCM feature 

extraction resulted in 6x4x4=96 data features for each image. 

 

𝐴𝑆𝑀 =  ∑ 𝑃2(𝑖, 𝑗)𝐿−1
𝑖,𝑗=0  (4) 

 

𝐸𝑛𝑒𝑟𝑔𝑦 =  √𝐴𝑆𝑀 (5) 

 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  ∑ |𝑖 − 𝑗|𝑃(𝑖, 𝑗)𝐿−1
𝑖,𝑗=0  (6) 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ 𝑃(𝑖, 𝑗)(𝑖 − 𝑗)2𝐿−1
𝑖,𝑗=0  (7) 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑ 𝑃(𝑖, 𝑗) [
(𝑖− 𝜇𝑖)((𝑗− 𝜇𝑗)

√(𝜎𝑖
2)(𝜎𝑗

2)
]𝐿−1

𝑖,𝑗=0  (8) 

 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑖𝑡𝑦 =  ∑
𝑃(𝑖,𝑗)

1+ (𝑖−𝑗)2
𝐿−1
𝑖,𝑗=0  (9) 

 

In Eq. (4) to Eq. (9), i and j represent the row and column 

indices in the GLCM, and L represents the number of gray 

levels in the image. 𝑃(𝑖, 𝑗) represents the elements of the 

GLCM at the (𝑖, 𝑗)  position. Additionally, 𝜇𝑖 and 𝜇𝑗 represent 

the mean values of the i and j, respectively, while 𝜎𝑖  and 𝜎𝑗 

represent the standard deviation of the values i and j in the 

GLCM [32].  

  

3) HISTOGRAM OF ORIENTED GRADIENTS (HOG) 

HOG is a method that can capture an image’s shape and 

appearance (texture, pattern) through simple computation, 

making it faster and more efficient than other feature 

descriptors such as SIFT and LBP [33]. In HOG, histograms 

are used to represent the features that capture the directional 

change information of the edge [34]. HOG works by dividing 

the image into small cells and organizing these cells into 

blocks [35]. The magnitude and orientation of the gradient 

values are calculated, and the orientation values are stored as 

a histogram for each block [35]. The magnitude 𝑀(𝑥, 𝑦) and 

orientation (𝑥, 𝑦) of gradients are calculated using Eq. (10) 

and Eq. (11), respectively [35]. The resulting histograms are 

put together to produce a data feature vector [35]. This study 

calculated HOG with a cell size of 8x8 pixels and a block size 

of 2x2 cells, using nine orientations, resulting in 8100 data 

features. Before performing HOG, we convert the image’s 

color space from RGB into grayscale. The visualization of the 

HOG feature extraction is shown in FIGURE 3.  

 

𝑀(𝑥, 𝑦) = √|𝐺𝑥
2| + |𝐺𝑦

2| (10) 

 

(𝑥, 𝑦) = tan−1(
𝐺𝑥

𝐺𝑦
) (11) 

 

𝐺𝑥 and 𝐺𝑦 denote the gradient along the x and y directions, 

respectively. 
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FIGURE 3.  (a) Input Image (b) Visualization of HOG Feature Extraction 

E. DIMENSIONALITY REDUCTION 

In this study, the feature extraction process resulted in 8,897 

features. Training and optimization on data with 8,897 

features will require many resources. Therefore, we applied 

principal component analysis (PCA) to transform data into a 

lower dimension. PCA is a method for reducing high, 

correlated data features into fewer features, referred to as 

principal components [36]. PCA works by averaging the data, 

calculating the covariance matrix to evaluate the dependencies 

and correlations between data features, and decomposing the 

matrix using eigenvalues. The eigenvalues are sorted in 

descending order to determine the n principal components 

[36]. In this study, PCA reduced the data dimension from 

8,897 features to 150 principal components, making training 

and optimization more efficient while preserving essential 

features from the data. 

