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ABSTRACT Fault detection in hybrid control systems (HCS) poses significant challenges due to dynamic variations in system 

dynamics caused by event-based inputs and the existence of unknown large process noise. A novel scheme for optimized robust 

fault detection of HCS has been proposed and projected here that can effectively handle dynamic system changes and process 

noise along with the fault detection while achieving high accuracy and reliability. The challenge with the HCS is the presence 

of a large process noises due to changing of state equations drastically with dynamical input making the fault detection a 

complex task. The derivative-free estimator minimizes process noise and provides reliable state estimation, while the Markov 

Decision Process (MDP) framework is employed to optimize fault detection. MDP has been chosen here due to its mathematical 

introspection for dynamic system's decision-making process when the results are random or under the control of a decision 

maker. The data generated by the derivative-free estimator is used to train this deep learning model. Simulation studies were 

conducted to evaluate the scheme’s performance, and additional tests for convergence, optimization, and robustness were 

performed using MDP infused with adaptive estimators. The efficacy of the proposed estimators has been confirmed on a 

benchmark problems, namely the liquid level control system for an chemical stirred tank reactor (CSTR) model. Simulation 

studies has been employed to prove the efficacy of the proposed method. The proposed method achieved 98.6% fault detection 

accuracy and a 12% mean error reduction compared to existing techniques. It demonstrated robustness under varying noise 

levels, dynamic conditions and presence of external disturbances . The results confirm the method's effectiveness for robust 

and optimized fault detection in HCS, offering a scalable, accurate, and noise-resilient solution for real-world industrial 

systems 

 INDEX TERMS CSTR, Fault Detection, Hybrid System, Markov Decision Process, Q-Adaptive, Robustness Study. 

I. INTRODUCTION 

Robust Fault Detection in Hybrid Control Systems involves 

identifying and isolating faults in systems that integrate 

continuous dynamics (e.g., time-evolving system dynamics) 

with discrete logic or switching. This is a challenging task due 

to the interplay of continuous and discrete behaviours, 

presence of process and measurement noises noise, 

uncertainties, and potential nonlinearities. Fault detection in 
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hybrid systems can be defined as a process of identifying 

abnormalities or malfunctions in systems that combine 

different components or operate across multiple modes. Smart 

Fault detection ensures the hybrid system maintains 

reliability, safety, and efficiency. 

This work's primary focus is on "hybrid control systems," 

which are a unique class of complex systems that have two 

distinct subsystem types—continuous and logic-driven 

subsystems—that interact in real time to accomplish a shared 

objective or enhance performance and efficiency[1], 

[2].Discrete event dynamical systems (DEDS), which have 

drawn a lot of attention in the control literature, are the 

foundation of the hybrid systems structure. While a tutorial on 

modelling the dynamics of hybrid systems has been discussed 

in the work of [3], the lecture notes of John Lygeros [1] 

include examples of several HCS in this context.  

The derivative free estimator is another feature of this 

publication. First order CDF has been selected as the main 

algorithm in this paper [4]. One of the derivative free 

estimator family's essential paradigms is CDF. These 

estimators are employed in adaptive learning and online 

parameter estimation, where models are changed instantly in 

response to fresh data. The primary benefit of employing a 

CDF-based estimator over the popular Derivative Free Filter 

(EKF) is that the latter has several known drawbacks, 

including complicated Jacobian computations and singularity 

issues. [5], [6] presented a linearisation procedure based on 

square root factorisation of the output covariance matrices.  

In [7], estimators for time evolving nonlinear systems have 

been addressed where polynomial approximations has been 

used for linearization.  In this work, two state estimators, 

namely: 1st order divided difference filter (DD1) and 2nd 

order divided difference filter (DD2) have been derived. It is 

shown that under certain assumptions the estimators perform 

better than estimators based on Taylor series approximations. 

A paper containing similar material has appeared in [8].  

The paper of [4]is also consequential. In this work real-time 

and accurate estimators especially first order and 2nd order 

CDF have been developed and analyzed for nonlinear filtering 

problems based on the Gaussian distributions.  

The paper of [5] has been presented a new algorithm based 

on numerically efficient central difference algorithm which is 

potentially suitable for on board implementation. The same 

group authors [5] also work on the adaptive version of it. The 

paper of [9] is also imperative in this area where adaptive 

divided difference filter has been successfully employed. 

But the central theme of this thesis is the estimation of 

nonlinear hybrid system. Derivative free estimation for this 

type of system has been discussed in [10]. In this work, the 

performances in convergence, robustness and numerical 

stability of DDF, in state estimation of nonlinear systems are 

illustrated by an application to a three-tank system.  

The other point of the novelty of this work is adaptive filter 

for hybrid systems. A very few papers are available in this 

domain. Adaptive filter has been first introduced by [11], 

followed by [12] . The paper authors[12], [13] deals with an 

adaptive nonlinear model estimator in cases of mismatch 

modeling, presence of perturbations and/or parameter 

variations for various applications. The adaptive estimator for 

hybrid control systems have been addressed in [13], [14], [15] 

Another aspect of this work is intelligent fault recognition 

[16], [17]In this work the fault detection framework has been 

investigated by using deep reinforcement learning has been 

discussed in the paper [18], [19], [20]In the paper of  [21], 

estimation performance of the novel hybrid estimator based 

on machine learning and extended Kalman filter has been 

detected. SVM infused with estimators has been found in [14], 

[22], but in this paper, MDP has been proposed for better 

accuracy which is basically a reinforcement learning.   

