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ABSTRACT Postoperative recovery is a crucial phase in ensuring successful rehabilitation. However, many healthcare facilities 

face challenges due to the limited availability of medical personnel, making routine patient monitoring difficult. This limitation can 

delay the early detection of complications and reduce overall recovery effectiveness. To address this issue, this study proposes a 

non-invasive, radar-based system for remote postoperative patient monitoring. The proposed system utilizes the IWR6843AOP 

radar to generate 3D point cloud data, spatially representing patient movements. This approach enables continuous monitoring 

without compromising patient privacy, allowing healthcare providers to offer more efficient care. The collected data undergoes 

preprocessing, including normalization, labeling, and dataset splitting, before being classified using deep learning models such as 

3D CNN, 3D CNN+LSTM, 3D CNN+Bi-LSTM, PointNet, PointNet++, and RNN. The dataset consists of six activity categories: 

empty space, sitting, standing, walking, running, and squatting, recorded at a frame frequency of 18.18 Hz. Experimental results 

show that the 3D CNN combined with Bi-LSTM achieves the highest accuracy of 90%, surpassing models like PointNet and RNN. 

These findings indicate that a radar-based and deep learning-driven approach offers an accurate, efficient, and non-intrusive solution 

for postoperative monitoring, reducing the need for direct medical supervision. This technology has significant potential for broader 

healthcare applications, contributing to more advanced, accessible, and technology-driven patient monitoring systems. By 

integrating artificial intelligence and radar sensing, this research paves the way for innovative solutions in modern healthcare, 

ensuring better postoperative outcomes while optimizing medical resources. 

INDEX TERM Postoperative recovery, 3D point cloud, Deep learning, Human activity recognition.

I. INTRODUCTION 

Postoperative rehabilitation, especially after major surgeries, is a 

crucial part of the recovery process. Many patients know 

recovery is important, but may not realize that proper 

rehabilitation helps reduce complications, speed up healing, and 

support returning to normal activities. During rehabilitation, 

regular monitoring of a patient's condition is essential to assess 

recovery progress, determine when treatment can proceed to the 

next stage, or decide whether additional interventions are 

necessary [1], [2]. This stage includes physical, psychological, 

and social recovery. In this process, routine monitoring is 

essential for evaluating recovery progress, adjusting medical 

interventions, and early detection of signs of deterioration to 

identify potential complications that may delay recovery or 

endanger the patient’s health[3]. 

In practice, postoperative patients often exceed medical 

personnel capacity, especially in remote areas. This is a common 

challenge in many healthcare facilities, where physicians 

struggle to monitor patients regularly due to a shortage of 

healthcare workers[4]. In such situations, remote monitoring 

technology offers an effective solution, enabling doctors to 

access patient data and evaluate their condition without the need 

for daily in-person interactions. This technology reduces the 

burden on healthcare systems and facilitates better management 

of postoperative patients[5]. Remote monitoring technology 

offers an innovative solution. These systems allow healthcare 

providers to monitor patients’ physical conditions remotely and 

in real-time without physical presence, thus accelerating medical 

decision-making and reducing the need for resource-intensive 

visits. 

However, most current remote monitoring systems still rely on 

surveillance cameras or wearable sensors based on Inertial 

Measurement Units (IMUs). Each of these approaches has 

limitations. Camera-based systems raise privacy concerns 

despite detecting behavior. Cameras continuously record 

patients’ faces and activities, which can be considered invasive 

and uncomfortable, particularly in private spaces like hospital 

rooms, bathrooms, or homes [6][7].  

On the other hand, IMU-based sensors require direct 

attachment to the patient’s body. This can be uncomfortable, 

https://jeeemi.org/index.php/jeeemi/index
https://doi.org/10.35882/jeeemi.v7i2.642
https://creativecommons.org/licenses/by-sa/4.0/
mailto:rofiqys@student.telkomuniversity.ac.id
https://orcid.org/0009-0002-6940-492X
https://orcid.org/0000-0003-4212-5242
https://orcid.org/0009-0009-1048-2166


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                            Vol. 7, No. 2, April 2025, pp: 431-545;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                              534               

especially for postoperative patients who experience sensitivity 

or pain around the surgical site. Additionally, wearable devices 

require extra attention such as charging or periodic adjustments, 

which can burden both patients and healthcare providers [8], [9], 

To address these issues, researchers have explored the use of 

millimeter-wave (mmWave) radar as a more comfortable and 

non-invasive monitoring solution. Unlike cameras or wearable 

sensors, mmWave radar enables contactless monitoring without 

visual recording. The radar emits electromagnetic waves and 

captures their reflections to detect movement and body positions, 

without capturing images or touching the patient’s body. This 

makes it ideal for preserving patient privacy and enhancing 

comfort during recovery[10], [11]. mmWave radar is capable of 

generating 3D point cloud data, which represents (x, y, z) 

positions along with additional parameters such as Signal-to-

Noise Ratio (SNR) and Doppler frequency shifts to detect 

movement speed. This information is rich and can be used to 

deeply analyze patients’ physical activity patterns. The radar is 

also resistant to changes in lighting or other environmental 

conditions, making it reliable for 24-hour monitoring[12]. 