F. SUPPORT VECTOR MACHINE (SVM) 

SVM is an efficient and effective method for solving 

classification problems [9]. Using kernel functions, SVM can 

efficiently solve classification problems in high-dimensional 

data spaces [9]. SVM can classify data with linear 

characteristics and non-linear characteristics [37]. In linear 

SVM, SVM tries to find the largest hyperplane that separates 

different data features, as in FIGURE 4. For data that cannot 

be linearly separated, SVM will calculate data in low-

dimensional space and then map it to high-dimensional space 

using a kernel function so that the optimal hyperplane can still 

be constructed in high-dimensional space [38]. The kernel 

function will determine how the likeness between the data 

points is measured [39]. In this study, we used RBF, 

polynomial, and sigmoid kernels, calculated using Eq. (12), 

Eq. (13), and Eq.  (14), respectively [39], [40]. The variables 

i
v  and 

j
v  are data points,   represents the gamma 

parameter, d denotes the degree of the polynomial, and r 

denotes the coef0 in the scikit-learn library. 

 

 
FIGURE 4. Illustration of the SVM Hyperplane 

 

𝑅𝐵𝐹 = exp (−𝛾‖𝑣𝑖 − 𝑣𝑗‖
2

) (12) 

 

𝑃𝑜𝑙𝑦 = (𝛾𝑣𝑖
𝑇𝑣𝑗 + 𝑟)𝑑 (13) 

 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 = tanh(𝛾𝑣𝑖
𝑇𝑣𝑗 + 𝑟) (14) 

G. MOTH FLAME OPTIMIZATION 

This study used MFO (Moth Flame Optimization) for the 

hyperparameter optimization of the SVM. The MFO 

algorithm is inspired by moths’ behavior toward light sources 

[19]. Within the search space, moths serve as potential optimal 

hyperparameters and update their positions based on a 

reference point represented by the best moths, the flames [19]. 

This updated position is determined using the logarithmic 

spiral represented by Eq. (15) [19]. 

 

𝑆(𝑀𝑖,𝐹𝑗) = 𝐷𝑖 . 𝑒𝑏𝑡 . cos(2𝜋𝑡) + 𝐹𝑗 (15) 

 

Where 𝐷𝑖 represents the closeness of the i-th moth to the j-

th flame, b represents a fixed number that determines the shape 

of the logarithmic spiral, and t is a random number in [-1, 1]. 

The t value determines how close the next position is to the 

flame. 𝐷𝑖 is calculated using Eq. (16), where 𝑀𝑖  indicates the 

i-th moth, and 𝐹𝑗  indicates the j-th flame [19].  

 

𝐷𝑖 = |𝐹𝑗 − 𝑀𝑖| (16) 

 

The value of t affects the exploration and exploitation 

process. Exploration is performed when the next moth’s 

position is not between the moth and the flame. In contrast, 

exploitation occurs when the next moth’s position is between 

the moth and the flame [19], as shown in FIGURE 5. Moths 

update their position based on n different positions in search 

space, which can degrade the exploitation of the best potential 

solution [19]. As the iteration progresses, the number of 

flames can be reduced using Eq. (17) [19]. 

 

𝑓𝑙𝑎𝑚𝑒 𝑛𝑜 = 𝑟𝑜𝑢𝑛𝑑 (𝑁 − 𝑙.
𝑁−1

𝑇
) (17) 
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Where 𝑙 denotes the current iteration, 𝑁 denotes the 

maximum number of flames of the current iteration, and T 

denotes the maximum iteration. 

In this study, moths will represent the set of possible 

optimal hyperparameters for the SVM. We used accuracy 

against the validation data as the fitness value. In each 

iteration, the moth will be evaluated through classification 

against the validation data, and then the flames are updated 

based on the best moth. The moth position is updated using the 

spiral movement function to reach a better solution marked by 

the flames. This process continues until the maximum iteration 

is reached. The moth that gives the best accuracy on the 

validation data during iteration will be the most optimal 

hyperparameter set for MFO-SVM. The process of optimizing 

the SVM hyperparameter by MFO is shown in FIGURE 6. 

 

FIGURE 5.  Illustration of the Exploration and Exploitation Process in 
MFO 

 

FIGURE 6.  MFO Algorithm for SVM Hyperparameter Optimization 

H. PERFORMANCE EVALUATION 

We computed four main evaluation metrics in classification to 

evaluate the model. Accuracy measures how well the model 

predicts all data by calculating the ratio between correct 

predictions in all ripeness categories and total instances tested, 

calculated using Eq. (18) [41]. Precision evaluates the ratio 

between the accurate predictions for a specific ripeness 

category and the total predictions for that category, calculated 

using Eq. (19) [41]. Recall evaluates the ratio between the 

accurate predictions for a specific ripeness category and the 

total data in that category, calculated using Eq. (20) [41]. F1-

score provides information about the balance between 

precision and recall in one metric, calculated using Eq. (21) 

[41]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (18) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (19) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (20) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (21) 

 

In the equations, TP denotes true positive, TN denotes true 

negative, FP denotes false positive, and FN denotes false 

negative. 

