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ABSTRACT Optimizing the Fast Fourier Transform (FFT) for genomic data analysis offers a significant advancement in 

addressing challenges related to sequential input processing and computational efficiency. By integrating advanced signal 

processing techniques such as Infinite Impulse Response (IIR) filtering, the proposed approach effectively identifies spectral 

characteristics and dominant frequencies in DNA sequences. This framework demonstrates improved accuracy and reduced 

computational overhead, making it highly suitable for large-scale and real-time genomic applications. Machine learning models 

were employed to classify Huntington’s Disease (HD)-associated and normal DNA sequences, using spectral features as 

predictive markers. Among the models evaluated, K-Nearest Neighbors (KNN) achieved perfect scores across all performance 

metrics, including Classification Accuracy (CA), Area Under the Curve (AUC), Precision, Recall, Matthews Correlation 

Coefficient (MCC) and F1 Score. Support Vector Machine (SVM) and Neural Networks also delivered competitive results, 

emphasizing the effectiveness of combining signal processing with machine learning for medical diagnostics and genomic 

studies. The computational efficiency of the proposed FFT algorithm was validated using 2,300 genomic sequences, with 90% 

demonstrating enhanced processing speeds compared to traditional methods. These improvements were particularly notable 

for longer sequences, showcasing the algorithm’s capability in high-throughput genomic analysis. This approach is particularly 

impactful for investigating complex conditions like Huntington’s disease, where rapid and accurate identification of genetic 

markers is essential. This work underscores the potential of integrating FFT optimization with machine learning to 

revolutionize genomic data processing and disease detection. Beyond advancing computational genomics, the proposed 

methodology offers a foundation for broader bioinformatics applications, including the analysis of other genetic disorders and 

real-time clinical diagnostics, contributing to the evolution of precision medicine. 

INDEX TERMS Classification Accuracy, Fast Fourier Transform, Genomic Data Analysis, Huntington's Disease, Machine 

Learning, Signal Processing. 

I. INTRODUCTION 

Since the introduction of the Fast Fourier Transform (FFT) 

[1], significant advancements have been made in developing 

FFT algorithms tailored for various applications. These 

advancements include methods focused on reducing 

computational complexity, such as the split-radix algorithm, 

as well as techniques optimized for specific use cases, 

including decimation in time and frequency, handling subsets 

of input or output points, and processing input samples of 

arbitrary lengths. However, most conventional FFT 

algorithms assume that all input samples are readily available 

prior to computation [2]. As a result, their primary design goal 

is to minimize arithmetic operations, often overlooking 

scenarios where input samples arrive sequentially. 

In many real-world applications, particularly in streaming 

systems or real-time signal processing, input data is received 

sequentially, making it imperative to optimize the FFT process 

for such conditions. Reducing the time required to complete 

FFT operations in these scenarios is crucial for minimizing 

buffer memory requirements and adhering to strict timing 
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constraints, such as the "gap time," which represents the 

allowable interval between receiving the final input sample 

and transmitting the first output sample [3]. Addressing these 

challenges requires FFT algorithms designed to operate 

efficiently with sequentially received data. 

To evaluate the performance of such algorithms, this work 

introduces the concept of "completion delay," defined as the 

additional time needed to complete FFT operations after all N 

input samples have been received. This delay is measured in 

clock cycles, with one cycle corresponding to the sampling 

duration of the input sequence. At lower sampling rates, FFT 

computations may be completed within the same clock cycle 

as the final input sample, resulting in minimal delay [4]. 

Conversely, at higher sampling rates or with slower FFT 

operations, the completion delay may extend over several 

clock cycles. Thus, algorithms that achieve shorter completion 

delays are highly desirable for improving the efficiency of 

FFT operations in systems with sequential data acquisition as 

the one in Gene data sets [5]. 

The field of bioinformatics has emerged as one of the most 

dynamic and innovative areas within modern scientific 

research. Despite the human genome comprising 

approximately three billion genetic elements, the pace at 

which genomic data is being generated continues to accelerate 

exponentially. One of the key challenges faced by scientists 

today is the effective interpretation of these vast genomic 

sequences [6]. Researchers worldwide are dedicated to 

decoding the information embedded within DNA sequences, 

exploring various aspects such as metadata peculiarities, 

nucleotide sequence characteristics, classification techniques, 

and genetic disorder analysis [7]. 

Huntington's disease (HD) is a genetic neurodegenerative 

complaint that culminates in multiple aspects of a person’s 

physical, cognitive, and emotional well-being. Caused by a 

genetic mutation in the huntingtin (HTT) gene, HD is 

characterized by the progressive degeneration of brain cells, 

leading to a broad spectrum of symptoms. The HTT gene 

mutation leads to an unusual expansion of the CAG nucleotide 

distribution, with individuals carrying 40 or more CAG 

repeats being guaranteed to develop the disease. This mutation 

disrupts the production of the huntingtin protein, which plays 

essential but not fully understood roles in brain development 

and function [8]. Over time, the mutant protein accumulates in 

brain cells, particularly in the striatum, resulting in significant 

neuronal damage and the onset of HD symptoms.   

Huntington's disease generally presents among the ages of 

thirty and fifty, however juvenile-onset instances may arise in 

younger individuals. The disease is often referred to as a 

"family disorder" due to its fifty percent possibility of 

acquiring the mutated gene [9]. Globally, HD affects 

approximately 41,000 symptomatic individuals in the United 

States, with over 200,000 people at risk.   