Several studies have demonstrated the effectiveness of 

mmWave radar in Human Activity Recognition (HAR)—the 

process of identifying human activities such as sitting, standing, 

walking, lying down, or falling—using sensor data. HAR 

systems are crucial in rehabilitation contexts as they enable 

doctors to quantitatively assess the patient’s recovery progress. 

Radar-based HAR systems offer the advantage of requiring no 

cameras or wearable devices, making them suitable for long-term 

use[13].  

Despite the rapid development of radar technology for HAR, 

most existing studies have focused on fall detection for the 

elderly, security surveillance, or gesture control, rather than on 

monitoring the postoperative rehabilitation process. There is a 

notable lack of research that specifically applies mmWave radar 

for monitoring patients recovering from medical procedures. 

Additionally, most publicly available HAR datasets do not 

reflect actual rehabilitation conditions, such as limited mobility, 

the use of assistive devices, or variations in recovery stages. 

Furthermore, the majority of radar-HAR studies emphasize 

classification accuracy without considering aspects such as 

usability, result interpretability, or integration challenges within 

clinical environments. For such systems to be widely adopted in 

healthcare practice, they must not only be accurate but also user-

friendly and understandable to medical personnel without 

technical backgrounds. This study proposes a non-invasive 

patient activity monitoring system using high-resolution 3D 

point cloud data from mmWave radar to support Human Activity 

Recognition (HAR) in the context of postoperative 

rehabilitation, which requires regular motion monitoring. The 

radar system will be used to capture movement data of patients 

performing various common rehabilitation activities in a 

simulated clinical environment. 

The data will train machine learning algorithms to classify 

activities. The dataset will reflect real patient conditions, 

including limited movement, use of assistive tools, and short-

duration activities. The system evaluation will focus on accuracy, 

ease of use, and user privacy to ensure its feasibility for 

implementation in medical settings. The primary goal of this 

research is to develop and evaluate a radar-based HAR system to 

support physical activity monitoring of postoperative patients 

without requiring direct interaction with doctors non-invasive 

and efficient. The system is targeted to be an accurate, privacy-

preserving, user-friendly solution that can be seamlessly 

integrated into existing healthcare systems. The contribution of 

this paper is as follows: 

 

1. Development of a non-invasive HAR system based on 

mmWave radar specifically designed for postoperative 

rehabilitation monitoring. 

2. Creation of a rehabilitation activity dataset using 3D point 

cloud data collected from volunteers or patients in 

simulated clinical scenarios. 

3. Demonstration of the system's advantages in comfort and 

privacy compared to camera-based or wearable systems. 

4. Comprehensive evaluation of system accuracy and 

reliability, including real-world trial scenarios and usability 

testing by healthcare personnel. 

5. Design of an integration framework for incorporating the 

system into telemedicine platforms to extend access to 

rehabilitation services in remote or underserved areas. 

Numerous studies have shown the effectiveness of radar 

technology in monitoring patient activity and vital signs, 

particularly in rehabilitation contexts[13]. This technology can 

identify changes in movement patterns, detect physical activity 

levels, and record motion variations all crucial for evaluating 

postoperative recovery progress[8]. Besides preserving patient 

privacy, radar-based remote monitoring expands healthcare 

reach, allowing physicians to provide optimal care without being 

physically present[14]. Therefore, radar technology proves to be 

highly effective for Human Activity Recognition (HAR). This 

study recommends the use of radar-based 3D point cloud data for 

non-invasive postoperative patient monitoring, enabling high-

accuracy activity detection while maintaining patient privacy 

[15].  
 
II. MATERIALS AND METHOD 

A. RADAR DATA PROCESSING 

This study utilizes the Texas Instruments IWR6843AOP radar, a 

compact and highly integrated millimeter-wave (mmWave) 

sensor specifically designed to generate 3D point cloud data 

directly in JSON format using Radar Toolbox version 2.20.00.05 

from the Texas Instruments library, thereby reducing the need for 

extensive preprocessing and manual configuration. Unlike 

conventional radars that require complex raw data processing, 

the IWR6843AOP features integrated on-chip signal processing, 

which significantly simplifies the development workflow.  

Data acquisition is carried out using the Radar Toolbox from 

Texas Instruments, which provides a user-friendly interface for 

data collection and visualization. Each output data frame 

contains essential information such as 3D coordinates, signal 

performance parameters, and object motion data. The use of this 

radar also facilitates system calibration, as the device is equipped 

with integrated supporting features, thereby making the 

experimental preparation process more efficient. 

The main advantage of this system lies in its Multiple Input 

Multiple Output (MIMO) architecture, which enables more 

accurate and comprehensive spatial scanning. With its built-in 

signal processing capabilities, including Range FFT, Doppler 

FFT, and angle estimation algorithms, the radar can generate 

real-time spatial representations without the need for additional 

external processing, which typically requires high-performance 

computing hardware such as GPUs or FPGAs. This feature is 

particularly valuable in various fields such as human motion 
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tracking, autonomous vehicle navigation, smart sensor-based 

security systems, gesture recognition interfaces, and indoor 

occupancy monitoring in smart buildings. Moreover, the data 

generated in JSON format is optimized for seamless integration 

with modern data processing platforms such as Python, 

MATLAB, and various cloud-based IoT systems. This facilitates 

faster, more flexible, and efficient data-driven research and 

development. 

