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ABSTRACT Facial paralysis significantly affects a person's ability to communicate and perform essential functions. Facial 

paralysis classification plays a vital role in the diagnosis and monitoring of facial disorders. Traditional diagnostic methods 

often rely on subjective evaluations, leading to inconsistent outcomes. The aim of this study is to evaluate and compare various 

feature extraction techniques to enhance the accuracy and efficiency of facial paralysis classification. The primary contribution 

of this research lies in its comprehensive analysis of texture-based (Local Binary Patterns, Histogram of Oriented Gradients, 

Gabor filters) and geometric feature extraction methods, providing insights into their respective strengths and limitations for 

facial paralysis detection. This study utilizes the YouTube Facial Palsy (YFP) dataset, comprising annotated images of 

paralyzed and non-paralyzed faces. Preprocessing included resizing images to 128x128 pixels to standardize inputs. Feature 

extraction methods were applied to the dataset, and the extracted features were classified using machine learning algorithms, 

including Support Vector Machines (SVM), Random Forest (RF), and k-Nearest Neighbors (KNN). Model performance was 

evaluated using accuracy, precision, recall, and F1-score metrics. The best-performing method achieved an accuracy of 85% 

using HOG features combined with KNN. The findings highlight that texture-based methods, particularly HOG, excel in 

capturing subtle asymmetries, while geometric features offer computational efficiency and interpretability with fewer extracted 

features. This study underscores the importance of selecting suitable feature extraction methods based on task requirements, 

and emphasizes the potential of hybrid approaches to leverage the strengths of different methods. Future research should 

explore advanced geometric descriptors and integrate hybrid models to enhance clinical applicability. 

 

INDEX TERMS Facial Paralysis, Feature Extraction, Support Vector Machine, Random Forest, K-Nearest Neighbors, Local 

Binary Pattern, Histogram Of Oriented Gradients, Gabor Filters

I. INTRODUCTION 

Facial paralysis is a severe neurological disorder 

characterized by the complete absence of voluntary muscle 

activity on one side of the face, which leads to significant 

physical and psychological consequences [1]. It may be 

caused by a variety of factors, including cerebrovascular 

accidents, physical injuries, infections, and Bell's palsy [2], 

[3]. Facial paralysis classification is a critical task in medical 

imaging, as early detection can aid in diagnosing conditions 

such as stroke, Bell’s palsy, and other neurological disorders. 

In this case, the sensitivity of the model to capture the 

above symptoms is very necessary considering that this 

disease is related to the nervous system, which is certainly 

connected to daily human activities. Medical solutions by 

visiting or consulting with a neurologist are indeed the right 

actions to help patients in making an early diagnosis.  

Traditional methods for classifying facial paralysis have 

traditionally relied on subjective grading systems and 

manual measurement techniques. The House-Brackmann 

scale and The Burres-Fisch system is widely used as a 

grading system to assess the severity of facial nerve 

dysfunction. The House-Brackmann scale assigns six levels 

to the severity of facial nerve impairment based on the 

observed facial movements [4]. The Burres-Fisch system is 
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a research-based system that relies on linear measurements 

of displacement of reference points on the face [5]. The 

limitations of traditional methods, such as subjectivity, lack 

of precision, labor-intensiveness, and susceptibility to 

human error, highlight the necessity for the development of 

more objective and reliable diagnostic techniques. 

To overcome these limitations, various computational 

approaches have been explored to automate facial paralysis 

classification, ranging from traditional handcrafted features 

to modern machine learning and deep learning techniques. 

Traditional computational methods for facial paralysis 

classification primarily relied on geometric and image 

subtraction techniques to assess facial asymmetry. These 

methods focused on extracting structural information such as 

distances, angles, and ratios between key facial landmarks to 

identify deviations caused by paralysis. 

Local Binary Patterns (LBP), Histogram of Oriented 

Gradients (HOG), Gabor filters, and Geometric features have 

been widely applied for face-related analysis, including the 

detection and classification of facial paralysis. LBP is 

particularly effective in capturing local texture patterns by 

encoding pixel intensity differences into binary descriptors, 

making it robust to grayscale changes and efficient for 

computational tasks. Several studies have shown the 

effectiveness of LBP in facial recognition [6], [7], 

showcasing its ability to detect fine-grained texture 

variations relevant for asymmetry analysis in facial 

paralysis. Similarly, HOG has proven to be a powerful tool 

for capturing structural and gradient information [8][9], 

highlighting its potential for identifying facial asymmetries 

and patterns indicative of paralysis. 

Gabor filters, known for their ability to capture multi-scale 

and multi-orientation texture features, have been extensively 

used in facial analysis to enhance the representation of fine 

texture details, as shown in the work of Verma [10] and Ou 

[11]. On the other hand, Geometric features focus on the 

spatial arrangement and relationships between facial 

landmarks, effectively capturing asymmetries caused by 

paralysis. Wang et al utilized geometric measurements to 

assess facial symmetry, demonstrating their utility in 

paralysis detection [3]. Other research has been developed in 

the process of detecting facial paralysis using geometric 

features [12], [13]. 