A reinforcement learning based fault diagnosis for 

autoregressive-moving-average model has been first 

introduced by [18] . The fault detection using different 

filtering methods has been demonstrated in the literature for 

nonlinear systems [23], [24]  which helps the current author to 

choose the central algorithm 

The combination of estimator infused with different 

machine learning algorithm as discussed in prior 

literature[25], [26], [27]. SVM based fault detection has been 

also cited in this context [28]. The advanced version of 

machine learning, e.g. deep learning has been also 

demonstrated in this regard[29] . In this work, MDP has been 

trained with the data set derived from the estimator after 

filtering the process and measurement noises. As the process 

noise magnitude is unknown to the estimator, adaptive version 

has been taken into account for this work. The use of Markov 

decision process infused with central difference filter for fault 

detection of hybrid control system is the novelty of the work.  

To evaluate the performance of these classifiers, the 

following metrics were employed: 

1) Detection Accuracy (DA) and Detection time: The speed 

and accuracy to detect the fault 

2) True Positive Rate (TPR): Correctness of fault detection 

3) F1-score: The harmonic means of recall and precision.  

4) Robustness study: The change in fault detection speed 

for different level of noises 

 

The uniqueness of the current work as mentioned earlier is 

to detect the fault using hybrid reinforcement fault detection 

i.e. Markov Decision Process for hybrid control system. MDP 

which has been elucidated here is a combination of supervised 

and reinforcement learning. Derivative free 1st order central 

difference estimator has been successfully implemented to 

minimize the noises. The primary benefits of employing this 

kind of estimate scheme are: the linearization procedure is 

more accurate than the linearization technique used for EKF; 

ii. neither the Jacobian nor the Hessian matrix needs to be 

constructed. 

The robustness study of the fault detection has been done 

for different process noise covariances and injecting the 

external disturbances. This chemical starred tank which has 

been elected to study the efficacy of the proposed method has 

been taken from the literature [14], [30], [31]. In the paper of 
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the current author , the fault detection of same system has been 

introduced, but machine learning has not been addressed 

therein. Fault detection of liquid level controller using 

machine learning technologies have been discussed in paper 

[32] but hybridness of the plant has not been considered. 

A comparative study of various machine learning 

algorithms to estimate liquid level has been illustrated in 

literature [32], [33]. The faults considered here are leakage 

fault [34], sudden change inflow and external disturbance. 

According to the literature review, there is a research gap 

because nonlinear hybrid control systems with process noise 

that the estimator is unaware of lack reliable and accurate fault 

identification. The current work aims to obviate the 

drawbacks of HCS and get a faster detection of fault with 

lesser latency and developed precision and accuracy. The 

main contribution of the present worker can be penned as: 

1) Faster detection of fault with lesser latency and developed 

precision and accuracy using MDP based machine 

learning as it gives a mathematical introspection for 

dynamical systems when the outcomes are random and 

controlled by a decision maker. In the previous work, 

MDP has not been employed in such situation. 

2) The primary drawback of HCS, is that the process noise 

quite high because of the estimator and truth model 

mismatch,  which results in an incorrect fault detection. By 

using Q-adaptation, an adaptive estimator can avoid this 

disadvantage. Though the Q-adaptive derivative free 

estimator was proposed for NLHS in the current author's 

work, machine learning was not employed therein. 

3) This work suggests combining the two aforementioned 

techniques, which are more effective and efficient for fault 

identification when there are significant noises and 

external disturbances present.    

4) In this case, the effectiveness has been demonstrated using 

a chemical stirred reactor. 

 The remaining area of this work comprises of problem 

formulation, Algorithm for fault detection followed by 

problem solution and conclusion. 

II.  SYSTEM DESCRIPTION 

In order to illustrate the newly developed idea of the suggested 

estimating and fault detection technique, the benchmark test 

problem of the chemical stirred tank reactor (CSTR) is 

examined in this section. This issue was drawn from the 

literature [14], [31]. Three control valves regulate the level of 

a fluid in a tank that makes up the system seen in FIGURE 1 

(a). As illustrated in FIGURE 1, each valve opens or closes in 

accordance with the predetermined thresholds (h_lv and 

h_lp). Under adiabatic circumstances, a thermal power source 

heats the fluid in the tank uniformly. The diagram which has 

been chosen here the benchmark problem diagram. The same 

diagram has been used in the other work[14], [31]. The 

hybridness of the diagram is also describe in 1.b. When the 

water level is above the threshold level(h_lv) output valve 

remains closed but the inflow continues. Similarly, when the 

water level crosses the upper threshold(h_lp) the water starts 

to flow through the outlet. The FIGURE 1.b. shows the 

hybridness 

 

 

(a) 

 

(b) 
FIGURE 1. Hybridness of the liquid level of CSTR based on the threshold 
value(mode) a. Schematic diagram of CSTR (Hybrid control system), b. 