The direct integration of Doppler information into the point 

cloud output represents another significant benefit of this system. 

The velocity data embedded within each point enables more 

comprehensive motion analysis. The radar also features flexible 

communication interfaces and power-efficient operation, making 

it well-suited for embedded system implementations. In some 

preliminary tests, the radar has proven to be stable and consistent 

in capturing various human movement patterns, even when 

assistive devices are used by the individuals. By combining these 

advanced features, the IWR6843AOP delivers a powerful yet 

practical radar solution for sensor-based research and 

development applications. The system's balance of performance 

and usability makes it particularly effective for prototyping and 

deploying mmWave radar solutions across various domains.  

ϑD =
 λ ∙ 𝑓D

2
 

 

(1) 

where 𝑓𝐷   is the Doppler shift and λ is the wavelength of the 

transmitted signal Eq. (1) [16][12][17][18]. 

Unlike previous generations of radar, which only produced 

raw data requiring additional processing to obtain 3D point cloud 

representation as shown in FIGURE 1, the IWR6843AOP radar 

can directly produce 3D point cloud data[14], [19], [20]. The 

range R of a detected object is determined using the beat 

frequency 𝑓𝑏 in a frequency modulated continuous 

Wave(FMCW) radar system, following the equation Eq. (2)[16]: 

ϑ =
 c ∙ 𝑓b
2S

 
 

(2) 

where c is the speed of light and S is the slope if transmitted 

frequency chirp. This capability streamlines the data processing 

workflow, reduces initial computational overhead, and provides 

greater flexibility for users to leverage the data for various 

applications [21][22]. 

As an initial step in this study, the JSON-formatted data will 

be converted into CSV files. This conversion is essential to 

streamline the process of analysis, labeling, and data 

organization, which are critical for the subsequent stages of 

model development. JSON format, while flexible and widely 

used for data interchange, is less suited for direct manipulation 

and batch processing in machine learning workflows. By 

transforming the data into CSV format, researchers can take 

advantage of tabular data structures that are more compatible 

with various data analysis tools and machine learning libraries. 

Moreover, converting the data into CSV enables efficient 

handling of large datasets, which is crucial for training deep 

learning models. Tabular data facilitates processes such as 

filtering, searching for specific values, grouping, and generating 

descriptive statistics, all of which are essential during the initial 

exploration of the dataset. CSV files offer simplicity, faster 

parsing, and better integration with frameworks such as 

TensorFlow, PyTorch, and scikit-learn. This process is also 

crucial to ensure that the data can be efficiently pre-processed, 

visualized in the form of graphs or 3D visualizations, and 

accurately validated before being used for model training. For 

example, visualizing the distribution of points in a 3D point 

cloud, analyzing object movement patterns, or tracking changes 

in velocity over time becomes much easier when the data is in 

tabular form. 

Through this conversion step, the research workflow is 

expected to become more efficient, the potential for labeling 

errors can be reduced, and the performance of the developed 

model for recognizing human activities can be optimized. With 

a simplified data structure and high compatibility with various 

analytical tools, the development process of AI models can 

proceed faster and more accurately aligned with the primary 

objectives of this study. 

B. DATASET AND DATA COLLECTION 

The aim of this study is to thoroughly investigate significant 

differences in the classification accuracy of human activity 

recognition models, taking into account various body positions 

and movement patterns performed by the subjects. This study 

includes six main categories of observed activities: empty space, 

sitting, standing, walking, running, and squatting, representing a 

spectrum of movements ranging from static to dynamic 

conditions. Data was collected for 15 seconds and resulted in 

390-450 data points for each movement, for each activity, from 

three subjects of varying heights, weights, and ages, represented 

by labels 1 to 6 [23]. The participants involved in this study were 

aged 23 and 24 years old, all male, and in normal physical 

condition without any history of health issues that could affect 

their movement or posture. All participants provided consent for 

their movement data to be used in this research.  

Data collection was conducted using the IWR6843AOP radar 

from Texas Instruments, supported by Radar Toolbox version 

2.20.00.05. The radar produced 3D point cloud data in JSON 

format, including information such as frame number, timestamp, 

coordinates (x, y, z), Signal-to-Noise Ratio (SNR), and Doppler 

velocity. The radar was installed in a 6 x 3-meter room at a height 

of 1.5 meters, as depicted in Figure. 2. This setup was calibrated 

and strategically placed to ensure optimal capture of subject 

movements, utilizing the three-dimensional spatial 

representation offered by the radar. The radar was configured 

with a frame frequency of 18.18 Hz, sufficient to capture detailed 

patterns of human activity changes, such as transitions from 

sitting to standing or walking, without missing crucial details. 

This frequency offers an optimal balance between temporal 

resolution and data processing efficiency, ensuring the generated 

data is adequate for high-precision human activity analysis. 

Additionally, supplementary information such as movement 

speed (Doppler) and signal-to-noise ratio (SNR) adds valuable 

dimensions to the data, helping to assess signal quality and 

movement dynamics. 