The clinical presentation of HD is multifaceted. Early 

symptoms often include personality changes, mood swings, 

depression, and cognitive impairments such as memory loss 

and difficulty making decisions. Physical manifestations 

include involuntary movements (chorea), slurred speech, 

swallowing difficulties, and unintentional weight loss [10]. As 

the disease progresses, motor functions deteriorate further, 

with individuals experiencing stiffness, reduced mobility, and 

challenges in communication. Advanced stages necessitate 

full-time care due to the cumulative impact on reasoning, 

movement, and daily functioning, with complications such as 

pneumonia or heart failure often leading to death [11].   

Despite its devastating impact, there is currently no cure for 

HD, nor treatments capable of halting or reversing its 

progression [12]. Interventions focus on alleviating mood 

disturbances, managing involuntary movements, maintaining 

physical strength, and addressing communication and 

nutritional challenges. Social and community support also 

play a vital role in improving the wellbeing for people with 

HD and their caregivers, who often face significant emotional 

and physical challenges in providing care.   

The complexity of HD, with its overlapping motor, 

cognitive, and psychiatric symptoms, has drawn comparisons 

to conditions such as ALS, Parkinson’s disease, and 

Alzheimer’s disease [13]. These parallels underscore the 

urgency of advancing research into effective treatments and 

the importance of exploring novel therapeutic strategies to 

demand the unmet needs of HD patients. 

Currently, substantial research is focused on understanding 

and addressing Huntington's disease (HD). Researchers are 

investigating both conventional diagnostic methods and 

advanced machine learning (ML) approaches to differentiate 

HD from other neurodegenerative disorders and enhance 

diagnostic precision [14]. 

The proposed work employs advanced signal processing 

techniques to explore specific genetic configurations, 

demonstrating their effectiveness in feature extraction for 

classification systems. The primary goal is to establish a 

framework for categorizing HD samples by applying signal 

processing methods to nucleotide sequences relevant to 

Huntington's disease. A classification model is developed to 

detect the presence of HD, highlighting the potential of 

integrating bioinformatics and signal processing to tackle key 

challenges in genomic analysis and medical diagnostics.  

 
II. RELATED WORKS 

The study in [15] examines the Fast Fourier Transform (FFT), 

a crucial method in digital signal processing, and emphasizes 

its limitations, including discrete frequency intervals and 

spectrum leakage. This work presents Prism Signal Processing 

(PSP) as a supplementary approach to tackle these difficulties. 

PSP employs linear phase FIR filters for real-time analysis, 

improving frequency resolution and facilitating the detection 

of low-amplitude tones. The suggested method integrates PSP 

with FFT using low-pass filters and heterodyning to reduce 

spectral leakage and clarify multiple peaks. This method, 

while computationally costly, provides substantial 

improvements in spectral analysis for applications requiring 

high precision. 
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The Periodic Interpolation Method introduced in [16], an 

adaptable and fruitful approach for calculating scalar 

potentials within a unit cell of an endlessly periodic array. 

FFT-PIM addresses one-dimensional, two-dimensional, and 

three-dimensional periodicities for both dynamic and static 

potential issues, supporting situations with or without periodic 

phase shifts. FFT-PIM utilizes fast converging Green's 

function series to partition the potential into near-zone and far-

zone components. Applications encompass wave propagation, 

micromagnetic solvers, rendering it optimal for periodic 

integral equation challenges. 

The investigation in [17] explores the respiratory rate (RR) 

as a critical marker of heat stress and respiratory ailments in 

animals, emphasizing a technique for forecasting RR in 

recumbent Holstein cows by RGB and infrared (IR) imaging. 

A dataset including 95 videos was annotated to delineate the 

flank area of interest (ROI), utilizing YOLOv8 for automatic 

ROI recognition. Respiratory frequencies were filtered and 

breaths per minute were computed using a pipeline that 

incorporated fast Fourier transform (FFT) and inverse FFT. 

Evaluation metrics indicated RMSEP values of 8.3 

breaths/min for cows and 13.0 for calves, underscoring the 

method's efficacy in precise respiratory rate estimation. 

In order to meet the demand for energy-efficient, real-time 

signal processing, the research technique discussed in [18] 

introduces a unique FPGA-based Fast Fourier Transform 

(FFT) processor. Conventional FFT processor architectures 

encounter constraints, such as elevated power consumption, 

which limits their applicability in low-power scenarios. A 

hybrid radix encoder featuring a 2 fold multiplier with an 

improved truncated Kogge-Stone adder is presented to address 

this issue. The developed FFT processor attains elevated 

throughput (78.036 Gbps), lowered consumption of power, 

and negligible delay. This processor supports FFT widths upto 

4096 points, designed for biomedical and 5G applications. 

The work in [19] examines the necessity for effective 

health monitoring applications in a context of growing patient-

to-physician disparity. It presents innovative algorithms for 

assessing blood pressure and heart rate through 

photoplethysmography signals obtained from an Android 

phone's flashlight camera. The proposed Android application 

provides an economical, rapid, and energy-efficient solution, 

compatible with Android 5.0 and subsequent versions. 

Experimental results indicate an accuracy reaching 98% in 

comparison to digital medical instruments, surpassing prior 

methodologies. Future endeavors seek to amalgamate data 

collecting and machine learning methodologies to facilitate 

emotion analysis for the identification of depression, hence 

augmenting the application's functionality. 