Schematic Flow diagram according to mode change 

A.  PLANT MATHEMATICAL MODELLING 

The following non-linear difference equations, which are 

derived from the mass and energy conservation rules, can be 

used to describe the state equations once the system dynamics 

have been discretized and other simplifying physical 

assumptions have been made. The fluid level is the first state 

(x1) and temperature the 2nd state (x2). Q1 and Q3 are 

designated as rate of flow through inlet valves whereas  Q2 is 

considered as the flowrate through outlet valve.. Vm is the 

assigned inlet fluid temperature, Ts is the time step, and wk and 

vk are the process noises and the measurement noises 

respectively. The mathematical equations e.g. (1) and (2). 

depicts the system dynamics and measurement respectively. 

The nomenclature has been given down.[30], [31] 

 

𝒙�̇� = 𝑻𝑺[𝜶𝟏𝑸𝟏 + 𝜶𝟑𝑸𝟑 − 𝜶𝟐𝑸𝟐 + 𝒘𝟏]               (1)

                        

𝑥2̇ = 𝑇𝑆/𝑥1̇ ∗ [𝛼1𝑄1 + 𝛼3𝑄3 − 𝛼2𝑄2 + 𝑤2 − (𝑉𝑚 + 𝑥2)]  
                                                     (2)  

 

In Eq. (1) and Eq. (2) [31], 𝑥1 is the level of the liquid 

column where as  𝑥2 is temperature of the fluid w1 and w2 are 

process noises statistics with noise covariances Q. 

 

𝑦 = 𝐶 ∗ [
𝑥1

𝑥2  
] + 𝑣1, where C=[0 1]          (3) 
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From Eq. (3)[31] it can be implied that the CSTR 

temperature has been measured as the system output where 

the values of the other plant parameters are given in the 

following table, i.e. TABLE 1. 

TABLE1 

Value of parameters of liquid level control system 

Sl. No. Name of the parameter Value of the 

parameter 

1. inflow (q1) 1l/m 

2. inflow (q3) 3l/m 

3. outflow (q2) 2.5 m/h 

4. inflow temperature (vm) 15 degree cg. 

5. threshold height_lower (h_lv ) 4 m 

6. threshold height_upper (h_lp ) 10m 

5 sample time (ts) 0.01 

B.  MODE DESCRIPTION 

A Continuous Stirred Tank Reactor (CSTR) operates as a 

hybrid Control system as the continuous aspect arises from 

the chemical reaction processes governed by differential 

equations, such as changes in concentration, temperature, and 

flow rates. The discrete nature emerges from events like 

switching control modes, valve operations, or system 

shutdowns, which cause abrupt state transitions. Depending 

upon the liquid level and water flow and valve operations, two 

modes can be described as in Eq. (4) to Eq. (5)  [14], [31]. 

 

 

(a) 

 
(b) 

 
FIGURE 2 Change in mode and liquid level with respect to time a. The time 
evolving measurement b. change in mode 

 

Mode I: Water level is below than lower threshold height or 

(h_lv< liquid-level<h_lp):  

 

𝜶𝟏 = 𝜶𝟑 = 1; 𝜶𝟐 = 0   (4) 

Mode II: Water level is more than higher threshold height or 

(h_lp< liquid-level<h_lv):    

 

𝜶𝟏 = 𝜶𝟑 = 0; 𝜶𝟐 = 1   (5) 

Response of liquid level control system under different 

conditions. In this section, the hybrid behaviour of liquid level 

control systems has been studied under different conditions. 

Validation has been done here through simulation studies. For 

this bench mark problem, the initial condition of liquid level 

has been assumed=15cm; and the tank temperature is 10 

degree Celsius. Covariances of noise characteristics given in 

Eq.(6)[31] can be defined as : 

 

𝑄 = [
0.02 0

0 0.1
] unit2   𝑅 = [

0.16 0
0 0.05

]unit2               (6) 

In this scenario (FIGURE 2), CSTR can be considered as a 

hybrid control system with nonlinearity. The time evolving 

measurement is known as state as well as the event based logic 

are known as mode. The same nomenclature has been used in 

rest of the work. 

C. FAULT MODEL 

As discussed earlier, the proposed approach was validated 

liquid-level control system of a chemical stirred tank reactor 

(CSTR) model. Two types of fault model have been defined 

here to proof the efficacy of the method.  They are namely 

leakage fault and sudden change in inflow. The fault equations 

have been illustrated by the given equations. Eq. (7) [14] 

describes the liquid leakage of valve 1 which can can be 

defined as  

𝑸𝒍𝒆𝒂𝒌 = 𝒂𝒇𝒓𝒇
𝟐𝝅√𝟐𝒈𝒙𝟏  (7) 

  

where, af = leakage coefficient=0.4; rf= radius of the leakage. 