After collection, the JSON-formatted data was converted into 

CSV format to facilitate labeling, analysis, and deep learning 

model development. The collected data underwent multiple 

validation cycles to ensure accuracy and consistency. The 

resulting dataset provides a comprehensive and accurate 

depiction of the subjects' movement patterns within the room, 

including dynamic transitions between activities. By combining 

spatial information, velocity, and signal quality, this dataset 

enables in-depth analysis of various human activities. This 

research also opens opportunities for applications in healthcare 

monitoring, such as posture detection and movement transition 

analysis. 
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FIGURE 1. 3D point clouds data processing  

 

 
FIGURE 2. Data Collecting Process 
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C. DATA PROCESSING 

Data processing is a crucial step in preparing datasets for training 

machine learning models. This process aims to ensure that the 

data used in this research is of high quality, free from errors, and 

ready to be utilized in both the training and evaluation phases of 

the model to be developed. Without a systematic and thorough 

data processing stage, the model is at risk of experiencing 

performance degradation due to the presence of irrelevant data, 

noise, overfitting, or inconsistencies in the input format. 

Therefore, data processing is not only an initial step but also a 

fundamental stage that supports the overall success of the 

machine learning pipeline implemented in this study. The 

following are several stages carried out during the data 

processing procedure. 

The first stage is data loading, which involves importing the 

collected dataset, followed by the removal of empty or NaN 

values and filtering out invalid entries. This step is essential to 

ensure that only clean and relevant data is fed into the training 

and testing systems, minimizing errors and improving model 

accuracy. Eliminating invalid data also helps reduce processing 

complexity and avoids potential biases caused by inappropriate 

or unrepresentative input. Furthermore, with cleaner data, the 

model can focus more effectively on learning important patterns 

without being distracted by uninformative data. 

After the data has been cleaned, the next step is feature 

extraction, which plays a crucial role in determining the most 

optimal data representation for model training. Feature extraction 

is performed by identifying and selecting key attributes that are 

believed to significantly impact model performance. In the 

context of this research, the extracted features include point 

coordinates in three-dimensional space (x, y, z), Doppler 

magnitude—representing the relative motion speed of an object 

toward the sensor—and the signal-to-noise ratio (SNR). The 

SNR value is calculated using the formula in Eq. (3) [24]: 

𝑆𝑁𝑅 = 10log10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

Pnoise
) 

 

(3) 

where 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 refers to the power of the signal received from 

the observed object, and Pnoise  represents the power of 

disturbances or unwanted signals originating from the 

surrounding environment, interference, or sensor hardware 

limitations. SNR serves as an important indicator in assessing 

data quality, as a higher SNR indicates a greater proportion of 

useful information that the model can leverage for classification. 

The selection of these features is based on their functionality and 

contribution to enhancing the model's ability to accurately 

recognize and distinguish patterns of human activity. Following 

this, labeling is performed where each movement in the dataset 

is assigned a label for classification purposes. The dataset 

consists of five different movement types along with one empty 

state, leading to data labels ranging from 1 to 6. Proper labeling 

is crucial for supervised learning tasks as it allows the model to 

differentiate between various movement patterns accurately. 

To maintain consistency in feature scales, normalization is 

applied, ensuring all feature values fall within the same range 

(e.g., 0 to 1). In Human Activity Recognition (HAR) tasks, 

normalization prevents models from being biased by varying 

feature scales, enhancing their ability to detect activities more 

effectively. Data splitting is then performed to divide the dataset 

into training and testing subsets. An 80:20 split is commonly 

used, where 80% of the data is allocated for training and the 

remaining 20% is reserved for testing. This split ensures that the 

model learns patterns while being evaluated for generalization on 

unseen data. 

Lastly, one-hot encoding is applied to categorical labels, 

converting them into a binary format that is more suitable for 

model training. This encoding method enhances the learning 

process by ensuring the model interprets categorical data 

correctly. By following these systematic data processing steps, 

the dataset is well-prepared for training deep learning models, 

increasing the likelihood of successful point cloud feature 

classification. 

D. ALGORITHM 

In this study, we implemented several algorithms applicable to 

point cloud data, including 3D-CNN, 3D-CNN - BiLSTM, 3D-

CNN - LSTM, PointNet, PointNet++, RNN, and RNN + LSTM. 

Based on previous research, the combination of CNN and 

BiLSTM has demonstrated high accuracy and robust model 

performance, as discussed in[25][26][27]. Other studies, such 

as[11][13], [19], [20], have also tested similar models with 

promising results. In this research, we used 100 epochs, 

considering it optimal to provide sufficient training time for the 

model. The number of epochs exceeds those used in prior 

studies, such as[9], [13], [28], aiming for more optimal results. 