III. RESULT 

This study classified avocado ripeness into five stages. The 

data were split with a proportion of 70:15:15 for training, 

validation, and testing. The split process resulted in 10,297 

training images, 2,207 validation images, and 2,206 test 

images. We resized the images into 128x128 pixels and 

applied data augmentation to training data. After that, we 

extracted HSV, GLCM, and HOG feature extraction and 

obtained 8,897 features. We reduced the features to 150 using 

PCA to improve the model training efficiency. The SVM 

performs classification with hyperparameters selected using 

the MFO algorithm.  

We evaluated the baseline SVM model (SVM with default 

hyperparameters) to compare its result with the optimized 

model. In the baseline model, the RBF kernel is superior to 

polynomial and sigmoid kernels. The RBF and sigmoid 

baseline model obtained performance above 80% for each 

evaluation metric with an accuracy of 81.60% for the RBF 

kernel and 80.92% for the sigmoid kernel. In contrast, the 

polynomial kernel obtained an accuracy of 67.54%, with 

accuracy, recall, and F1-score below 70%. This result 

indicates that the baseline SVM with a polynomial kernel has 

not yet performed well in identifying avocado ripeness. The 

MFO optimization process will improve the polynomial SVM 

performance. TABLE 3 presents the evaluation results of the 

baseline SVM model. 
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TABLE 3 
Performance of Baseline SVM Model 

Kernel Accuracy Precision Recall F1-Score 

RBF 81.60% 81.83% 81.60% 81.54% 

Polynomial 67.54% 75.13% 67.54% 67.34% 

Sigmoid 80.92% 81.05% 80.92% 80.86% 

 

This study also evaluated the effect of HSV, GLCM, and 

HOG feature extraction on the baseline model performance. 

Extracting HSV, GLCM, or HOG features individually results 

in HOG and HSV demonstrating a more significant influence 

with an accuracy of 76.79% for HOG and 75.88% for HSV 

using the RBF kernel. In comparison, GLCM obtained an 

accuracy of 65.23%. Using two of three considered feature 

extractions gives better results than a single feature extraction 

technique. Combining two of three features demonstrates that 

HSV+HOG significantly influences the model’s performance 

with an accuracy of 81.60%, followed by GLCM+HOG with 

an accuracy of 78.56% and HSV+GLCM with an accuracy of 

76.93% using the RBF kernel. HSV+HOG performs similarly 

to the HSV+GLCM+HOG in the RBF kernel, but the 

HSV+GLCM+HOG obtained better accuracy for polynomial 

and sigmoid kernels. TABLE 4 compares the performance of 

individual feature extraction and combined feature extraction 

methods. 

 
TABLE 4 

Performance of Baseline SVM Model Across Different Feature 
Extraction Techniques 