The leakage in the chemical stirred tank results in a continuous 

outflow through the leak. The leakage flow depends on the 

radius of the leakage and a flow coefficient. The flow 

coefficient is a function of the fluid density and temperature. 

But for simplicity, here it has been considered as constant. 

The other fault as in Eq. (8) [14] which is present in this 

work, is the sudden change due to improperness in valve 

activity or sudden shutdown of the inlet valve. Sudden change 

in flowrate through inlet1 (δf in percentage) has been given in 

Eq. (8) [14]. The inlet flow under fault condition becomes Q1f  

which can be shown here:                 

Q1f=δfQ1/100                                                (8) 

  III. FAULT DETECTION ALGORITHM 

For identifying faults, the commonly utilized method is 

based on residuals. The introduction of unforeseen noises 

alters the statistical properties of the innovation sequence or 

the residual sequence. The term "innovation" typically refers 

to the discrepancy between a measurement and its associated 

prior estimate. In contrast, the difference between a 

measurement and its corresponding posterior estimate is 

referred to as the residual. 
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FIGURE.3. Flowchart for fault detection 

 
The steps for fault detection have been described here in a 

flowchart in FIGURE 3. Measurement of hybrid structures 

are considered as the input of the estimator. These data are 

used to train the Markov Decision model. 

A.  Q ADAPTIVE DERIVATIVE FREE ESTIMATOR 

In this work, Q-Adaptive versions of, self-switched 1st order 

central difference filter infused with reinforcement learning 

have been proposed and characterized in this paper. The 

detailed algorithm has been framed, only for one mode, i.e. 

basic nonlinear structure of estimator [5]has been depicted 

here (ALGORITHM 1). The state equation Eq. (9)[5], [6] 

and the output equation Eq. (10) [5], [6] of any plant in 

discrete domain are, 

 𝑥𝑘 = 𝑓(𝑥𝑘−1) + 𝑢𝑘 + 𝑤𝑘                (9)        

     

         𝑦𝑘 = 𝑔(𝑥𝑘) + 𝑣𝑘                                         (10) 

where  𝑥𝑘 ∈ ℜ𝑛1 is a state vector of n1 dimension, 𝑢𝑘 ∈
ℜ𝑛2  is the known input vector of n2 dimension. 𝑓(. ), 𝑔(. ): 

vector function to map the state and measurement equations 

respectively as shown in aforementioned equations. The 

measurement is assumed to be a n3 dimensional vextor 

written as   𝑦𝑘 ∈ ℜ𝑛3.  The zero mean noise sequences 𝑤𝑘 ∈
ℜ𝑛1  and 𝑣𝑘 ∈ ℜ𝑛3 denote respectively the process noise 

sequence with covariance 𝑄𝑘 ∈ ℜ𝑛1×𝑛1  and measurement 

noise sequence with covariance𝑅𝑘 ∈ ℜ𝑛3×𝑛3.  �̂�𝒌  and �̂�𝒌 are 

chosen as estimated states and measurement. 𝑥𝑘̅̅ ̅ and 𝑦 𝑘̅̅ ̅̅ are 

elected as the apriori estimated states and measurements 

respectively whereas. Pk is advocated the error covariances. 

 

ALGORITHM 1. Estimation using Derivative Free Estimator 

Step 1: Initialization of  𝑷𝟎(state error covariance) and 

estimated state �̂�𝟎.                                                                

Step 2: Estimated state Propagation as given in Eq. (11) 

[5] 

�̄�𝑘+1 =
1

2
∑ {𝑓(�̂�𝑘 + �̂�𝑥,𝑝) + 𝑓(�̂�𝑘 − �̂�𝑥,𝑝)}

𝑛1
𝑝=1       (11)         

where �̂�𝑥,𝑝 ∈ ℜ𝑛1: pth column of the square Cholesky 

factors �̂�𝑥 ∈ ℜ𝑛1×𝑛1of �̂�𝑘 given by �̂�𝑘 = �̂�𝑥 �̂�𝑥1

𝑇
. 

Step 3: Apriori error covariance Calculation has been 

discussed in Eq. (12), Eq. (13)[4]. 

𝑆𝑥𝑥
(1)

(𝑘 + 1) =
1

2
(𝑓𝑖(�̂�𝑘 + �̂�𝑥,𝑝) − 𝑓𝑖(�̂�𝑘 − �̂�𝑥,𝑝))      (12)              

�̄�𝑘+1 = 𝑆𝑥𝑥
(1)

(𝑘 + 1)𝑆𝑥𝑥
(1)

(𝑘 + 1)′ + 𝑄𝑓𝑖𝑙𝑡𝑒𝑟                 (13)                             

𝑄𝑓𝑖𝑙𝑡𝑒𝑟 is the process noise covariance matrix used in the 

estimator in Eq.(12) [4] 

�̄�𝑘+1 = �̄�𝑥(𝑘 + 1) �̄�𝑥
𝑇(𝑘 + 1)                                   (14)                                           

As in Eq. (11-13) [4], pth column is used to calculate of 

the square Cholesky factor �̄�𝑥(𝑘 + 1) as �̄�𝑥,𝑝 The updation 

of error covariance has been demonstrated in Eq. (14) [4] 

and a time updated estimate of the output as in Eq. (15) [4]. 