The 3D-CNN + BiLSTM model in this study utilized 

processed point cloud data, including feature normalization 

(pointX, pointY, pointZ, Doppler, SNR) and one-hot encoding 

of labels for multi-class classification. The data was then 

rearranged into a three-dimensional format to enable temporal 

analysis using LSTM-based architecture. The 3DCNN operation 

can be mathematically reoresented as : 

 

Y(i, k, k, f) = ∑ ∑ ∑ X(𝑖 + ℎ, 𝑗 + 𝑤,𝑘 + 𝑑, 𝑐) ∙𝑐−1
𝑐=0

𝑘𝑤−1
𝑤=0

𝑘ℎ−1
ℎ=0

K(h,w, d, c, f + bf)     (4) 

In this equation, X(𝑖 + ℎ, 𝑗 + 𝑤, 𝑘 + 𝑑, 𝑐)  represents the input 

tensor corresponding to the normalized point cloud data at spatial 

position (𝑖 + ℎ, 𝑗 + 𝑤, 𝑘 + 𝑑, 𝑐) and input channel c. The kernel 

K(h,w, d, c, f) + bf denotes the 3D convolutional filter at 

position (h,w, d) for input channel c and output feuture index f. 

the resulting output feature map is denoted by Y(i, j, k, f), which 

represents the extracted feature at spatial location (i, j, k) for the 

f feature map. This 3D convolution operation captures local 

spatial features from the input point cloud by sliding the kernel 

over the input volume, performing element-wise multiplication 

and summation across spatial and channel dimensions, followed 

by bias addition, as expressed in Eq. (4) [29]. The extracted 

features are then passed to a Bidirectional LSTM (BiLSTM) 

layer for temporal analysis. The BiLSTM processes the sequence 

in both forward and backward directions, with the hidden states 

computed as: 

 ℎ⃗ = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ⃗ 𝑡−1),   ℎ𝑡
⃖⃗ ⃗⃗ = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ𝑡+1) (5) 

The final hidden state ℎ𝑡 is the concatenation of the forward and 

backward states. 

ℎ𝑡 = [ℎ⃗ 𝑡; ℎ⃗⃖𝑡] (6) 

This bidirectional processing captures temporal dependencies in 

data effectively Eq. (5)&(6) [30]. The model architectufre 

consisted of several layers, including a Time Distributed Dense 

layer for capturing temporal features, a Bidirectional LSTM 

layer for bidirectional information capture, a dense layer with 

128 neurons for feature abstraction, and a softmax output layer 

for six-class classification. The softmax function is defined as: 
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yi =
ezi

∑  K
j=1zj

  
 

(7) 

where yi is the predicted probability for class I, and zi is the logit 

for class I Eq. (7)[31] [20]. The model was trained for 100 epochs 

using the Adam optimizer, which updates the model parameters 

as follows: 

𝜃𝑡 = 𝜃𝑡−1 −  𝜂
�̂�𝑡

√�̂�𝑡+∈
 

 

(8) 

where η is the learning rate, �̂�𝑡  and �̂�𝑡  are  bias-corrected 

estimates of the first and second moments of the gradients, 

respectively Eq. (8) [32]. The training utilized the categorical 

cross-entropy loss function, defined as: 

ℒ =  ∑.

N

i=1

∑yij

K

j=1

log(ŷij) 

 

(9) 

where 𝑦𝑖𝑗  is the true label (one-hot encoded) and �̂�𝑖𝑗  is the 

predicted probability Eq. (9) [33][34].  A batch size of 32 used, 

woth validation on 20% if the training data. 

The training results indicated strong performance with high 

accuracy, a robust F1 score, and solid precision and recall 

metrics, reflecting the model's ability to classify activities based 

on point cloud data effectively. The training history visualization 

also demonstrated stability and consistency in performance 

throughout the training process. 

III. RESULT 

A. ACCURACY 

The classification accuracy of various methods evaluated in this 

study involved several models, namely 3D CNN, 3D CNN + 

LSTM, 3D CNN + Bi-LSTM, PointNet, PointNet++, RNN, and 

RNN + LSTM. Among all the models tested, the 3D CNN + Bi-

LSTM architecture consistently demonstrated the best 

performance in terms of overall accuracy, precision, recall, and 

F1-score across all human activity classes, making it the most 

effective and reliable model recommended in this study for radar 

point cloud-based activity recognition. This model consistently 

delivers more stable classification results, even when dealing 

with varying data across different human activity classes. 

Technically, the 3D CNN component plays a vital role in 

extracting crucial spatial features from the highly complex and 

unstructured point cloud data. The model is capable of 

identifying relevant spatial structures in the three-dimensional 

space, which is crucial for understanding the context of human 

activities. Meanwhile, the Bi-LSTM (Bidirectional Long Short-

Term Memory) is responsible for capturing bidirectional 

temporal patterns, allowing the model to consider both past and 

future information simultaneously. This is critical because 

human activities that occur in real-time are usually 

interdependent on temporal relations, which can significantly 

affect the classification decision.  

This combination makes the model particularly well-suited for 

data that inherently contains both spatial and temporal 

dimensions, such as the dataset used in this research, which 

reflects sequences of human activities in a three-dimensional 

space and temporally interconnected patterns. This combined 

approach significantly enhances the model’s ability to 

understand complex and dynamic sequences of human 

movement. 

As shown in TABLES 1, TABLE 2 and TABLE 3, the 

performance of the 3D CNN + Bi-LSTM model remains 

consistently high across all activity classes. For instance, in the 

walking class (class 2), the model achieved an F1-score of 0.92, 

significantly outperforming PointNet (0.84), PointNet++ (0.81), 

and even the standalone 3D CNN model (0.84). Although the 3D 

CNN + LSTM model also showed strong performance with an 

F1-score of 0.91, the addition of the Bi-LSTM layer still resulted 

in a measurable improvement. This performance difference 

indicates that the bidirectional information captured by Bi-

LSTM provides a more comprehensive temporal context 

compared to the unidirectional LSTM. The consistency of this 

model is also evident in the standing class (class 5), where it 

achieved an F1-score of 0.88, indicating strong stability in 

recognizing various types of human activities, including low-

movement actions that are often difficult to classify accurately 

by other models.  