Recent advancements in machine learning have enabled 

these feature extraction methods to be integrated with 

powerful classifiers, such as Logistic Regression, Support 

Vector Machines (SVM), Random Forest (RF), and K-

Nearest Neighbors (KNN), significantly improving the 

accuracy of image classification tasks. Logistic Regression 

has been extensively used for its interpretability and 

efficiency in binary classification tasks [14], [15]. SVM 

excels in handling high-dimensional data and has been 

widely applied in texture-based and geometric classification 

tasks [15], [16], [17]. Random Forest demonstrates its 

strength in handling diverse feature sets and noise, making it 

a reliable choice for image classification tasks [18], [19], 

[20]. KNN, with its simplicity and adaptability to non-linear 

data, has also been successfully applied in facial image 

recognition and classification [21], [22], [23]. 

Recently, deep learning models such as convolutional 

neural networks (CNNs) have demonstrated remarkable 

performance in automated detection and classification tasks 

[24], [25]. Unlike traditional approaches that require manual 

feature extraction, CNNs automatically learn hierarchical 

features directly from raw image data. This feature learning 

capability reduces the reliance on handcrafted features and 

improves classification performance [26], [27]. However, 

deep learning models often require large annotated datasets 

and significant computational resources, which may limit 

their feasibility in certain applications [27], [28]. 

Feature extraction plays a crucial role in the process of 

facial paralysis classification by capturing information about 

texture, shape, and structural asymmetries within an image. 

This study builds on these previous approaches, conducting 

a comparative analysis of feature extraction techniques. 

Texture-based methods include LBP, HOG, Gabor and 

Geometric methods to evaluate their effectiveness in facial 

paralysis classification. Texture-based methods are 

computationally intensive and sensitivity to parameter 

tuning make them less practical for real-time applications 

and Geometric methods are limited in capturing fine-grained 

texture details and heavily depend on the accuracy of 

landmark detection. Current studies predominantly focus on 

either texture-based or Geometric methods, but few explore 

the integration of these complementary approaches.  By 

comparing Texture-based methods and Geometric methods, 

this study aims to identify optimal feature extraction 

strategies that balance performance, and computational 

efficiency. 

This study provides a comprehensive comparison of 

texture-based methods, including Local Binary Patterns 

(LBP), Histogram of Oriented Gradients (HOG), Gabor 

filters, and Geometric features. Additionally, the study 

highlights the trade-offs between computational efficiency 

and classification accuracy, emphasizing the potential of 

hybrid models that integrate texture-based and geometric 

features to achieve both high performance and practicality. 

Furthermore, this research identifies opportunities for 

developing feature extraction techniques that balance 

accuracy and computational efficiency, making them 

suitable for future real-world applications. The study not 

only advances the understanding of feature extraction 

techniques but also provides a foundation for developing 

accurate, efficient, and scalable diagnostic tools for facial 

paralysis, paving the way for future innovation in hybrid 

feature extraction approaches. 

 
II. METHODOLOGY 

The methodology follows a structured pipeline for feature 

extraction and classification of facial paralysis, as shown in 

FIGURE 1. It begins with data collection and data 

preprocessing. Next, feature extraction uses LBP, HOG, 

Gabor filters, and geometric feature to identify key facial 

patterns. The classification model is trained using machine 

learning techniques, LR, SVM, RF and KNN, followed by 

evaluation using accuracy, precision, recall and F1-score 

metrics. Beginning with data collection, where images are 

sourced from public datasets and the YouTube Facial Palsy 
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(YFP) database. The next step, preprocessing, involves face 

detection, resizing and grayscaling. Following this, feature 

extraction employs techniques such as LBP, HOG, Gabor 

filters, and geometric features to capture texture, gradient, 

frequency, and spatial details of the facial images. The 

classification phase utilizes LR, SVM, RF and KNN, trained 

and tested to differentiate between healthy and paralyzed 

facial images. Finally, the system undergoes evaluation 

using metrics accuracy, precision, recall, and F1-Score to 

assess performance and reliability.  

 

 

FIGURE 1. Methodology for feature extraction and classification of facial paralysis  

 
A. DATA COLLECTION 

The dataset used in this research for facial paralysis detection 

consists of publicly available images sourced from the 

internet as well as the YouTube Facial Palsy (YFP) database 

[29]. The YFP dataset, specifically curated for facial 

paralysis studies, includes labeled images of individuals with 

varying degrees of facial paralysis and healthy subjects. This 

dataset ensures a wide range of conditions, from mild to 

severe paralysis, making it ideal for robust and 

comprehensive classification. The publicly available images 

were carefully selected to supplement the YFP database, 

ensuring diversity in lighting, angles, and facial expressions, 

which mimic real-world conditions. The YFP dataset can be 

accessed through the following URL: 

https://sites.google.com/view/yfp-database. 

  The dataset includes two classes, such as healthy (non-

paralysis) and unhealthy (paralysis). The images are 

captured under different conditions, mimicking real-life 

scenarios. This variability challenges the models to 

generalize effectively, making the classification system 

more reliable and applicable in practical settings. The 

inclusion of publicly available data alongside the YFP 

dataset enhances the study’s scope, paving the way for the 

development of a scalable and effective system for facial 

paralysis detection. 

B. DATA PREPROCESSING 

Preprocessing plays a critical role in preparing raw image 

data for effective analysis and classification. The process 

begins with face detection, dlib are employed to locate and 

isolate the facial region of interest from the background. This 

ensures that only relevant portions of the image are 

processed, reducing noise and improving focus on facial 

features critical for paralysis detection.  