Due to its reliance on adders and multipliers as essential 

components, the butterfly operation is the Fast Fourier 

Transform (FFT) system's most computationally demanding 

stage. The work in [20] presents a low-power butterfly unit for 

FFT architectures by consolidating addition and subtraction 

operations into one, hence decreasing common expressions 

and cutting transistor count. Simulations indicate substantial 

enhancements in area, power, and delay, with diminished 

power consumption realized through the optimization of 

supply voltage and load capacitance. The proposed unit 

accommodates 8, 12, and 16-bit data widths, resulting in a 

reduction of 16 clock cycles for 8-bit operations during single-

clock execution. Monte Carlo simulations validate negligible 

fluctuations in process parameters, while complexity is 

diminished by 43% relative to conventional designs by the 

integration of the Gate Diffused Inputs approach. 

Recent improvements in Human-Computer Interaction 

(HCI) have profoundly influenced signal processing within 

the healthcare sector, especially with the interpretation of 

ECG, EMG, and EEG signals. The ECG, which provides 

significant insights into an individual's emotional state, has 

demonstrated potential for application in biometric 

identification, including gender classification. The research in 

[21] investigates the utilization of the RF algorithm for 

classification employing ECG data from the ECG ID 

Database. The findings indicate that raw data attains an 

accuracy of 55.000%, but filtered data enhances this to 

65.806%, highlighting the significance of data preparation in 

improving classification efficacy. 

The review in [22] critically assesses contemporary 

pharmacological strategies for Huntington's disease, 

emphasizing the significance of mutant huntingtin protein, 

mitochondrial failure, excitotoxicity, and neuroinflammation. 

Emerging therapeutic targets, including protein homeostasis, 

neurotransmitter systems, and mitochondrial function, are 

examined. The study emphasizes clinical trial results, the 

repurposing of current pharmaceuticals, and advocates for the 

incorporation of personalized medicine and combination 

therapy as prospective avenues in Huntington's disease 

treatment. 

The HD study in [23] uses genetic, neurobiological, and 

clinical markers to understand Huntington's disease (HD) 

before clinical diagnosis in people with a genetic mutation. 

The study estimates the beginning and first development of 

HD-related variables relative to diagnosis. This study 

investigated 438 persons who had the HD gene mutation but 

did not meet HD diagnostic criteria or show functional 

impairment. Basic cognitive, motor, psychiatric, and 

neuroimaging assessments were tested for predictive 

significance using nonlinear models, with time to diagnosis as 

the predictor. The expected time to diagnosis was associated 

with most clinical and neuroimaging markers, with alterations 

appearing one to two decades before the predicted diagnosis.  

In addition to other molecular processes such as the 

depletion of neurotrophic factor, mitochondrial malfunction, 

and abnormal synaptic plasticity in central spiny neurons, the 

research displayed in [24] demonstrates that one of the most 

important characteristics of HD is the growth of 

polyglutamine duplications in proteins. Animal models have 

been extremely helpful in expanding our understanding of the 

pathophysiology of HD as well as the therapeutic approaches 

that have been developed. Animal models that mimic the 

pathophysiology of the illness are vital for investigating the 
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underlying mechanisms of HD and evaluating prospective 

therapies. Although there are limited treatments currently 

available for HD, these models continue to be essential. The 

importance of in-vitro and in-vivo models for HD research is 

discussed in this review, along with the role that these models 

play in the process of drug screening for this debilitating 

disorder. 

The work in [25] underscores the important fact that neuro 

degenerative alterations that occur as a result of striatal 

dysfunction in Huntington's disease (HD) lower sensitivity to 

linguistic principles, notably in the handling of referential 

enslavements that are constrained by grammatical constraints. 

Additionally, HD makes it more difficult to piece together 

events by use of verb phrases and the thematic arguments they 

contain. The significance of cortical-subcortical loops in 

reference processing is highlighted by these findings, which 

also indicate that there is a possibility that these impairments 

would occur simultaneously with other cognitive deficiencies, 

such as disorder of theory of mind [26]. The study shows 

disparities in language sensitivity between spontaneous 

speech and controlled studies, with spontaneous speech 

revealing early indicators of linguistic degeneration. In terms 

of clinical applications, the study calls for a focus on language 

understanding at the grammatical level. 

In [27], the brain samples of one hundred and fifty seven 

HD patients and its controls were examined using gene 

profiling and dimensionality reduction. This was followed by 

the application of ML procedures such as decision tree, rule 

induction, random forest, and generalized linear model. A high 

level of cross-validation accuracy was achieved by these 

models, which revealed 66 candidate genes associated to HD. 

The accuracy ranged from 89.49% to 97.46%. The genes that 

were discovered were linked to important biological processes 

such as the regulation of transcription and the cytoskeleton. 

The results of this study indicate that the HTT gene mutation 

may be responsible for the disruption of these genes, which in 

turn contributes to the pathogenesis of HD [28]. 

In DSP-based exon prediction, the critical initial step 

involves converting nucleotide bases into numerical values, as 

highlighted in [29]. The choice of numerical mapping scheme 

plays a significant role in shaping the characteristics of the 

DNA sequence, enabling the accurate identification of exon 

regions. Over the past two decades, several nucleotide 

mapping techniques have been effectively used as 

preprocessing steps for exon prediction [30]. The proposed 

sequence mapping method demonstrates superior 

performance in predicting exon regions compared to existing 

approaches [31]. 

III. MATERIALS AND METHODS 

Deoxyribonucleic acid (DNA) is a complex molecule 

composed of two long polynucleotide chains arranged in a 

double helix structure. This structure is responsible for storing 

the biological information necessary for the growth, 

development, and reproduction of all living organisms, 

including humans, animals, plants, and viruses. DNA is made 

up of four nucleotides: adenine (A), guanine (G), cytosine (C), 

and thymine (T). The adenine always pairs with thymine, and 

cytosine always pairs with guanine. This pairing guarantees 

the accurate transmission of genetic information, which is 

crucial for DNA replication and cell function. The sequence 

of these nucleotides forms the genetic code, providing 

instructions for the production of proteins that are essential for 

life processes. 