TABLE 4 further supports these findings by presenting a 

comprehensive comparison of the models based on key 

evaluation metrics such as accuracy, MAE, precision, recall, and 

F1-score, all of which collectively demonstrate the superiority of 

the 3D CNN + Bi-LSTM model over the others. The 3D CNN + 

Bi-LSTM model achieved the highest accuracy at 89.66%, the 

lowest Mean Absolute Error (MAE) at 29.38%, and superior F1-

score, recall, and precision metrics compared to all other tested 

models. The dominance of these metrics demonstrates the 

superiority of the architecture in handling complex and high-

dimensional radar point cloud data. From these results, it can be 

concluded that the 3D CNN + Bi-LSTM model delivers the most 

optimal performance for human activity classification based on 

radar point cloud data. Its strengths lie not only in high accuracy 

but also in the consistent and stable performance across all 

evaluation metrics used in this study. In other words, this model 

excels not only in terms of numerical performance but also in 

reliability, generalization, and potential applicability across 

various real-world scenarios. 

B. PERFORMANCE 

The classifier is designed to evaluate the accuracy of five 

sequentially performed movements and detect empty room 

conditions. Once data is collected from the six classification 

categories five types of movements and one empty room 

condition it is merged into a comprehensive dataset. This 

merging step is followed by data shuffling to increase variability 

during the model training and testing processes. This technique 

is applied to improve the model's classification accuracy and 

enhance its performance on a more diverse and realistic data 

distribution. A well-shuffled and representative dataset plays an 

important role in shaping a reliable classifier capable of handling 

subtle variations in activity execution 

The testing results revealed that the 3D-CNN + BiLSTM 

model achieved the highest accuracy, approximately 90%, 

making it the best performer compared to the five other models 

evaluated on the same dataset. FIGURE 2 illustrates a 

comparative accuracy graph of the six tested models: 3D-CNN, 

3D-CNN + BiLSTM, 3D-CNN + LSTM, PointNet, PointNet++, 

RNN, and RNN + LSTM, each tested across six model types (1, 

2, 3, 4, 5, and 6). Among these models, 3D-CNN + BiLSTM 

demonstrated the most superior performance, achieving the 

highest accuracy of 90% on model type 2. This was followed by 

3D-CNN + LSTM, RNN + LSTM, and RNN, which also showed 

relatively.  High  accuracy. Conversely, the   3D-CNN    model  
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exhibited the lowest performance, with an accuracy of 82%, 

indicating that without further temporal processing such as 

LSTM or Bi-LSTM layers, this model lacks the capacity to 

capture the time dynamics inherent in complex sequences of 

human activities. 

Further analysis indicated that model type 2 yielded the 

highest accuracy across all classifiers, followed by model 

types 6 and 5. FIGURE 2 provides a visual comparison of the 

accuracy of each model, offering a clearer view of the 

  
(a) (b) 

  
(c) (d)  

  
(e) (f) 

  
(g) (h) 

FIGURE 3. Graphic Result from (a) 3DCNN Training accuracy (b) 3DCNN Training Loss (c) 3DCNN +LSTM Training accuracy (d) 3DCNN +LSTM 
Training Loss (e) 3DCNN + BiLSTM Training accuracy (f) 3DCNN + BiLSTM Training Loss (g) PointNet Training accuracy (h) PointNet Training 
Loss 
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performance differences among the models and the tested 

movement categories. These findings underscore the 

importance of selecting the appropriate model to support 

effective and accurate motion recognition (TABLE 1). 

FIGURE 3 (a) shows that the 3D CNN achieved a training 

accuracy of over 82%, with validation accuracy also 

increasing but slightly lower, indicating potential overfitting. 

The training loss gradually decreased to approximately 0.40, 

while the validation loss also declined but remained higher, 

reflecting challenges in generalization. The 3D CNN is 

designed to capture spatial features from 3D point cloud data 

effectively, such as object position and shape in space. 

However, this model has inherent limitations in processing 

temporal relationships between frames, as its architecture does 

not explicitly consider time sequences or motion dynamics. 

This becomes a major challenge in human activity 

recognition, where activity patterns often involve a sequence 

of movements that change continuously over time. 

Additionally, the 3D CNN is prone to overfitting, especially 

when processing high-dimensional point cloud data with a 

limited amount of training data[35]. 

In contrast, FIGURE 3 (c) shows that the 3D CNN + LSTM 

achieved a training accuracy of nearly 90%, with validation 

accuracy almost parallel, indicating better generalization 

capabilities. This combination is effective because the 3D 

CNN can extract spatial features such as structure and point 

distribution in three-dimensional space, while the LSTM 

complements this by capturing temporal sequences from 

frame to frame, enabling the model to understand the context 

of motion that occurs progressively over time. Thus, enabling 

the model to not only understand the position of objects in 

space but also how those objects move over time, which is 

highly relevant for human activity recognition applications. 