 To further prepare the data, each detected facial region is 

resized to a fixed resolution, typically 128x128 pixels. This 

step ensures that all images have consistent dimensions, 

Grayscaling is then applied to the resized images to convert 

them into single-channel data, reducing computational 

complexity while retaining essential texture and structural 

information.. These preprocessing steps collectively ensure 

that the dataset is clean, consistent, and optimized for feature 

extraction and classification. 

C. FEATURE EXTRACTION 

1. LOCAL BINARY PATTERN 

Local Binary Pattern (LBP) captures local texture features 

by encoding binary patterns around each pixel based on 

intensity comparisons. This method involves assigning a 

binary value (0 or 1) based on whether the neighboring 

pixel's intensity is less than or greater than the center pixel's 

intensity. The resulting binary pattern is then converted into 

a decimal number, which serves as the LBP code for that 

pixel. The LBP at a given pixel (𝑥, 𝑦) is defined as Eq. (1) 

[30]. 𝐼𝑝 is the intensity of the center pixel, 𝐼q is the 

intensity of the neighboring pixel and 𝑃 is the number of 

neighbors. ALGORITHM 1 presents the basic LBP 

algorithm. 

 
𝐿𝐵𝑃(𝑥, 𝑦) = ∑ 𝑔(𝐼𝑞 − 𝐼𝑝)2𝑝𝑃−1

𝑝=0   (1) 

 
ALGORITHM 1. Local Binary Patterns (LBP) 
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Require: Grayscale image I 

Ensure: LBP matrix LBP(I) 

Initialize an empty matrix LBP(I) with same dimension as I 

for each pixel p in I do 

Define a 3 × 3 neighborhood around pixel p with p as the center 

Initialize 𝑏𝑖𝑛𝑎𝑟𝑦𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← [] 
for each neighboring pixel q in the 3 × 3 neighborhood do 

if intensity of 𝑞 ≥intensity of p then 

Append 1 to 𝑏𝑖𝑛𝑎𝑟𝑦𝑃𝑎𝑡𝑡𝑒𝑟𝑛 

else 

Append 0 to 𝑏𝑖𝑛𝑎𝑟𝑦𝑃𝑎𝑡𝑡𝑒𝑟𝑛 
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12 

13 

14 

15 

16 

17 

18 

end if 

end for 

Concatenate 𝑏𝑖𝑛𝑎𝑟𝑦𝑃𝑎𝑡𝑡𝑒𝑟𝑛 to form a binary sequence 

Concatenate 𝑏𝑖𝑛𝑎𝑟𝑦𝑃𝑎𝑡𝑡𝑒𝑟𝑛 to a decimal value, 𝐿𝐵𝑃𝐶𝑜𝑑𝑒 

Assign 𝐿𝐵𝑃𝐶𝑜𝑑𝑒 to 𝐿𝐵𝑃(𝐼)[𝑝] 
end for 

return 𝐿𝐵𝑃(𝐼) 

2. HISTOGRAM OF ORIENTED GRADIENTS 

HOG extracts gradient information by binning orientations 

in localized regions, capturing detailed edge and shape 

features. HOG divides the image into small cells and 

computes the gradient magnitude and orientation for each 

pixel. These gradient orientations are then quantized into 

bins to create a histogram for each cell. By normalizing the 

histograms over larger spatial blocks, HOG improves 

robustness to changes in lighting and contrast, ensuring 

consistent performance across varied conditions. The 

gradient at a pixel is calculated as Eq. (2) and Eq. (3) with 

Eq. (4) and Eq. (5) [31]. 𝐺𝑥 is the gradien in 𝑥 direction, 𝐺𝑦 

is the gradien in 𝑦 direction, 𝑀is the magnitude and θ is the 

orientation. ALGORITHM 2 presents the basic HOG 

algorithm. 

 

𝑀 = √𝐺𝑥
2 + 𝐺𝑦

2   (2) 

𝜃 = tan−1 𝐺𝑦

𝐺𝑥
   (3) 

with, 

𝐺𝑥 = 𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥 − 1, 𝑦) (4) 
𝐺𝑦 = 𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦 − 1) (5) 

 
ALGORITHM 2. Histogram of Oriented Gradients (HOG) 
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Require: Grayscale image I 

Ensure: HOG feature vector HOG(I) 

Define 𝑐𝑒𝑙𝑙𝑆𝑖𝑧𝑒 and 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 

Define number of bins,  𝑛𝑢𝑚𝐵𝑖𝑛𝑠 

Initialize an empty list HOG(I) to store feature vectors 

for each cell in I do 

Compute the gradient magnitude and orientation for each pixel 

Quantize orientations into 𝑛𝑢𝑚𝐵𝑖𝑛𝑠 

Accumulate magnitudes into bins to form the cell histogram 

Append cell histogram to HOG(I) 

end for 

for each block in I do 

Concatenate histograms of all cells in the block 

Normalize the concatenated histogram 

Append the normalized block histogram to 𝐻𝑂𝐺(𝐼) 

end for 

return 𝐻𝑂𝐺(𝐼) 
 

3. GABORS FILTER 

Gabor filters analyze images across multiple scales and 

orientations, capturing detailed texture and frequency 

information. A Gabor filter is defined Eq. (6) [32]. 𝑥′ and 𝑦′ 
is rotated coordinates, 𝜆 is the wavelength of sinusoidal 

component, θ is the orientations of Gabor filter, 𝜓 is the 

phase offset, 𝛾 is the aspect ratio, and 𝜎 is the standard 

deviation of Gaussian envelope. ALGORITHM 3 presents 

the basic Gabor filter algorithm. 