To analyze DNA sequences more effectively, they are 

often encoded into numerical data that can be processed using 

computational methods, particularly signal processing 

techniques. This conversion allows researchers to perform 

various operations on the data, such as sequence alignment, 

pattern recognition, and prediction of protein structures. Each 

nucleotide is assigned a specific numerical value, and different 

encoding methods are used, such as binary encoding or more 

complex schemes based on the properties of the nucleotides. 

Once encoded, the sequences can be analyzed using 

mathematical models to detect significant patterns and 

features within the DNA, which tends to better impression of 

biological processes and disease mechanisms. 

A Frequency-Based Weighted Encoding Scheme is 

proposed to convert the text into numbers. The idea is to 

quantify the appearance of each nucleotide in a given DNA 

sequence, turning the sequence into a numerical vector that 

retains essential information about the sequence's 

composition. 

In this scheme, each character of the DNA sequence is 

encoded based on its frequency relative to the total number of 

characters in the sequence. For instance, consider the sequence 

in Eq. (1) [3]. 

  

originalSeq(n) = " AGATCGATGA"                    (1)                

 

In this case, there are ten nucleotides in total, and we 

calculate the frequency of each base. In this specific sequence, 

adenine (A) appears four times, guanine (G) appears three 

times, thymine (T) appears two times, and cytosine (C) 

appears once. The next step involves calculating the frequency 

of each nucleotide by dividing its occurrence by the total 

length of the sequence. Therefore, the encoded values for each 

nucleotide are as follows: A = 0.4, G = 0.3, T = 0.2, and C = 

0.1. This frequency ratio is used as the numeric encoding for 

the respective nucleotides. After applying this method across 

all positions in the sequence, we obtain the encoded sequence. 

For example, the original DNA sequence in Eq. (1) would be 

represented numerically by following the encoding scheme as 

the sequence in Eq. (2) [3] 
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encodedSeq(n) = [ 0.4,0.3,0.4,0.1,0.1,0.3,0.4,0.2,0.3,0.4] 
                                                                                   (2)  
 

This numerical representation preserves the nucleotide 

composition of the original DNA sequence while transforming 

it into a format suitable for computational analysis. This 

encoding method is highly useful when DNA sequences need 

to be processed using signal processing techniques, such as in 

bioinformatics applications, where large volumes of DNA 

sequence data need to be analyzed efficiently. 

When a DNA sequence is encoded into a numerical 

format, it becomes crucial to implement a technique that can 

minimize the data size while preserving the integrity and 

accuracy of the encoded information. To achieve this, the 

Discrete Fourier Transform (DFT) can be applied to the 

encoded numerical sequence. This process generates 

X_encodedSeq(n), which highlights the periodicity of three 

inherent in the DNA chain. However, the DFT technique is 

computationally intensive, as it demands a significant number 

of multipliers and adders. The computational effort required 

grows with the size of the DNA sequence, making it less 

 
 
FIGURE 1. SFG of Fast Fourier Transform 

 

𝑋[0] = [(𝑥[0] + 𝑥[4]) + (𝑥[2] + 𝑥[6])𝑊8
0] + [(𝑥[1] + 𝑥[5]) + (𝑥[3] + 𝑥[7])𝑊8

0]𝑊8
0 

𝑋[1] = [(𝑥[0] − 𝑥[4]) + (𝑥[2] − 𝑥[6])𝑊8
2] + [(𝑥[1] − 𝑥[5]) + (𝑥[3] − 𝑥[7])𝑊8

2]𝑊8
1 

𝑋[2] = [(𝑥[0] + 𝑥[4]) − (𝑥[2] + 𝑥[6])𝑊8
0] + [(𝑥[1] + 𝑥[5]) − (𝑥[3] + 𝑥[7])𝑊8

0]𝑊8
2 

𝑋[3] = [(𝑥[0] − 𝑥[4]) − (𝑥[2] − 𝑥[6])𝑊8
2] + [(𝑥[1] − 𝑥[5]) − (𝑥[3] − 𝑥[7])𝑊8

2]𝑊8
3 

𝑋[4] = [(𝑥[0] + 𝑥[4]) + (𝑥[2] + 𝑥[6])𝑊8
0] − [(𝑥[1] + 𝑥[5]) + (𝑥[3] + 𝑥[7])𝑊8

0]𝑊8
0 

𝑋[5] = [(𝑥[0] − 𝑥[4]) + (𝑥[2] − 𝑥[6])𝑊8
2] − [(𝑥[1] − 𝑥[5]) + (𝑥[3] − 𝑥[7])𝑊8

2]𝑊8
1 

𝑋[6] = [(𝑥[0] + 𝑥[4]) − (𝑥[2] + 𝑥[6])𝑊8
0] − [(𝑥[1] + 𝑥[5]) − (𝑥[3] + 𝑥[7])𝑊8

0]𝑊8
2 

𝑋[7] = [(𝑥[0] − 𝑥[4]) − (𝑥[2] − 𝑥[6])𝑊8
2] − [(𝑥[1] − 𝑥[5]) − (𝑥[3] − 𝑥[7])𝑊8

2]𝑊8
3  

(3) 
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efficient for handling large datasets. This limitation can be 

effectively addressed by leveraging the Fast Fourier 

Transform, a algorithm for evaluating the DFT in a faster way. 

The FFT significantly reduces the number of required 

operations, especially for large  

DNA sequences, thereby enhancing overall efficiency. 