Feature 

Extraction 

SVM 

Kernel 

Baseline Model Performance 

Accuracy Precision Recall 
F1-

Score 

HSV 

RBF 75.88% 75.93% 75.88% 75.81% 

Polynomial 73.16% 73.95% 73.16% 73.24% 

Sigmoid 60.06% 60.47% 60.06% 59.79% 

GLCM 

RBF 65.23% 64.50% 65.23% 64.13% 

Polynomial 55.12% 60.41% 55.12% 55.83% 

Sigmoid 34.13% 38.85% 34.13% 33.47% 

HOG 

RBF 76.79% 76.65% 76.79% 76.34% 

Polynomial 52.13% 64.77% 52.13% 47.57% 

Sigmoid 73.48% 73.11% 73.48% 73.09% 

HSV+ 

GLCM 

RBF 76.93% 77.08% 76.93% 76.90% 

Polynomial 74.71% 75.72% 74.71% 74.77% 

Sigmoid 58.66% 59.12% 58.66% 58.42% 

HSV 

+HOG 

RBF 81.60% 81.79% 81.60% 81.53% 

Polynomial 66.73% 74.47% 66.73% 66.40% 

Sigmoid 80.64% 80.77% 80.64% 80.58% 

GLCM+ 

HOG 

RBF 78.56% 78.67% 78.56% 78.33% 

Polynomial 53.67% 66.29% 53.67% 49.56% 

Sigmoid 76.20% 76.25% 76.20% 75.97% 

HSV+ 

GLCM+ 

HOG 

RBF 81.60% 81.83% 81.60% 81.54% 

Polynomial 67.54% 75.13% 67.54% 67.34% 

Sigmoid 80.92% 81.05% 80.92% 80.86% 

 

In this study, MFO optimizes SVM’s hyperparameters. It 

explores the C parameter within the range of [0.0001, 10000], 

gamma within the range of [0.0001, 10], degree within the 

range of [2, 6], and coef0 within the range of [-1, 1]. The 

number of moths used in this study was 50, with 15 iterations 

to search the optimal hyperparameter. A total of 750 possible 

hyperparameters will be evaluated over 15 iterations, with 

each moth updating its position in search of the optimal 

hyperparameters. The moth will represent the set of 

hyperparameters to be evaluated against the validation data. In 

each iteration, the hyperparameters will be updated based on 

flames (the best hyperparameters), which provides the best 

accuracy against the validation data. Moth will attempt to 

maximize the model’s accuracy, and at the end of the process, 

the best hyperparameter will be returned to be used by the 

SVM model. TABLE 5 shows the optimization results 

generated by MFO for each kernel. 

 
TABLE 5 

Results of MFO Optimization for SVM Model 

Kernel C Gamma Degree Coef0 

RBF 8.07887 0.0001 - - 

Polynomial 0.54199 0.00021 4 0.87164 

Sigmoid 12.53155 0.0001 - -0.8974 

 

In the RBF kernel, PCA+SVM obtained an accuracy of 

81.64%, whereas PCA+MFO-SVM obtained an accuracy of 

82.55%. The PCA+MFO-SVM achieved 0.95% higher than 

the baseline SVM model and 0.91% higher than the 

PCA+SVM model. TABLE 6 shows the results of MFO-SVM 

with the RBF kernel. 

 
TABLE 6 

Performance of MFO-SVM with RBF Kernel 

Methods 
Model Performance 

Accuracy Precision Recall F1-Score 

PCA+SVM 81.64% 81.94% 81.64% 81.54% 

PCA+MFO-SVM 82.55% 82.71% 82.55% 82.50% 

 

In the polynomial kernel, PCA improves the accuracy of the 

baseline model by 10.88% to 78.42%. SVM with MFO 

achieved an accuracy of 82.68%, an increase of 4.26% 

compared to the PCA+SVM model. TABLE 7 shows the 

results of MFO-SVM with the polynomial kernel. 

 
TABLE 7 

Performance of MFO-SVM with Polynomial Kernel 

Methods 
Model Performance 

Accuracy Precision Recall F1-Score 

PCA+SVM 78.42% 79.49% 78.42% 78.33% 

PCA+MFO-SVM 82.68% 82.82% 82.68% 82.61% 

 

In the sigmoid kernel, PCA+SVM obtained an accuracy of 

68.36%, whereas PCA+MFO-SVM achieved an accuracy of 

81.23%, 12.87% higher than the PCA+SVM model and 0.31% 

than the baseline model. Although the MFO-SVM model on 

the sigmoid kernel has almost a similar performance as the 

baseline model, MFO-SVM uses a much smaller number of 

features, making it more efficient. TABLE 8 presents the 

results of the sigmoid MFO-SVM model. 
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The MFO-SVM with a polynomial kernel achieved the best 

result compared to other kernels. The polynomial MFO-SVM 

can accurately predict 506 out of 535 underripe classes, 241 

out of 334 breaking classes, 353 out of 414 ripe (first stage) 

classes, 367 out of 494 ripe (second stage) classes, and 357 out 

of 429 overripe avocados. Overall, the model can correctly 

predict 1,824 out of 2,206 data. FIGURE 7 shows the 

confusion matrix for polynomial MFO-SVM. 