The training loss stabilized at around 0.30, Which indicates 

that this model is more stable and efficient in learning human 

activity patterns involving changes in time and space. 

The combination of 3D CNN + BiLSTM in FIGURE 3 (e) 

demonstrated more optimal performance, with training 

accuracy reaching around 90% and validation accuracy 

closely matching, which reflects the model's remarkable 

ability not only to generalize well but also to capture more 

complex temporal information, which is crucial for 

recognizing a wide range of human movement patterns. The 

training loss dropped to approximately 0.25, and the 

validation loss also declined, indicating that this combination 

is highly effective in maintaining model stability and 

efficiency. BiLSTM offers an additional advantage over 

standard LSTM because it can process information in both 

directions, reading the data sequence forward and backward, 

allowing it to capture more complex and relevant temporal 

patterns in human activity data. 

On the other hand, FIGURE 3 (g) shows that PointNet 

achieved a training accuracy of around 80%, which indicates 

a slight overfitting, where the model fits the training data more 

closely than it can generalize to broader data. The training loss 

decreased to about 0.50, while the validation loss stagnated at 

around 0.40, highlighting instability in generalization. This 

limitation of PointNet arises because the model processes each 

point independently without capturing local spatial or 

temporal relationships in the point cloud data, which are 

essential for recognizing complex human activity 

patterns[20]. 
 

TABLE 1 
Result Classification 

Class Precision Recall F1-Score Support Class Precision Recall F1-Score Support 

3DCNN 3DCNN + LSTM 

0 0.62 0.52 0.57 101 0 0.70 0.73 0.72 101 

1 0.69 0.64 0.67 4432 1 0.76 0.70 0.73 4432 

2 0.79 0.89 0.84 11050 2 0.90 0.92 0.91 11050 

3 0.92 0.95 0.93 5763 3 0.93 0.97 0.95 5763 

4 0.87 0.77 0.82 11034 4 0.92 0.90 0.91 11034 

5 0.85 0.85 0.85 8988 5 0.88 0.88 0.88 8988 

3DCNN + Bi-LSTM PointNet 

0 0.78 0.74 0.76 101 0 0.68 0.52 0.59 101 

1 0.73 0.77 0.75 4432 1 0.71 0.54 0.62 4432 

2 0.91 0.93 0.92 11050 2 0.82 0.86 0.84 11050 

3 0.94 0.96 0.95 5763 3 0.90 0.97 0.94 5763 

4 0.93 0.90 0.92 11034 4 0.85 0.81 0.83 11034 

5 0.90 0.86 0.88 8988 5 0.82 0.87 0.85 8988 
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In FIGURE 4 (a) PointNet++ achieved a training accuracy of 

approximately 80%, while validation accuracy was slightly 

lower at around 77%, indicating potential overfitting. The 

training loss remained stable at around 0.50, reflecting 

instability in generalization. In contrast, as shown in FIGURE 

4(d), the RNN model showed better performance, achieving 

88% training accuracy with closely matched validation 

accuracy, indicating balanced generalization. The consistent 

accuracy suggests the model could adapt well to new input. 

The training loss also decreased to 0.30, while the validation 

loss remained low, showing that the model effectively learned 

and retained important features throughout training. The 

combination of RNN + LSTM in FIGURE 4(e) showed 

optimal performance, achieving nearly 89% training accuracy 

with closely matched validation accuracy. The training loss 

was as low as 0.20, with validation loss significantly reduced, 

reflecting good model stability.  

IV. DISCUSSION 

This study aims to analyze the significant differences in 

classification accuracy among various deep learning models 

for Human Activity Recognition (HAR) based on 3D point 

cloud data derived from mmWave radar sensors, which are 

increasingly utilized in non-intrusive patient monitoring 

systems during the medical rehabilitation process. The results 

show that the combined 3D CNN and BiLSTM model 

achieved the highest accuracy at 89.66%, outperforming other 

models such as PointNet, RNN, and standalone 3D CNN. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
Figure 4. Graphic Result from (a) PointNet++ Training accuracy (b) PointNet++Training Loss (c) RNN Training accuracy (d) RNN Training Loss 

(e) RNN+LSTM Training accuracy (b) RNN+LSTM Training Loss 
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The strength of this hybrid model lies in its ability to process 

spatial and temporal information simultaneously, enabling more 

accurate detection of complex motion sequences typically 

observed in real-world rehabilitation scenarios. CNN effectively 

extracts spatial features from radar point cloud data, while 

BiLSTM captures temporal changes from past and future data 

sequences.  

This combination enables the 3D CNN + BiLSTM model to 

recognize human movement patterns more comprehensively, by 

capturing not only the structure of poses from spatial data but 

also transitions between activities over time, which are critical 

for understanding patient recovery progression.  In contrast, 

using CNN or 3D CNN alone tends to be limited in performance, 

as these models focus solely on extracting spatial information 

without incorporating the temporal dynamics that define motion 

sequences, thus reducing their effectiveness in HAR applications 

where activity duration and transition are essential features.  