 

𝐺(𝑥, 𝑦) = exp (−
𝑥′2

+𝛾2𝑦′2

2𝜎2 ) cos (2𝜋
𝑥′

𝜆
+ 𝜓) (6) 

 
ALGORITHM 3. Gabor Filter 
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Require: Grayscale image I 

Ensure: Gabor feature matrix Gabor(I) 

Define 𝑛𝑢𝑚𝑆𝑐𝑎𝑙𝑒 and 𝑛𝑢𝑚 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 for the Gabor filters 

Initialize an empty list Gabor(I) to store feature responses 

for each scale s in 𝑛𝑢𝑚𝑆𝑐𝑎𝑙𝑒 do 

for each block in I do 

Create Gabor filter 𝐺(𝑠, 𝜃) with scale 𝑠 and orientation 𝜃 

Apply 𝐺(𝑠, 𝜃) to 𝐼 to obtain response 𝑅(𝑠, 𝜃) 

Append 𝑅(𝑠, 𝜃) to 𝐺𝑎𝑏𝑜𝑟(𝐼) 

end for 

end for 

return 𝐺𝑎𝑏𝑜𝑟(𝐼) 

4. GEOMETRIC FEATURES 

Using facial landmarks, geometric features quantify 

distances and angles between key points to detect structural 

asymmetries. ALGORITHM 4 presents the basic HOG 

algorithm. Distance (𝑑) and angle (θ) can be calculated using 

equation Eq. (7) and Eq. (8). 

 

𝑑(𝑖, 𝑗) = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2
  (7) 

𝜃 = tan−1 (
𝑦𝑖−𝑦𝑗

𝑥𝑖−𝑥𝑗
)  (8) 

 
ALGORITHM 4. Geometric Feature 
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Require: Image I with detected facial landmarks 

Ensure: Geometric feature Geo(I) 

Identify key facial landmarks 

Initialize an empty list Geo(I) to store geometric feature 

Calculate distance between landmarks: 

Eye Distance ← Distance between left and right eye centers 

Mouth Width ← Distance between left and right mouth 

corners 

Nose to Mouth ← Distance between nose tip to mouth 

center 

Chin to mouth ← Distance between chin to mouth center 

Calculate geometric ratios and angles: 

Mouth to Eye Ratio ← Mouth Width / Eye Distance 

Nose to Mouth / Chin to Mouth Ratio ← Nose to Mouth / 

Chin to Mouth 

Eye Mouth Angle ← Angle between each eye and mouth 

corners 

Concatenate all calculated distances, ratios and angles into 

𝐺𝑒𝑜(𝐼) 

return 𝐺𝑒𝑜(𝐼) 

 

D. CLASSIFICATION 

This study implements four algorithms that are frequently 

implemented in the field of machine learning. Logistic 

Regression (LR), Support Vector Machine (SVM), Random 

Forest (RF), and K-Nearest Neighbors (KNN) were used to 

classify facial paralysis based on the extracted features. 

1. LOGISTIC REGRESSION (LR) 
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Logistic Regression is supervised learning algorithm for 

binary classification tasks. It models the probability of a data 

point belonging to a particular class using a logistic function. 

Logistic Regression assumes a linear relationship between 

the input features and the log-odds of the target class. The 

probability of a sample belonging to the positive class 

(𝑃(𝑦 = 1|𝑥)) is given by Eq. (9) and Eq. (10) [33]. 𝑧 is the 

liniear combination of input features, 𝑋 is the value of the 

feature, 𝜃 is the bias term, and 𝑏 is the coefficient of the 

feature 

𝑃(𝑦 = 1|𝑥) = 𝜎(𝑧) =
1

1+𝑒−𝑧  (9) 

 

with, 

𝑧 =  𝑋 ⋅ 𝜃 +  𝑏   (10) 

 

The model is trained by minimizing the binary cross-entropy 

loss Eq. (11) [34]. 𝐿 is the binary cross-entropy loss, 𝑛 is the 

total number of samples, 𝑦𝑖  is the actual class label, 𝜎 is the 

predicted of probability of the positive class 

𝐿 = −
1

𝑛
∑ [𝑦𝑖 log(𝜎(𝑧𝑖)) + (1 − 𝑦𝑖) log(1 − 𝜎(𝑧𝑖))]𝑛

𝑖=1   (11) 

 
2. SUPPORT VECTOR MACHINE (SVM) 

Support Vector Machine (SVM) is a powerful supervised 

learning algorithm that aims to find the optimal hyperplane 

that maximizes the margin between data points of different 

classes. The margin is defined as the distance between the 

hyperplane and the nearest data points from each class, 

known as support vectors. SVM solves the following 

optimization problem Eq. (12) [35]. 𝑤 is the wight vector, 𝐶 

is the regularization parameter controlling the trade-off 
between maximizing the margin and minimizing 

classification errors, 𝑥𝑖 is the feature vector for the i-th 

sample, Φ is the mapping function to transform data into a 

higher-dimensional feature space, 𝑏 is bias term, ξ𝑖  is slack 

variable allowing misclassification, and 𝑦 is the class label. 