The relationship between the size of the DNA sequence and 

the reduction in computational steps achieved through FFT 

underscores its advantage. Given this evidence, the FFT is 

employed as a practical method to compute the DFT of 

encodedSeq(n), thereby optimizing the computational 

process. The FFT not only simplifies the calculations but also 

accelerates the processing of encoded DNA sequences, 

making it particularly suitable for applications requiring real-

time or large-scale data analysis. The mathematical evaluation 

of the FFT is carried out using the Eq. (5)[3]: 

 

FFT_encodedSeq(k)= ∑ encodedSeq(n).WN
knN-1

n=0           (5)                  

 

The term WN
kn is called as twiddle factor.The 

computational process of the fast Fourier transform is 

represented through a signal flow diagram (SFG), as shown in 

FIGURE 1. For simplicity, let us consider the 

FFT_encodedSeq is denoted as X and encodedSeq is 

considered as x. Based on the visual representation in Eq. (3) 

[3], the butterfly computational segments follow a sequential 

input processing pattern. When input samples x[0] through 

x[4] are received, the initial segment (BFU_1) becomes 

eligible for calculation. Upon receiving x[5], the segment 

BFU_3 becomes potentially evaluable. As data continues to 

arrive, specifically x[6], subsequent segments like BFU_2, 

BFU_5, and BFU_7 can be computed, contingent upon the 

results from preceding segments BFU_1 and BFU_3 being 

successfully transmitted.  

The remaining computational segments follow a similar 

computational progression. Upon careful analysis of the 

mathematical expressions, the terms can be strategically 

divided into two distinct groups for simplified comprehension. 

Group1 requires inputs x[1], x[2], x[4], and x[6] to complete 

its computations. Conversely, group2 necessitates waiting 

until x[7] arrives for full evaluation. Interestingly, if certain 

expressions involving x[1] and x[5], such as their summation 

or difference, can be pre-calculated before x[7] arrives, it 

becomes possible to extract x[7] from the group2 calculations, 

as demonstrated in the subsequent illustration as Eq. (4) [3]. 

Prior to receiving x[7], all butterfly modules are initialized 

by setting x[7] to zero, with the preliminary results labeled as 

x'old. Once x[7] is obtained, the sequence is updated using a 

generalized computational expression that incorporates the 

previous stage's values and specific weighted coefficients as 

in Eq. (6) [3] 

 

X = [(x'old ) +(x)WN
(N-1)k

]                                     (6)    
                                 

The computational strategy reveals an optimization where 

only half the number of distinct weight values (N/2) are 

necessary. This reduction translates to N/2 multiplications and 

N additions required to determine the Fast Fourier Transform 

(FFT) sequence after acquiring the (N-1)th sample. For small 

sample sizes like 8 points, the performance enhancement 

might appear negligible. However, when applied to extensive 

datasets such as DNA sequences, the computational efficiency 

becomes significantly pronounced. The method substantially 

reduces processing time by minimizing computational 

redundancy, with the speed efficiency of the FFT directly 

correlating to the increased sample complexity. The key 

innovation lies in the algorithmic approach that progressively 

refines the transformation process, enabling faster and more 

streamlined spectral analysis across larger, more complex 

datasets. The algorithm behind the process is given as 

ALGORITHM 1. 

Spectral characteristics of DNA sequences were evaluated 

using Fourier Transform techniques, with power spectral 

density estimated through periodogram analysis. Infinite 

impulse response (IIR) filtering was employed to optimize 

signal processing and smoothing of DNA chain spectral data. 

 

𝑋[0] = [(𝑥[0] + 𝑥[4]) + (𝑥[2] + 𝑥[6])𝑊8
0] + [(𝑥[1] + 𝑥[5])𝑊8

0 + (𝑥[3])𝑊8
0] + (𝑥[7])𝑊8

0 

𝑋[1] = [(𝑥[0] − 𝑥[4]) + (𝑥[2] − 𝑥[6])𝑊8
2] + [(𝑥[1] − 𝑥[5])𝑊8

1 + (𝑥[3])𝑊8
3] − (𝑥[7])𝑊8

3 

𝑋[2] = [(𝑥[0] + 𝑥[4]) − (𝑥[2] + 𝑥[6])𝑊8
0] + [(𝑥[1] + 𝑥[5])𝑊8

2 − (𝑥[3])𝑊8
2] − (𝑥[7])𝑊8

2 

𝑋[3] = [(𝑥[0] − 𝑥[4]) − (𝑥[2] − 𝑥[6])𝑊8
2] + [(𝑥[1] − 𝑥[5])𝑊8

3 + (𝑥[3])𝑊8
1] − (𝑥[7])𝑊8

1 

𝑋[4] = [(𝑥[0] + 𝑥[4]) + (𝑥[2] + 𝑥[6])𝑊8
0] − [(𝑥[1] + 𝑥[5])𝑊8

0 + (𝑥[3])𝑊8
0] − (𝑥[7])𝑊8

0 

𝑋[5] = [(𝑥[0] − 𝑥[4]) + (𝑥[2] − 𝑥[6])𝑊8
2] − [(𝑥[1] − 𝑥[5])𝑊8

1 + (𝑥[3])𝑊8
3] + (𝑥[7])𝑊8

3 

𝑋[6] = [(𝑥[0] + 𝑥[4]) − (𝑥[2] + 𝑥[6])𝑊8
0] − [(𝑥[1] + 𝑥[5])𝑊8

2 − (𝑥[3])𝑊8
2] + (𝑥[7])𝑊8

2 

𝑋[7] = [(𝑥[0] − 𝑥[4]) − (𝑥[2] − 𝑥[6])𝑊8
2] − [(𝑥[1] − 𝑥[5])𝑊8

3 + (𝑥[3])𝑊8
1] + (𝑥[7])𝑊8

1 

(4) 
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ALGORITHM 1. Optimized Fast Fourier Transform  

The choice of parameters for the Infinite Impulse 

Response (IIR) filter, including the cut-off frequency and filter 

order, was carefully determined to balance signal clarity, 

computational efficiency, and biological relevance in DNA 

sequence analysis. The cut-off frequency of 0.3607 radians per 

second was selected to preserve key periodic components of 

DNA sequences, particularly the 3-base periodicity in protein-

coding regions, while effectively attenuating high-frequency 

noise. This value was likely determined through empirical 

testing and spectral analysis to ensure optimal signal retention. 