�̄�𝑘+1 =
1

2ℎ2
∑ {𝑔(�̄�𝑙+1 + ℎ�̄�𝑥,𝑝) + 𝑔(�̄�𝑙+1 − ℎ�̄�𝑥,𝑝)}

𝑛1
𝑝=1   (15)     

 Step 4:  Innovation Covariance Proliferation 

𝑆𝑦�̄�
(1)(𝑘 + 1) = {

1

2
(𝑔𝑖(�̄�𝑘+1 + �̄�𝑥,𝑝) − 𝑔𝑖(�̄�𝑘+1 − �̄�𝑥,𝑝))}  

(16)                       

𝑃𝑘+1
𝑦 = 𝑆𝑦�̄�

(1)
(𝑘 + 1)𝑆𝑦�̄�

(1)
(𝑘 + 1)′ + 𝑅𝑓𝑖𝑙𝑡𝑒𝑟                  (17)                   

In step 4, Eq. (16) [4] gives the process of the updating the 

covariances which in turn update the posteriori measurement 

update as in Eq. (17,18) [4]. Here,𝑅𝑓𝑖𝑙𝑡𝑒𝑟  is the measurement 

noise covariance matrix used in the filter.  

𝑃𝑘+1
𝑥𝑦 = �̄�𝑥

𝑇(𝑘 + 1)[𝑆𝑦�̄�
(1)

(𝑘 + 1)]
𝑇
                (18)

       

The  Kalman gain is given by Eq. (19) [5] which is further 

used to update the state equation and error value as shown in 

Eq.(20,21)[5], where Kk can be considered as Central 

difference filter gain without the noise adaption. 

𝐾𝑘+1 = 𝑃𝑘+1
𝑥𝑦

(𝑃𝑘+1
𝑦

)
−1

                                                (19)                                                                                            

x̂k+1 = x̄k+1 + δxk+1                                                 (20) 

𝛿𝑥𝑘+1 = 𝐾𝑘+1(𝑦𝑘+1 − �̄�𝑘+1)                                (21)         

The estimate the measurement as and the error covariance 

based on the apriori value and the calculated filter gain using 

Eq. (22), Eq. (23 [5], [6]) :  

�̂�𝑘+1 = �̄�𝑘+1 − 𝐾𝑘+1𝑃𝑘+1
𝑦 𝐾𝑘+1                

𝑇                               (22) 
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�̂�𝑘+1 = 𝑔(�̂�𝑘+1)                                                          (23) 

Step 5: Q Adaptation Algorithm [11]. 

 

When process noise is unknown and measurement noise is 

known to the estimator, the following modifications are 

done. The modified process equation or noise updation has 

been discuses in Eq. (24) Eq. (25) [11]. 

    

𝑟𝑒𝑠𝑘 = 𝑦𝑘+1 − �̂�𝑘+1                                               (24)   

  

The covariances of the noise estimation has bee discussed in 

Eq. (25) [11]. 

 

𝐶𝑣 =
1

𝑊𝑠
∑ (𝑟𝑒𝑠𝑖

𝑘
𝑖=𝑘−𝑘𝑤+1 )(𝑟𝑒𝑠𝑖)𝑇                   (25) 

 

Ws is the window size. Estimate the diagonal elements of 

Qfilter as in Eq. (26) [11] where the adaptive coefficient 𝛿 has 

been defined in Eq. (27) [11]. 

 

𝑸𝒇𝒊𝒍𝒕𝒆𝒓 = 𝑸𝒇𝒊𝒍𝒕𝒆𝒓√𝛅                                                (26) 

where 𝜹 =
𝒕𝒓𝒂𝒄𝒆(𝑪𝒗−𝑹𝒇𝒊𝒍𝒕𝒆𝒓)

𝒕𝒓𝒂𝒄𝒆(𝑺𝒚�̄�
(𝟏)

(𝒌+𝟏)𝑷𝒌+𝟏
𝒙𝒚

𝑺𝒚�̄�
(𝟏)

(𝒌+𝟏)′)
              ( 27) 

A.  REINFORCEMENT LEARNING METHOD ALGORITHM 

Reinforcement Learning (RL) is a type of machine learning 

where an agent learns to make decisions by interacting with 

an environment, aiming to maximize cumulative rewards 

over time. Unlike supervised learning, where a model learns 

from labeled data, RL involves learning from the 

consequences of actions, through trial and error, to find the 

optimal policy for a given task. 

B. MARKOV DECISION PROCESS ALGORITHM 

MDPs are versatile and powerful, making them essential in 

sequential decision-making. If the system's fault dynamics 

(states, transitions, probabilities, and rewards) are well-

understood and can be modeled mathematically, MDPs 

provide a structured approach. Fault detection systems often 

have predefined states (e.g., healthy, warning, failure), 

making MDPs a natural fit. MDPs allow precise modeling 

of the trade-offs between detecting faults early and the costs 

of false positives or maintenance actions. The core working 

model that administrates Markov decision processes is based 

on the Bellman Equation. The key features of the Bellman 

Equations are: 

 

1) States (S): This is a precise outline of the environment 

that contains all the relevant information, works as an 

agent. 