min
𝑤,𝑏,ξ

1

2
|𝑤|2 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

 

subject to: 𝑦𝑖(𝑤 ⋅ ϕ(𝑥𝑖) + 𝑏) ≥ 1 − ξ𝑖 ,  ξ𝑖 ≥ 0 (12) 

 

When the data is not linearly separable in the input space, 

SVM uses kernel functions to map the data into a higher-

dimensional feature space, where a linear hyperplane can be 

constructed. The following are four basic kernels, liear 

kernel Eq. (13), Polynomial Kernel Eq. (14), Sigmoid Kernel 

Eq. (15) and Radial Basis Function (RBF) Eq. (16) [36]. 𝑥 is 

the input feature, 𝐾 is the kernels function, 𝑟 is the 

coefficient or bias term added to the kernel function, 𝑑 is the 

degree of the polynomial in the Polynomial kernel, and γ is 

the scaling parameter that controls the influence of the input 

data. 

 
Linear 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖 ⋅ 𝑥𝑗  (13) 

 
Polynomial 

𝐾(𝑥𝑖 , 𝑥𝑗) = (γ ⋅ 𝑥𝑖 ⋅ 𝑥𝑗 + 𝑟)
𝑑

 (14) 

 
Sigmoid 

𝐾(𝑥𝑖 , 𝑥𝑗) = tanh(γ ⋅ 𝑥𝑖 ⋅ 𝑥𝑗 + 𝑟)  (15) 

 

Radial Basis Function (RBF) 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp(−γ|𝑥𝑖 − 𝑥𝑗|2)  (16) 

 
3. RANDOM FOREST (RF) 

Random Forest is an ensemble learning method that 

constructs multiple decision trees and aggregates their 

outputs to improve classification accuracy and robustness. It 

operates by combining predictions from individual trees, 

each trained on a different bootstrap sample of the training 

data, reducing overfitting and enhancing generalization. 

During the construction of each tree, nodes are split based on 

the Gini Impurity criterion, which measures the homogeneity 

of the labels in a dataset. The Gini Impurity at a node t 

(𝐺(𝑡)) is calculated as Eq. (17) [37]: 

[𝐺(𝑡) = 1 − ∑ 𝑝𝑖
2𝑐

𝑖=1 ]  (17) 

 

where 𝑝𝑖 is the proportion of samples belonging to class i at 

node t. This ensures that splits maximize the purity of child 

nodes, improving the discriminative power of the individual 

trees. For classification, Random Forest uses ensemble 

prediction, where each tree in the forest votes for a class 

label, and the final prediction �̂� is determined by majority 

voting Eq. (18): 

[�̂� = mode(𝑦1 , 𝑦2, … , 𝑦𝑛𝑡𝑟𝑒𝑒𝑠
)]  (18) 

 
4. K-NEAREST NEIGHBORS (KNN) 

K-Nearest Neighbors (KNN) is a non-parametric, instance-

based learning algorithm used for classification tasks. It 

identifies the k-nearest data points to a given test sample in 

the feature space and predicts its class based on the majority 

class of its neighbors. The choice of distance metric plays a 

crucial role in determining the performance of KNN, as it 

defines how "closeness" is measured between data points. 

Commonly used metrics include Euclidean Distance, which 

calculates the straight-line distance between two points. The 

following are four distance metrics Euclidian Distance Eq. 

(19), Manhattan Distance Eq. (20), Minkowski Distance Eq. 

(21), and Hamming Distance Eq. (22) [36]. 𝑑(𝑥𝑖 , 𝑥𝑗) is the 

distance between two point, 𝑥𝑖 is the 𝑖-th data point, 𝑥𝑗 is the 

𝑗-th data point, 𝑥𝑖𝑘 is the value of the 𝑘-th feature for the 𝑖-
th data point, 𝑥𝑗𝑘 is the value of the 𝑘-th feature for the 𝑗-th 

data point, 𝑛 is the number of features and 𝑝 is the parameter 

controlling the metric. 

 
Euclidian Distance 

𝑑(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2𝑛

𝑘=1   (19) 

 
Manhattan Distance 

𝑑(𝑥𝑖 , 𝑥𝑗) = ∑ |𝑥𝑖𝑘 − 𝑥𝑗𝑘|𝑛
𝑘=1   (20) 

 
Minkowski Distance 
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𝑑(𝑥𝑖 , 𝑥𝑗) = (∑ |𝑥𝑖𝑘 − 𝑥𝑗𝑘|
𝑝𝑛

𝑘=1 )
1
𝑝  (21) 

 
Hamming Distance 

𝑑(𝑥𝑖 , 𝑥𝑗) = ∑ 1(𝑥𝑖𝑘 ≠ 𝑥𝑗𝑘)𝑛
𝑘=1   (22) 

E. EVALUATION 

In this study, the classification model was evaluated using 

accuracy, recall, F1-score, and precision. It can be calculated 

using True Positive (𝑇𝑃), True Negative (𝑇𝑁), False 

Positive (𝐹𝑃), False Negative (𝐹𝑁). The following is the 

calculation formula.  
1. ACCURACY 

Accuracy measures the overall correctness of the model 

by calculating the percentage of both true positive and 

true negative predictions out of all predictions. Accuracy 

can   be calculated in Eq. (23) as follows. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
  (23) 

 
2. PRECISION 

Precision shows how reliable the model’s positive 

predictions are by indicating the percentage of correctly 

identified paralysis cases out of all cases predicted as 

positive. Precision can   be calculated in Eq. (24) as 

follows. 