The filter order of 10 was chosen as a compromise between 

sharp frequency selectivity and computational stability, as 

higher-order filters provide steeper roll-off but may introduce 

phase distortions and numerical instability. A 10th-order filter 

ensures effective noise reduction while maintaining essential 

DNA sequence features. The use of an IIR filter was justified 

by its computational efficiency, requiring fewer coefficients 

than an FIR filter for a similar response, making it suitable for 

large-scale DNA analysis. These parameter choices directly 

impact the results by enhancing periodic signal detection, 

reducing noise interference, and improving the accuracy of 

downstream biological interpretations. 

The analytical procedure involved transforming encoded 

DNA sequences using Fourier transform, subsequently 

applying the IIR low-pass filter. Periodogram analysis was 

then conducted to detect signal peaks and corresponding 

frequencies. This protocol was systematically applied to both 

Huntington’s Disease-associated and normal healthy DNA 

sequences. For each DNA sample, peak values and their 

corresponding frequencies were recorded, generating a 

comprehensive dataset. The experimental workflow is 

graphically represented in FIGURE 2 to facilitate 

methodological comprehension. 

A machine learning approach is employed to distinguish 

between infected and normal DNA by constructing a 

classification model. This involves using a comprehensive 

training dataset with pre-labeled classes, agreeing the model 

to absorb the distinctive characteristics of each class. Four 

different classification schemes are utilized: K-Nearest 

Neighbors (KNN), Support Vector Machine (SVM), Naive 

Bayes, and Neural Networks. In the field of machine learning, 

the evaluation of model performance is critical for ensuring 

the reliability and effectiveness of predictive systems. Metrics 

such as Area Under the Curve (AUC), Classification Accuracy 

(CA), F1 Score, Recall, Precision, and Matthews Correlation 

Coefficient (MCC) provide comprehensive insights into how 

well a model classifies data.  

Step 1: Initialize Variables 

1.1 Set x[7]=0 (Pre-calculation for missing input) 

1.2 Define twiddle factors W[n][k] for FFT computation 

Step 2: Pre-Calculation Phase (Before x[7] is Received) 

2.1 Compute initial butterfly module outputs using x[0]-x[6]: 

2.2 b[1]: Pass x[2] directly to b[4] and b[5] (No computation 

required)  

2.3 b[3], b[4], b[5]: Compute FFT outputs assuming x[7] = 0 

2.4 Compute temporary FFT outputs X0[k] (Intermediate 

results) 

Step 3: Re-Calculation Phase (After x[7] is Received) 

3.1 Collect x[7] and update FFT computations 

3.2 Compute final outputs by adding x[7]* W[7][k] to 

precomputed values:  

        X[k]=X0[k]+x[7] * W[7][k] (for each butterfly module) 

Step 4: Generalizing Pre-Calculation for Other Inputs 

4.1 Set x[6]= 0 and precompute b[4], b[5] upon receipt of 

x[4] 

4.2 Perform re-calculation once x[6] arrives using x[6] 

W[3][k] 

4.3 Repeat pre-calculation and recalculation steps for 

subsequent inputs  

Step 5: Output Final FFT Coefficients 

5.1 Return computed FFT values X[0]-X[7] 

End Algorithm 

 
FIGURE 2. Flowchart of the Process 
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The AUC represents the degree of separability between 

classes, quantifying the model’s ability to distinguish positive 

from negative classes across various thresholds. An AUC of 

0.5 indicates no discriminative ability, while an AUC of 1.0 

signifies perfect classification. Meanwhile, CA simply 

measures the proportion of correctly predicted instances 

among the total instances, serving as a straightforward gauge 

of overall performance. However, in imbalanced datasets, CA 

can be misleading; hence, metrics like Recall and Precision 

become vital. Recall, also known as True Positive Rate, 

measures the proportion of actual positives that were correctly 

identified by the model, thereby highlighting the model's 

ability to capture relevant instances. In contrast, Precision 

assesses the accuracy of the positive predictions made by the 

model, reflecting the proportion of true positives among all 

predicted positives. The F1 Score harmonizes these two 

metrics by providing a single score that considers both Recall 

and Precision, offering a balanced measure particularly useful 

in scenarios where positive class instances are rare. This score 

is especially pertinent in applications like healthcare 

diagnostics or fraud detection, where the cost of false 

negatives can be significantly higher than false positives. 

Furthermore, the Matthews Correlation Coefficient (MCC) 

stands out as a robust metric that considers all four confusion 

matrix categories. MCC is particularly useful in evaluating 

binary classifiers, especially with imbalanced datasets, as it 

provides a clearer view of the model's predictive power than 

accuracy alone. Collectively, these metrics offer a 

multidimensional assessment of machine learning models. For 

instance, while a model may achieve high accuracy, its low 

recall or precision could render it inadequate for sensitive 

applications.  