2) Actions (A): An agent made path which leads to state 

transition. 

3) Transition Probability (P): The probability P(s′∣s,a) of 

transitioning from one state to another state 

4) Reward (R): Positive scalar feedback after the agent’s 

action. 

5) Policy (π): A transitional action strategy.  

6) Discount factor(γ): Determines the future reward 

7) Bellman Equation 

Based on this features, the Bellman’s equation is 

characterized by the following value function as in Eq. 

(28)[13]. 

 

𝑉𝜋(𝑠) = ∑𝐴𝜋( 𝐴 ∣ 𝑠 )∑𝑠′𝑃( 𝑠′ ∣ 𝑠, 𝐴 )[𝑅(𝑠, 𝑎, 𝑠′) +
𝛾𝑉𝜋(𝑠′)]𝑉{𝜋}(𝑠)   (28) 

 

The detail steps of MDP have been discussed in the 

flowchart in given FIGURE 4, where the policy of the fault 

detection decision has been calculated using Bellman’s 

equation. 

 
FIGURE 4: Flow chart of Markov Decision Process 

IV.      FINDINGS AND ANALYSIS  

The mathematical modeling related to this case study has 

also been discussed in previous section. The same model has 

been reviewed here to achieve the objectives of the work. In 

the first case study, the initial condition has been assumed 

as:  liquid level is x1=15 cm; and temperature is x2=10 degree 

Centigrade. The process noise covariances and measurement 

noise covariances are given below [15]: 

 

𝑄 = [
0.02 0

0 0.01
] cm2  𝑅 = [

0.16 0
0 0.05

] cm2  

 

In this case study mode changes occur and the plant behaves 

like a nonlinear hybrid plant. The initial condition of the 

estimator is assumed to be [0 0] unit. No of Monte Carlo run is 

1000. The liquid level has been considered as output. From the 

FIGURE 5, it is presumed t that in absence of any fault, the 

adaptive derivative free estimators provides satisfactory 

results.  
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(a) (b) 

 
(c) 

FIGURE 5: The estimation study using different estimator paradigm Root mean Square Error of (a) state2 (b) state1 (c) mode 

 

TABLE 2 
Speed of fault detection 

Type of fault Only CDF 

(min.) 
SVM 

(min.) 
Only MDP 

(min.) 
ACDF+MDP   

(min.) 
 Leakage Fault 15 28 20 19 
Sudden inflow 15 24 19 18 

 
TABLE 3 

Accuracy of fault detection 

Type of fault Only CDF 

(%) 
SVM  

(%) 
Only MDP  

(%) 
ACDF+MDP      

(%) 
Leakage Fault 84.94 92.13 94.23 97.65 
Sudden inflow 88.92 93.02 94.39 98.17 

 
TABLE 4 

True positive rate of fault detection comparison 

Type of fault Only CDF 

(%) 
SVM  

(%) 
Only MDP  

(%) 
ACDF+MDP      

(%) 
Leakage Fault 0.78 0.88 0.92 98.65 
Sudden inflow 0.86 0.92 0.94 98.17 

 
TABLE 5 

F1 score of fault detection comparison 

Type of fault Only CDF 

(%) 
SVM  

(%) 
Only MDP  

(%) 
ACDF+MDP      

(%) 
Leakage Fault 81.65 93.65 95.65 97.65 
Sudden inflow 88.17 95.17 97.17 98.17 
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A. FAULT DETECTION USING MDP 

As discussed earlier, fault detection is done here using MDP. 

Four parameters have been checked to show the 

optimization and efficiency of the proposed methods. The 

four parameters can be jotted down as speed of fault, 

detection, positive rate, and accuracy. Tables shows that 

MDP with ACDF gives better result with less latency. 

TABLE 2 to TABLE 5 proves that the estimator infused 

MDP gives better results with respect to other parameters.  

The same results can be obtained using different process 

noise covariances as process mismatch causes the maximum 

amount noises. FIGURE 6 to FIGURE 9 shows the 

comparison of different methods to prove the efficacy of the 

proposed method in the presence of different noise levels 

and presence of Leakage fault at 50 minute the comparison 

has been illustrated using the plots.  The four parameters 

have been nominated here to prove the efficiency of the 

proposed methods. The parameters are namely Detection 

accuracy (ii) Detection speed, (iii)True positive rate and (iv) 

F1score.   

The same results can be also obtained from the other fault 

(sudden change in inflow also). For all the studies process 

noise covariances (Q) are taken same as mentioned above. 

The process noise covariances and measurement noise 

covariances are given below [15]. It is assume the value of  

process noise covariances (Q) are given here. The value of 

the matrix has been varied to advocate the efficacy of the 

proposed method. 