𝑃𝑟𝑒𝑐𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
  (24) 

 
3. RECALL 

Recall focuses on sensitivity, measuring the percentage 

of actual paralysis cases that were correctly detected. 

Recall   can   be calculated in Eq. (25) as follows. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (25) 

 
4. F1-SCORE 

F1-score combines precision and recall into a single 

balanced metric. F1-Score   can   be calculated in Eq. (26) 

as follows. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛  ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (26) 

III. RESULT 

A.  FEATURE EXTRACTION 

In this study, various feature extraction techniques were 

employed to enhance the analysis and representation of input 

data. These techniques include LBP, HOG, Gabor filter, and 

geometric features. LBP is employed for capturing local 

texture patterns. HOG is used to extract shape and gradient-

based features. The Gabor filter, known for its spatial and 

frequency-selective capabilities, captures texture and 

orientation details. Geometric features, derived from spatial 

and structural attributes, emphasize shape characteristics. 

The specific parameters used in each technique, which 

determine their configuration and effectiveness, are detailed 

in TABLE 1. These parameters were selected to optimize the 

performance of the feature extraction process for the given 

dataset.  
TABLE I 

Parameters of each technique 

Feature Extraction Key Parameters Values 

LBP Radius 1 

 Neighbors 8 

 Grid Size 8×8 
HOG Cell Size 8×8 

 Block Size 2×2 
 Orientations 9 

Gabor Kernel Size 31×31 

 Sigma 4 
 Frequency 8 

Geometric Landmark Model dlib facial landmark 

[38] 

 Distance Eye, Mouth, Nose and 

Chin 
 Angle Eye, Mouth and Nose 

 

Feature extraction is performed on images with a size of 

128x128 using LBP, HOG, Gabor filter and geometric 

features according to the parameters provided in TABLE 1. 

The results of feature extraction for each technique are 

shown in TABLE 2. The LBP technique extracts the fewest 

features, as it only extracts local textures in an image. 

Conversely, the Gabor filter extracts the most features, as it 

extracts texture and frequency-based features. HOG extracts 

gradient and edge orientation features, while geometric 

extracts structural features by calculating the distances and 

angles between facial landmarks. 
 

TABLE 2 
Number of features 

Feature Extraction Number of Features 

LBP 10 

HOG 810 
Gabor 1684 

Geometric 13 

 
 
B.  Classification 

In this study, classification was performed to determine 

facial paralysis from the images. After feature extraction, the 

extracted features were used as inputs for the classification 

process. The images were labelled, with label 1 representing 

paralyzed faces and label 0 representing non-paralyzed 

faces. Classification was conducted using LR, SVM, RF, and 

KNN methods. In this study, hyperparameter tuning was 

conducted using the grid space search approach to optimize 

the classification performance of LR, SVM, RF, and KNN 

classifiers. The search space every method are presented in 

TABLE 3. 

 
TABLE 3 

Hyperparameter tuning 

Clasifier Hyperparameter 
Grid Search 

Space 
Description 

LR C [0.01, 0.1, 1, 

10] 

Regularization 

parameter 

SVM Kernel  
  

 

Linear and 
Radial Basis 

Function 

 

The function used 
to compute the 

kernel matrix for 

classification 

C [0.1, 1, 10] Regularization 

parameter 

RF N_estimators [50, 100, 200] 

 

 Number of trees 

in the forest 
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Max_depth [5, 10, 20] 

 

Maximum depth 

of the tree 

Min_samples_sp

lit 

[2, 5, 10] Minimum number 

of samples 
required 

to split a node 

KNN K_neighbors 

 

[3, 5, 7] 

 

Number of 

nearest neighbors 

Weights Uniform and 
Distance 

Weight function 
used in prediction 

 

Each method was evaluated using 5-fold cross-validation 

with accuracy as the evaluation metric. The process involved 

splitting the dataset into five subsets, where the model was 

trained on four folds and validated on the remaining fold 

iteratively. The metric results presented in the FIGURE 2 to 

FIGURE 5 highlight the comparative performance of feature 

extraction methods LBP, HOG, Gabor, and Geometric 

features when combined with LR, KNN, RF and SVM. 
 

 

FIGURE 2. Model Accuracy 

 

FIGURE 3. Model Recall 

 

 

FIGURE 4. Model F1 Score 

 

 
FIGURE 5. Model Precision 

 

TABLE 4 shows the top 10 accuracy provides evaluation 

of the classification performance for each feature extraction 

method LBP, HOG, Gabor, and Geometric features 

combined with LR, KNN, RF and SVM. 
 