 
TABLE 8 

Performance of MFO-SVM with Sigmoid Kernel 

Methods 
Model Performance 

Accuracy Precision Recall F1-Score 

PCA+SVM 68.36% 69.04% 68.36% 68.56% 

PCA+MFO-SVM 81.23% 81.44% 81.23% 81.21% 

 

 

FIGURE 7.  The Confusion Matrix of MFO-SVM with Polynomial Kernel 

IV. DISCUSSION 

This study observed five stages of avocado ripeness. We 

employed manual feature extraction and machine learning 

techniques to identify the avocado ripeness. We used HSV, 

GLCM, and HOG to extract patterns from the images. Based 

on TABLE 4, selecting feature extraction techniques is crucial 

because it affects the classification performance. Using a 

single feature from the image, such as color or texture, is 

insufficient to capture the characteristics of avocado ripeness. 

Extracting the color and texture features in combination 

provides better performance than a single feature extraction. 

Extracting HSV, GLCM, and HOG in combination obtained 

the best result that provides characteristics of the avocado’s 

color, texture, and shape that can better identify its ripeness. 

This combination more effectively identifies the avocado 

ripeness patterns than extracting each feature individually. 

The feature extraction process resulted in 8,897 features, 

which will require many resources for training and 

optimization. In this study, PCA was applied before the 

optimization process with MFO. Although the features were 

significantly reduced to 150, the optimized model’s accuracy 

is better than the baseline model using all data. This result 

shows that PCA simplifies model complexity by reducing 

feature dimensions and improving classification performance 

through the properly tuned model. PCA reduces the 

computational load and improves the efficiency of the model. 

The hyperparameters significantly influence the model’s 

effectiveness. Hyperparameter values such as C and gamma 

that are too large or too small can cause the model to be 

overfitting or underfitting, so the model’s performance is not 

optimal [42]. In the PCA+SVM model on the sigmoid kernel, 

the default hyperparameters are unsuitable for the data used, 

so the model tends to be underfitting. MFO can solve this 

problem by finding the hyperparameter combination that gives 

the best performance to the model. In this study, the MFO-

SVM model can increase the PCA+SVM model’s accuracy by 

0.91%, 4.26%, and 12.87% in RBF, polynomial, and sigmoid 

kernel, respectively, and increase the baseline SVM model’s 

accuracy by 0.95%, 15.14%, and 0.31% in RBF, polynomial 

and sigmoid kernels, respectively. In the sigmoid kernel, 

MFO-SVM performs similarly to the baseline model 

performance. However, MFO-SVM is still better because it is 

more efficient by using a much smaller number feature. The 

optimized model outperforms the baseline model for each 

kernel. MFO consistently improves model performance by 

more systematically selecting optimal hyperparameters for the 

model than using manual search. 

The proposed model has performed well in solving the 

avocado ripeness problem. The MFO-SVM with a polynomial 

kernel has the highest accuracy compared to other kernels. 

Based on FIGURE 7, our proposed model better identifies the 

underripe ripeness stage of avocado fruit. The underripe 

avocados are easier to identify due to their consistent green 

color and contrast compared to other ripeness classes. 

However, due to the minimal visual difference, our proposed 

model still needs to work on distinguishing other ripeness 

classes. In this study, the dataset consisted of images of 

avocados observed daily to capture changes in ripeness, so the 

differences between the classes were subtle and more difficult 

to distinguish visually. As a result, most prediction errors 

occurred because the model predicted one level higher or 

lower than the actual ripeness stage. This study still needs to 

improve classification accuracy, especially in ripeness classes 

with minimal visual differences between classes. 

Since the classification of avocado fruit ripeness has been 

discussed, we compared our study with several previous 

studies, as shown in TABLE 9. This study has surpassed the 

results of [6] using AlexNet and ResNet-18, which were 

evaluated with a similar dataset. The study also split the data 

with a ratio of 75:15:15 for training, validation, and testing. 

ResNet-18 provided the best result, with an average accuracy 

of 78.4%. Our proposed method obtained 4% higher accuracy 

than that study. The improved accuracy in a similar dataset 

shows that our approach through machine learning and feature 

extraction techniques is more effective in classifying avocado 

ripeness. The performance of our proposed model also 

surpasses that of [7], where in that study, researchers classified 

avocados based on their ripeness level using LabView and 
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CNN with an accuracy of 60%. In addition to classifying 

ripeness, that research also classifies avocados based on their 

size, which needs to be discussed in this study. This study also 

had better results compared to [43], which classified avocado 

maturity into three classes using KNN with L*a*b* and 

texture features, which obtained 81.9% accuracy.  