 

𝑄 = [
0.02 0

0 0.01
] cm2 

 

 
FIGURE 6: Comparison of Detection time 

 

 
FIGURE 7: Comparison of Detection accuracy 

 

 
FIGURE 8: Comparison of True Positive Rate 

 

 
FIGURE 9: Comparison of F1-score 

 
B. ROBUSTNESS STUDY 

This section deals with the speed of fault detection using 

with different noise covariances and different windows 

using adaptive central difference filter for leakage fault. 

TABLE 6 exemplifies the robustness study in term of fault 

detection speed when noises are unknown to the filter. It is 

assumed that actual process noise covariance is Q. TABLE 
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7 demonstrates the fault detection technique for different 

window sizes. Same results can be deduced for the other 

faults. The tables proves that the MDP with ACDF based 

fault detection is robust and gives better result. The table 

(TABLE 6 and TABLE 7) provides a comparison study of 

the mean values of RMSE of 1st state within time scale 30-

50 sec using Q-adaptive based estimation for different 

window sizes and initial value of process noise covariance is 

10 times of truth. 

TABLE 6 
Comparison of speed of fault detection (fault occurrence at 50 min) 

Process 

noise 

covariance 

initialization 

0.01*Q 

(min) 

1*Q 

(min) 

10*Q 

(min) 

.01*Q 

(min) 

ACDF+MDP 60 52 55 57 

ACDF+SVM 75 53 58.25 63 

Only MDP  82 55 62 75 

 

TABLE 7 
Comparison of speed of fault detection (fault occurrence at 50 min) 

Window Size  5 10 15 20 25 

ACDF+MDP 65 57 55 56 59 

ACDF+SVM 68 60 58 59 68.5 

Only MDP  74 65 60 52 75.2 

 

In the last section the external input is added to the inflow. 

It is assumed that the external input is a sinusoidal extra 

input added to the main inflow. The new inflow equation as 

in Eq. 22 [14]  can be rewritten as: 

𝑥1(𝑘 + 1) = 𝑥1(𝑘) + 𝑇𝑠(𝛼1𝑄1 − 𝛼2𝑄2) + 𝑛𝑜𝑖𝑠𝑒𝑠 +
𝐷1sin (0.5𝑘)   (22) 

 

Here D1 is the disturbance covariance. TABLE 8 shows the 

efficiency of the newly proposed estimator infused machine 

learning technique for fault detection in presence of external 

disturbance. Here also, leakage fault has been addressed to 

show the usefulness in presence of different disturbances. 
TABLE 8 

 The fault detection speed for different D1 value. 

Disturbance value  0 1 2 0.5 

ACDF+MDP 52 57 62 56 

ACDF+SVM 53 61 65 59 

Only MDP  55 65 68 52 

V.  DISCUSSION  

In this work, a Continuous Stirred Tank Reactor (CSTR) 

operates as a hybrid system due to its combination of 

continuous and discrete dynamics. The continuous aspect 

rises from the chemical reaction processes governed by 

differential equations, such as changes in concentration, 

temperature, and flow rates. The discrete nature emerges 

from events like switching control modes and valve 

operations These hybrid characteristics make fault detection 

challenging, as the system dynamics can change nonlinearly 

with discrete inputs by rising a huge amount of noises. 

Addressing these challenges requires robust models capable 

of handling both the continuous dynamics and discrete 

transitions inherent to hybrid systems. 

 
TABLE 9 

Comparison of fault detection methods 

Method Key Features Strengths Weaknesses 

Traditional Method 

(Threshold based) [9] 

Relies on predefined thresholds 

for system variables to detect 
faults. 

Simple to implement; computationally 

inexpensive. 

Ineffective in handling noise, 

nonlinearity, and dynamic transitions 
in hybrid systems. 

Estimator Methods (e.g., 

Observer, Filter) [30], [31] 

Uses state observers to estimate 

system dynamics and residuals for 

fault detection. 

Provides accurate state estimation for 

linear systems; widely used in control 

systems. 

Struggles with nonlinearities and large 

process noise; requires linearized 

system models. 

Support Vector Machine 

(SVM)-Based Methods [28] 
Machine learning model trained 
on labeled data to classify faults. 

Effective for simple classification 
tasks; handles moderate levels of 

nonlinearity. 

Requires labeled fault data; lacks 
adaptability to dynamic changes in 

hybrid systems. 

Only Deep Learning-Based 

Fault Detection [20] 

Leverages neural networks to 

detect faults based on large 

datasets. 

Capable of handling complex 

nonlinearities and dynamics; scalable 

to high-dimensional data. 

Requires significant data and training 

time; can lack interpretability. 

Proposed MDP-infused 

Adaptive Estimator Based 

Method 

Uses a Markov Decision Process 

with derivative-free estimators for 

fault detection. 

Handles nonlinearity and noise 

robustly; optimizes fault detection 

actions using rewards and penalties. 

Requires careful modeling of 

transition probabilities and reward 

functions; training can be resource-

intensive. 