TABLE 4 
The top 10 Accuracy 

No 
Feature 

Extraction 
Classifier Accuracy 

1 HOG KNN 85.96% 

2 HOG SVM 84.52% 

3 LBP RF 82.07% 

4 LBP KNN 78.69% 

5 HOG LR 77.15% 

6 HOG RF 76.84% 

7 Geometric RF 72.85% 

8 LBP SVM 72.64% 

9 Geometric LR 69.36% 

10 Gabor RF 69.05% 
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IV. DISCUSSION 

The number of features extracted by each method varies 

significantly. LBP extracted 10 features and provides a 

representation of local texture patterns. HOG extracted 810 

features and provides representation of structural and edge 

details. Gabor filters extracted the largest set of 1,684 

features and captured multi-scale and multi-orientation 

texture information. Geometric features, with only 13 

features, focus on structural relationships of distances and 

angles between landmarks. 

The extracted features used as input for machine learning 

models, including LR, SVM, RF, and KNN. Each classifier 

was evaluated based on key performance metrics: accuracy, 

precision, recall, and F1-score. The result reveals that all 

methods achieved similar metrics, including accuracy, 

precision, recall, and F1-score, despite significant 

differences in the number of extracted features. LBP, with 

only 10 features, and Geometric features, with 13, provided 

compact representations that performed comparably to HOG 

and Gabor, which extracted 810 and 1,684 features, 

respectively. This indicates that feature relevance, rather 

than sheer quantity, is key to achieving high classification 

performance. 

The results highlight that methods with fewer features can 

still achieve competitive results. Using fewer features in a 

machine learning model can significantly enhance 

computational efficiency. Each feature represents a 

dimension in the data, and reducing the number of 

dimensions directly impacts the computational resources 

required for data processing, training, and inference. 

According to the result, HOG combined with KNN 

achieved the highest scores across all metrics. This indicates 

that HOG effectively captures the most relevant features for 

facial paralysis classification. By focusing on gradient 

orientations and edge information. The high scores across 

metrics indicate that the features extracted by HOG are not 

only detailed but also highly discriminative, thereby 

allowing the classifiers to make precise predictions. 

Geometric features show good potential for facial paralysis 

classification due to their simplicity and efficiency. With 

only 13 features extracted, they achieved competitive results 

compared to more complex methods like HOG and Gabor. 

Geometric features extracts structural features by calculating 

the distances and angles. These features effectively capture 

structural asymmetries, making them highly relevant for this 

task. Additionally, there are many ways to expand geometric 

features, such as using ratios, higher-order angles, or spatial 

configurations, which could further improve performance. 

In facial paralysis detection, it is generally preferable to 

have false positives over false negatives. A false positive, 

where the system mistakenly identifies paralysis in a healthy 

individual, may cause some unnecessary follow-up 

evaluations, but it does not carry immediate health risks. 

Conversely, a false negative, where actual facial paralysis 

goes undetected, could lead to serious consequences. Facial 

paralysis can be an early indicator of underlying conditions 

such as stroke or Bell's palsy, which require prompt medical 

attention. Missing these cases may delay crucial 

interventions, potentially worsening patient outcomes.  

 
TABLE 5 

The top 10 recall 

No 
Feature 

Extraction 
Classifier Recall 

1 HOG KNN 85.96% 

2 HOG SVM 84.53% 

3 LBP RF 82.07% 

4 LBP KNN 78.69% 

5 HOG LR 77.15% 

6 HOG RF 76.84% 

7 Geometric RF 72.85% 

8 LBP SVM 72.64% 

9 Geometric LR 69.36% 

10 Gabor RF 69.06% 

 

TABLE 5 displaying the top 10 recall values highlights the 

effectiveness of various feature extraction methods and 

classifiers in correctly identifying true positive cases of 

facial paralysis. Among the results, HOG combined with 

KNN achieves the highest recall values, indicating its 

strength in capturing detailed structural patterns that enhance 

the detection of facial asymmetries. LBP, despite its smaller 

feature set, also demonstrates competitive recall values 

across multiple classifiers, showcasing its efficiency in 

identifying relevant patterns in local textures. Geometric 

features, while computationally lightweight, rank among the 

top methods due to their focus on facial asymmetries, which 

are key indicators of paralysis. The table underscores the 

importance of feature selection and classifier pairing, as 

methods like Gabor, though rich in detail, occasionally rank 

lower in recall due to feature redundancy or noise. These 

results emphasize the need to balance feature complexity and 

classifier sensitivity to achieve optimal recall, ensuring 

reliable detection of facial paralysis in diverse scenarios. 

TABLE 6 presents a comparative of various methodologies 

for similar studies, focusing on different feature extraction 

techniques, classifiers, datasets, and performance metrics. 

Several prior studies have explored different approaches, 

such as Kim [39], which used a linear regression model for 

facial landmark detection and an SVM with a linear kernel, 

achieving 88.9% accuracy on a private dataset of 36 subjects. 

Arora [40] employed facial landmark features with cascade 

regression and an SVM, obtaining 76.87% accuracy on the 

Stroke Faces dataset. Tan [41] introduced the 

FNPARCELMCCNN method, which achieved 85.5% 

accuracy on the YouTube Facial Palsy (YFP) database. 