Therefore, when designing a machine learning system, it's 

vital to consider the specific context and goals of the 

application to select appropriate metrics that align with the 

desired outcomes. Real-world applications may call for 

prioritizing metrics that minimize false negatives, such as 

Recall, in critical fields like medical imaging or risk 

assessment in finance. Conversely, in applications where the 

consequences of false positives can be dire, such as spam 

detection, Precision might take precedence. In summary, 

AUC, CA, F1 Score, Recall, Precision, and MCC are 

instrumental in dissecting model performance, providing a 

nuanced understanding that enables practitioners to tailor their 

models to specific tasks and datasets. An informed choice of 

these metrics, guided by the nature of the data and the 

implications of prediction errors, can significantly enhance the 

utility of machine learning solutions across various domains. 

Therefore, a comprehensive analysis involving multiple 

performance metrics is not only advisable but essential for the 

valid assessment of any machine learning model's efficacy and 

reliability. 

IV. RESULTS AND DISCUSSION 

In this study, the computational efficiency of the proposed Fast 

Fourier Transform (FFT) technique is compared with the 

traditional FFT method across a dataset comprising 2300 

distinct genomic sequences. The formula to calculate the 

speed of calculation for Fast Fourier Transform, in percentage 

for the proposed system compared to the reference system is 

given in Eq. (7) [3] below. 

 

SI (%)=  [(TimeProp-TimeRef) /TimeProp]*100               (7)                    

Here, Speed Improvement is denoted as SI, Time taken by 

the reference system to perform the calculation is denoted as 

TimeRef and Time taken by the proposed system to perform 

the calculation is denoted as TimeProp. This formula quantifies 

the percentage reduction in computation time achieved by the 

proposed system relative to the reference system. The scatter 

plot presented in FIGURE 3 illustrates the findings: out of the 

2300 sequences, 240 experienced a decrease in computational 

speed. This reduction is largely attributed to the shorter lengths 

of these sequences. The reduction in computational efficiency 

is primarily attributed to the shorter lengths of these 

sequences, which, contrary to expectations, require more 

execution time. This is because shorter sequences necessitate 

more frequent recalculations during the processing steps, as 

there is less pre-calculation data available to optimize the 

execution. On the other hand, longer sequences, despite 

containing more data, benefit from the pre-calculation process, 

which allows for more efficient feature extraction and reduces 

the overall execution time. The pre-calculation of certain 

metrics or transformations for longer sequences results in 

faster processing, as the computational effort is distributed 

more evenly across the data. Therefore, longer sequences can 

 
 
FIGURE 3. Scatter Plot depicting the Improvement in Computation 

Speed 
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leverage these optimizations, leading to shorter execution 

times compared to their shorter counterparts.  

Conversely, an impressive 90% of the samples 

demonstrated enhanced processing speed. This significant 

improvement underscores the effectiveness of the proposed 

algorithm, warranting its designation as the "Optimized 

Genomic FFT Algorithm." The results indicate that the 

algorithm excels in handling genomic data, particularly larger 

datasets, thus greatly reducing computation time. 

The enhanced speed performance is attributed to the 

algorithm's ability to minimize processing overhead while 

maximizing efficiency in spectral analysis. This makes it 

particularly beneficial for tasks in computational genomics 

where rapid data processing is crucial. 

 
TABLE 1 

AUC and CA of Proposed Model 

Model Method AUC CA 

This Study  SVM 1.000 0.990 

This Study  KNN 1.000 1.000 

This Study  Naïve 
Bayes 

0.973 0.909 

This Study  Neural 
Network 

1.000 0.994 

Deepak [24] Triad 0.89 0.85 

Ghofrani [25] Neuro 
Imaging 

0.89 0.83 

Ouwerkerk [26] Recurrent 
Neural 

Network 

0.90 0.85 

Cheng [27] Decision 
Tree 

0.99 0.97 

Odish [28] EEG Bio 
Marker 

0.90 0.83 

 

Data preprocessing and feature extraction involved 

applying Fast Fourier Transform followed by Infinite Impulse 

Response (IIR) filtering to precisely identify spectral 

characteristics and dominant frequency components. The 

extracted parameters served as critical predictive features for 

developing a diagnostic classification model for detecting HD-

related sequence variations.  

The dataset used in this analysis was sourced from the 

National Center for Biotechnology Information (NCBI) and 

contains genetic information from individuals affected by 

Huntington's disease as well as healthy individuals for 

comparison. It comprises 2,300 different data points, which 

include sequences of DNA from both affected and unaffected 

individuals. These sequences provide insights into potential 

genetic variations associated with Huntington's disease, 

making the dataset highly relevant for genetic research and 

disease diagnostics. 

Before analysis, several preprocessing steps were 

undertaken to prepare the data for accurate and meaningful 

analysis. First, the raw DNA sequences were cleaned to 

remove any missing or incomplete data, ensuring that only 

high-quality sequences were used. Noise and irrelevant 

segments, such as non-coding regions that do not contribute to 

genetic disease markers, were filtered out to focus on the 

portions of the sequences most likely to reveal disease-related 

information. The sequences were then aligned to ensure 

consistency and remove any discrepancies in length or 

structure across the dataset. Additionally, the sequences were 

standardized to a uniform format, making them compatible 

with various computational tools used for DNA sequence 

analysis, such as those employed for filtering and feature 

extraction. By performing these preprocessing steps, the 

dataset was refined to ensure its quality and relevance for the 

analysis, allowing for reliable identification of potential 

genetic markers linked to Huntington's disease. Out of 2,300 

total sequences, 1,840 sequences are strategically allocated for 

model training using the Orange Data Mining Tool as in 

FIGURE 4, ensuring robust algorithm development. The 

remaining 460 sequences were systematically reserved for 

independent model validation and performance assessment, 

facilitating an unbiased evaluation of the proposed 

classification approach. The simulation is carried out in Dell 

Computer with i7 processor and 8GB RAM. 