 

 
TABLE 10 

Quantitative comparison using results from literature 

Study Method Accuracy 

(in %) 

False Positives Robustness to 

Noise 

Adaptability  

X. Chen, et.al. 2020 [23] Kalman Filter-Based 89.2 Moderate Low Low 

Q. Zhang, et.al. 2019 [24] Particle Filter-Based 93.4 Low High Moderate 

L.Hong, et.al.  2022 [28] SVM-Based 90.5 Moderate Moderate Low 
Gao et.al.2023 [29] Deep Learning-Based 95.8 Low Moderate High 

Chatterjee 2022 [22] UKF infused with SVM 96.2 Low Moderate High 

Proposed work MDP with Derivative-Free 

Estimators 

98.6 Very Low High High 
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In the first section of the work, the efficacy of adaptive 

derivative free estimator paradigm has been studied in 

presence of different process noises. The second section 

deals with the comparison of different parameters of fault 

detection. It shows that use of MDP for fault detection in 

nonlinear hybrid systems provides a robust framework to 

manage uncertainties and optimize detection strategies. The 

derivative free estimators minimize the calculation 

complexity and time, thus improving the fault detection 

speed. Combining MDP with techniques like adaptive 

derivative-free estimators enhances its capability to adapt to 

complex, dynamic systems. 

A. COMPARISON WITH EXISTING WORK: 

This section deals with the comparison of the current work 

with the existing method as well as the literature.  A deep 

interpretation has been analysed in a tabular from (TABLE 

9) between the benchmark schemes to show the implications 

of the projected methodology. methods A comparative 

analysis (TABLE 10) of the proposed MDP-based fault 

detection scheme against existing methods from the 

literature for fault detection in nonlinear hybrid systems 

helps the researchers to find out the rationale of choosing the 

methodology. From the both table it can be concluded that 

proposed method is better than the existing state of art 

methods in terms of accuracy, robustness adaptability etc. 

But only weakness of the proposed method is mathematical 

complexity and the proper design.  From the above study, it 

can be concluded that the adaptive estimator infused MDP-

based fault detection scheme outperforms traditional and 

contemporary methods in terms of accuracy, robustness, and 

adaptability. These advantages make it a compelling choice 

for complex industrial systems, such as the CSTR model, 

where dynamic changes and noise are prevalent. 

B. WEAKNESS OF THE PROPOSED METHOD 

The main weakness of this proposed scheme is to detect the 

fault is the dependency on accurate model representation. 

The scheme relies heavily on the accuracy of the derivative-

free estimator and the Markov Decision Process (MDP) 

framework. But the use of adaptive filter can minimize this 

problem. Another weakness is the computational 

complexity. But it is worthy as the system gives highly 

satisfactory output. 

 
C. IMPLICATIONS OF THE PROPOSED METHOD 

The main implications of the proposed methods gives the 

enhanced fault detection accuracy. With a demonstrated 

fault detection accuracy of 98.6% and a 12% mean error 

reduction compared to existing techniques, the proposed 

scheme sets a new benchmark for hybrid control system fault 

detection, potentially driving improvements in system 

reliability and safety. 

Another importance of this method is the robustness 

against noise and dynamic variations. The method’s 

resilience to process noise, dynamic system changes, and 

external disturbances highlights its potential for deployment 

in noisy and highly variable industrial environments, 

ensuring stable operations under challenging conditions. 

Using the proposed method the researcher can employ it for 

hybrid control systems, promoting their broader adoption 

across industries. 

 

D. FUTURE SCOPE 

To begin with, the effectiveness of this method can be 

assessed in large-scale industrial settings, like multi-reactor 

networks or distributed processing systems. Furthermore, 

integrating real-time adaptive learning features would allow 

the model to manage unmodeled dynamics and unidentified 

faults more efficiently. Moreover, broadening the approach 

to support multiple fault situations and cascading failures 

would enhance its resilience. Lastly, the method could gain 

from hardware acceleration—for instance, utilizing GPUs or 

edge-computing devices—to maintain real-time 

performance in environments with limited resources. 

VI. CONCLUSION    

Detecting faults in hybrid control systems (HCS) remains a 

complex challenge due to dynamic variations and significant 

process noise. Thus the aim of this research work is to 

present a novel scheme for optimized robust fault detection 

in HCS using a derivative-free estimator and the Markov 

Decision Process (MDP) framework in the presence of 

unknown noise covariances as well as external disturbances. 

The proposed method effectively handles dynamic system 

changes and minimizes process noise, achieving high 

accuracy and reliability. Through simulation studies and 

additional tests on a chemical stirred tank reactor (CSTR) 

model, the approach demonstrated impressive results with 

an average fault detection accuracy of 98.6% and a 12% 

mean error reduction compared to existing techniques. 

Leakage fault and sudden changes in inflow has been 

considered to advocate novelty of the proposed method. 

Four parameters, namely accuracy, speed of fault detection, 

precision and true positive rate, have been evaluated to 

demonstrate the optimization and effectiveness of the 

suggested methods.  The aforementioned tables for different 

faults indicate that MDP with ACDF produces superior 

results with reduced latency. The system's robustness under 

varying noise levels, estimation window and dynamic 

conditions like external disturbances has been demonstrated 

here using several case studies. The method further 

highlights its potential as a scalable, accurate, and noise-

resilient solution for real-world industrial applications, 

significantly advancing the field of fault detection in HCS. 
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