Nevertheless, this study cannot outperform the research [8] 

and [44]. In [8], the researchers classified avocados into three 

ripeness classes using RGB and the contrast feature from 

GLCM with ANN and obtained 88% accuracy. Although the 

study obtained higher accuracy than our model, it classified 

ripeness into fewer classes. Similarly, our study did not 

surpass [44], which classified avocado ripeness into five 

classes using a Multi-Channel Hybrid Deep Neural Network 

(MCHDNN) combining VGG-16 and EfficientNetB0. The 

study obtained an accuracy of 90.18%. However, our model 

was able to outperform the single-channel models of both 

VGG-16 and EfficientNetB0 in [44], where the single-channel 

models obtained an accuracy of 82.62% for VGG-16 and 

82.47% for EfficientNetB0. 

Our proposed MFO-SVM model with HSV, GLCM, and 

HOG feature extraction has demonstrated effective results in 

classifying avocado ripeness. Compared to previous studies, 

our proposed model obtained competitive performance. 

Although our result did not outperform the performance in 

some studies, our research provides new insights into the 

effectiveness of the MFO-SVM for avocado ripeness 

classification. 

IV. CONCLUSION 

The MFO-SVM model was developed to classify avocados’ 

ripeness into five stages. This study finds that the MFO-SVM 

model performs well in classifying avocado ripeness. MFO-

SVM with the polynomial kernel using PCA obtained the best 

performance with an accuracy of 82.68%, followed by the 

RBF kernel with an accuracy of 82.55%, and the sigmoid 

kernel obtained an accuracy of 81.23%. This study finds that 

the combination of HSV, GLCM, and HOG feature extraction 

performs better than the individual feature extractions. In 

addition, we also find that the PCA simplifies the model by 

reducing the features to fewer numbers, making training more 

efficient with better performance than using all features 

through optimization. This study also finds that MFO 

consistently found optimal hyperparameters, thus improving 

performance for each SVM kernel. Hyperparameters search 

using MFO is proven to be one of the promising strategies for 

improving overall model performance. Although our model 

obtained good results, it still has limitations in predicting the 

ripeness stage if the visual variations between the ripeness 

stages are minimal. In the future, we will explore different 

feature extraction and optimization techniques and consider 

using deep learning to improve the model’s accuracy. 

 
TABLE 9 

Evaluation Comparison of the MFO-SVM Model with Existing Research 

Authors Method Result 

Xavier et al. [6] AlexNet and 

ResNet-18 

The model obtained an average 

accuracy of 78.4% for ResNet-18 

and 76.9% for AlexNet. Achieved 

high results when applying a 

margin of error of one ripeness 

level. 

Cruz and 

Ramirez [7] 

LabView and 

CNN 

The model achieved 60% accuracy, 

with lighting conditions remaining 

a challenge. 

Acevedo et al. 

[8] 

ANN using 

RGB and 

GLCM contrast 

features 

The model obtained a high 

accuracy of 88%. Among the three 

classes, green, unripe, and ripe, the 

prediction of the green class 

achieves 100% accuracy. 

Vazquez et al. 

[43] 

KNN using 

L*a*b* and 

texture features 

The model achieved an accuracy of 

81.9%, with the a* channel in 

L*a*b* being the most influential 

feature. 

Nuanmeesri 

[44] 

Multi-Channel 

Hybrid Deep 

Neural 

Networks 

(MCHDNN) 

combining 

VGG-16 and 

EfficientNetB0 

The model obtained an effective 

result with an accuracy of 90.18%. 

Among the five classes, firm, 

breaking, ripe, overripe, and rotten, 

the ripe class has the highest 

classification accuracy. 

This study MFO-SVM 

using HSV, 

GLCM, and 

HOG features 

Using the polynomial kernel, the 

model obtained an accuracy of 

82.68%. Most errors occurred 

because the model predicted one 

level higher or lower than the actual 

ripeness stage. 
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