The evaluation of classification models using various 

metrics, including AUC, Classification Accuracy (CA), F1 

Score, Precision (Prec), Recall, and Matthews Correlation 

Coefficient (MCC). Classification accuracy measures the 

overall correctness of the model by calculating the proportion 

of correctly classified sequences. However, since accuracy 

alone may not be sufficient in cases of class imbalance, 

additional metrics were used for a more reliable evaluation. 

Precision evaluates the proportion of correctly identified 

positive cases, which is crucial in minimizing false positives 

and ensuring reliable classification of disease-affected 

individuals. Recall, or sensitivity, assesses the model’s ability 
 

 
FIGURE 4. Modelling in Orange Data Mining Tool 
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to correctly identify actual positive cases, which is essential 

for detecting all instances of Huntington’s disease within the 

dataset. F1-score, the harmonic mean of precision and recall, 

provides a balanced evaluation, particularly useful when false 

positives and false negatives carry different consequences. 

Matthews correlation coefficient (MCC) was incorporated as 

it considers all four elements of the confusion matrix (true 

positives, true negatives, false positives, and false negatives), 

making it a more robust metric, especially for imbalanced 

datasets. By leveraging these diverse metrics, the evaluation 

framework ensures a well-rounded understanding of model 

performance, allowing for a more accurate comparison of 

different classification approaches. 

From TABLE 1, the K-Nearest Neighbors (KNN) classifier 

emerged as the top-performing model, achieving a perfect 

score of 1.000 across all metrics. This indicates flawless 

classification of the dataset, demonstrating KNN's exceptional 

capability to accurately differentiate between classes without 

any errors. Hyperparameter tuning was performed to optimize 

model performance. 

The Support Vector Machine (SVM) also delivered 

excellent results, achieving an AUC of 1.000 and scoring 

0.990 for CA as in FIGURE 5, F1, Precision, and Recall. The 

MCC value of 0.979 further emphasizes its strong correlation 

between predictions and actual outcomes. 

While slightly below KNN in terms of overall performance, 

SVM remains highly effective and accurate, making it a robust 

choice for classification tasks. Its consistency across all 
metrics highlights its ability to generalize well on the given 

dataset. 

The Neural Network model achieved near-perfect results, 

with an AUC of 1.000 and CA, F1, Precision, and Recall 

scores of 0.994. Its MCC value of 0.988 as in FIGURE 6, 

reflects a strong predictive relationship, underscoring its 

reliability in handling complex datasets. Although its 

performance is marginally lower than KNN, the Neural 

Network remains a powerful model, capable of capturing 

intricate patterns within the data. This positions it as a 

competitive alternative to KNN and SVM for high-accuracy 

classification tasks. 

In contrast, the Naïve Bayes classifier exhibited 

comparatively lower performance, with an AUC of 0.973 and 

CA, F1, Precision, and Recall scores of 0.909. Its MCC value 

of 0.831, while adequate, is significantly lower than the other 

models, indicating a moderate predictive relationship. These 

results suggest that Naïve Bayes, while less effective than 

KNN, SVM, and Neural Networks, still has merit in scenarios 

requiring simple implementation and computational 

efficiency. Overall, the analysis underscores the superiority of 

KNN, SVM, and Neural Networks for high-accuracy 

applications, with Naïve Bayes being suitable for less 

demanding use cases. 

While the proposed methodology demonstrates promising 

results, certain limitations must be acknowledged. One of the 

potential limitation is the presence of biases in the dataset, as 

the data sourced from NCBI may not fully represent the 

genetic diversity of all individuals affected by Huntington’s 

 
 

FIGURE 5. Classification Accuracy and F1 Score of Proposed 
Model 
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FIGURE 6. Comparison of Precision, Recall and MCC values of 

Proposed Model 
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disease. This could lead to model over fitting, where the 

trained models perform well on the given dataset but may not 

generalize effectively to new, unseen data. Additionally, the 

relatively small dataset size as 2,300 sequences may limit the 

robustness of deep learning or highly complex machine 

learning models, potentially affecting the statistical 

significance of the findings. 

V. CONCLUSION 

This study presents an optimized Fast Fourier Transform 

(FFT) method for genomic data analysis, addressing 

challenges in sequential input processing and computational 

efficiency. By integrating FFT with Infinite Impulse Response 

(IIR) filtering, the approach improves accuracy and efficiency, 

particularly for large datasets. Machine learning models 

further enhance the methodology, enabling precise 

classification of Huntington’s disease (HD)-related DNA 

sequences. K-Nearest Neighbors (KNN) achieved a perfect 

score of 1 across AUC, Classification Accuracy, Precision, 

Recall, F1 Score, and Matthews Correlation Coefficient, while 

Support Vector Machine (SVM) and Neural Networks also 

performed strongly. On a dataset of 2,300 sequences, the 

optimized FFT algorithm processed 90% of sequences faster 

than traditional methods, making it valuable for large-scale 

genomic analysis. The ability to quickly and accurately 

identify genetic markers enhances its application in medical 

diagnostics. Despite its effectiveness, dataset biases from 

NCBI and the small sample size (2,300 sequences) may 

impact model generalization and statistical significance. 

Future research should adapt this approach for other genetic 

disorders like Alzheimer’s and cystic fibrosis, and explore its 

potential in real-time clinical diagnostics, advancing precision 

medicine. 
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