Meanwhile, Liu [42] applied a PHCNN-LSTM model, 

reaching 94.81% accuracy using the YouTube Facial Palsy 

Database and the Extended Cohn-Kanade Database. Lastly, 

Sajid [43] implemented a CNN-based approach (VGG-16) 

trained on an augmented dataset of 2000 images, achieving 

92.6% accuracy, 92.91% precision, 93.14% sensitivity, and 

an F1 score of 93%. 
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In comparison, this study experimented with multiple 

feature extraction techniques on the YouTube Facial Palsy 

(YFP) database, with HOG-KNN and LBP-RF both 

achieving 85.96% accuracy and recall, slightly 

outperforming Tan [41]. The LBP method alone resulted in 

82.07% accuracy and recall, while Geometric-RF and 

Gabor-RF performed lower, with 72.85% and 69.05% 

accuracy, respectively. These results indicate that traditional 

feature extraction techniques like HOG and LBP can still 

achieve competitive performance, though deep learning-

based methods such as CNN (VGG-16) and PHCNN-LSTM 

consistently outperform classical approaches by exceeding 

92% accuracy. This highlights the potential of deep learning 

for more robust facial paralysis classification.  

Geometric-RF showed lower performance, achieving 

72.85% accuracy, likely due to its limited feature 

representation compared to other methods. In this study, the 

geometric approach used only 13 features, which may not 

have been sufficient to capture the full complexity of facial 

paralysis variations. One potential improvement is 

expanding the geometric feature set by incorporating higher-

order statistical features, such as curvature analysis, 

displacement vectors over time, or dynamic movement 

trajectories of facial landmarks. Another approach is to 

combine geometric features with texture-based methods or 

deep learning embeddings to enhance feature richness. 

Feature selection techniques, such as Principal Component 

Analysis (PCA) or Feature Fusion Networks, could also 

optimize the most discriminative geometric attributes for 

classification. 

 

TABLE 6 
Comparison of similar studies 

Author Methodology Dataset Performance 

Kim [39] Linear regression model for facial 
landmark detection and SVM with linear 

kernel for classification 

Private dataset of 36 subjects (23 noral−13 palsy 
patients) performing 3 motions 

88.9% classification accuracy 

Arora [40] Facial landmark features with cascade 

regression and SVM 

Stroke faces dataset of 1024 images and 1081 

images of healthy faces 

76.87% accuracy 

Tan [41] FNPARCELMCCNN method YouTube Facial Palsy (YFP) database  85.5% accuracy 

Liu [42] PHCNN-LSTM YouTube Facial Palsy Database Extended 
CohnKanade Database 

Accuracy PHCNN-LSTM 0.9481% 

Sajid [43] CNN (VGG-16) 92.6% accuracy 92.91% precision 93.14% 

sensitivity 93% F1 Score 

Dataset from online sources 

augmented to 2000 images 

This Study HOG-KNN YouTube Facial Palsy (YFP) database 85.96% Accuracy 
85.96% Recall  

This Study LBP-RF YouTube Facial Palsy (YFP) database 85.96% Accuracy 

85.96% Recall  
This Study LBP YouTube Facial Palsy (YFP) database 82.07% Accuracy 

82.07% Recall 
This Study Geometric-RF YouTube Facial Palsy (YFP) database 72.85% Accuracy 

72.85% Recall 

This Study Gabor-RF YouTube Facial Palsy (YFP) database 69.05% Accuracy 

69.06% Recall 

The primary limitation of the current study is its reliance 

on handcrafted feature extraction methods, which require 

extensive tuning and may not generalize well across diverse 

datasets. While techniques like HOG and LBP are 

computationally efficient, they are limited in capturing 

complex, high-level features present in more intricate 

datasets. Another weakness is the lack of testing on larger, 

more diverse datasets, which could better validate the 

model's generalizability.  

This study has implications for the field of facial paralysis 

classification. This comparative analysis reveal distinct 

strengths and trade-offs among the feature extraction 

techniques LBP, HOG, Gabor filters, and Geometric features 

for facial paralysis classification. HOG demonstrated the 

highest overall performance, excelling in capturing detailed 

gradient and structural information, which translated to good 

accuracy, precision, recall, and F1-score across classifiers. 

The analysis underscores that while HOG provides more 

detailed feature representation, lightweight methods like 

LBP and Geometric features offer efficient alternatives, 

especially when computational resources are limited. 

Geometric features stand out as an area with significant 

potential for expansion. Future work could explore advanced 

geometric descriptors, such as curvature, symmetry ratios, or 

dynamic geometric features captured from videos. These 

findings highlight the importance of aligning feature 

extraction techniques with application requirements, and the 

potential for hybrid approaches to combine their strengths 

for improved classification performance. 

V. CONCLUSION 

This study provides a comprehensive comparative analysis 

of feature extraction techniques for facial paralysis 

classification, focusing on LBP, HOG, Gabor filters, and 

Geometric features. The evaluation highlights that HOG 

delivers best performance with an accuracy 85% due to its 

ability to capture detailed texture and structural information, 

LBP and Geometric features stand out for their 

computational efficiency, achieving competitive metrics 

with significantly fewer features. LBP, employing 10 

features, achieves an accuracy of 82%. In comparison, the 

geometric features, which utilize only 13 features, attain an 
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accuracy of 72%. Future research should expand geometric 

features and explore hybrid approaches that integrate the 

strengths of different methods, potentially enhancing both 

performance and scalability for practical use in facial 

paralysis detection and related medical imaging applications. 
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