Meanwhile, RNN- or LSTM-based models also face 

considerable challenges in handling the irregular distribution and 

sparse nature of point cloud data, which can lead to unstable 

learning and reduced classification reliability without 

appropriate feature preprocessing. Therefore, integrating CNN 

and BiLSTM presents an appropriate approach, leveraging the 

strengths of both architectures to process the spatial and temporal 

dimensions of 3D radar point cloud data. When compared to 

previous studies summarized in TABLE 5, the proposed model 

in this research demonstrates competitive advantages in both 

accuracy and efficiency. First, a deep learning framework based 

on TimeDistributed CNN-LSTM architecture was implemented 

to process voxelized radar data from the MMActivity dataset [9], 

aiming to leverage spatial-temporal features for improved 

activity classification. This method integrated Convolutional 

Neural Networks (CNN) to extract spatial patterns from radar 

data slices and bidirectional Long Short-Term Memory 

(BiLSTM) networks to capture forward and backward temporal 

dependencies, achieving a classification accuracy of 90.47%, 

although the system's performance was not validated using point 

cloud data, potentially limiting its application in depth-aware 

HAR scenarios. 

In a subsequent study, a hybrid model combining one-

dimensional Convolutional Neural Networks (1D CNN) and 

LSTM was employed to classify Micro-Doppler signatures 

captured by radar sensors, resulting in a high recognition 

accuracy of 98.28% [21]. Although the reported performance is 

notable, the experimental setup was conducted using a relatively 

small and homogeneous dataset, and notably lacked the 

incorporation of 3D point cloud information, which is crucial for 

applications in HAR within complex, real-world environments 

where depth and spatial orientation vary significantly. 

Another investigation explored the application of a 

TimeDistributed CNN-LSTM network on three-dimensional 

MRI scan data [5], yielding an accuracy of 98.90%. This result 

reinforces the efficacy of integrating spatial and temporal 

analysis for medical pattern recognition tasks. However, the 

domain-specific nature of the dataset medical imaging renders 

the model less transferable to radar-based HAR contexts, where 

data characteristics and environmental variability differ 

substantially. In [25], a feature fusion model integrating 

Principal Component Analysis Network (PCANet) with CNN-

BiLSTM was applied to mmWave radar data, achieving the 

highest reported accuracy of 99.75% in the reviewed studies. 

 

TABLE 2 
Result Classification 

Class Precision Recall F1-Score Support Class Precision Recall F1-Score Support 

PointNet++ RNN 

0 0.79 0.11 0.19 101 0 0.65 0.70 0.67 101 

1 0.69 0.51 0.59 4432 1 0.73 0.72 0.72 4432 

2 0.77 0.84 0.81 11050 2 0.88 0.91 0.89 11050 

3 0.88 0.97 0.93 5763 3 0.92 0.97 0.95 5763 

4 0.82 0.76 0.79 11034 4 0.91 0.87 0.89 11034 

5 0.81 0.86 0.83 8988 5 0.88 0.86 0.87 8988 

     
    TABLE 3  
RNN + LSTM 

Class Precision Recall F1-Score Support      

RNN + LSTM     

0 0.74 0.66 0.70 101 0 = Empty Room 3 = Squatting 

1 0.73 0.77 0.75 4432 1 =  Sitting 4 =  Running  

2 0.91 0.92 0.92 11050 2 =  Walking 5 =  Standing  

3 0.94 0.96 0.95 5763     

4 0.92 0.91 0.92 11034     

5 0.90 0.86 0.88 8988     
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While the approach demonstrated robust HAR performance by 

utilizing statistical offset features and multi-level temporal-

spatial fusion, its heavy reliance on specific radar configurations 

and high model complexity limits its generalizability across 

diverse environmental conditions and hardware platforms. A 

multi-modal sensor fusion approach integrating CNN-LSTM 

architectures with visual data from cameras and radar signals 

was explored in [26], producing an impressive accuracy of 

98.26%. However, the necessity of synchronizing multiple 

sensors increases hardware complexity and deployment costs, 

thereby reducing the practicality of such systems in scenarios 

where minimal sensor infrastructure such as radar-only setups is 

preferred. In comparison, the model proposed in this study 3D 

CNN combined with BiLSTM achieved 89.66% accuracy using 

only point cloud data. It strikes a balance between performance 

and architectural simplicity, making it suitable for practical 

applications in medical rehabilitation monitoring. Unlike more 

complex fusion-based systems, it relies solely on radar point 

cloud input, avoiding the need for additional sensors, extensive 

calibration, or computationally intensive pre-processing 

pipelines. Nevertheless, this study has several limitations. First, 

TABLE 5 
Comparison 

Study Model Accuracy Dataset Limitations 

This Study 3DCNN + 

BiLSTM 

89.66% PointCloud data (6 

activities) 

Limited to offline analysis; 

real-time performance not 

evaluated 

 

Radhar: Human activity recognition from 

point clouds generated through a 

millimeter-wave radar [9] 

 

TimeDistributed 

CNN-LSTM 

 

90.47% 

 

MMActivity 

Dataset (voxelized 

radar data) 

 

Limited to specific radar 

data; not generalizable to 

other modalities. 

 

A Hybrid CNN-LSTM Network for the 

Classification of Human Activities Based 

on Micro-Doppler Radar [21] 

 

1D CNN + 

LSTM 

 

98.28% 

 

Micro-Doppler 

radar data 

 

Limited to small datasets; 

no point cloud data used. 

 

TimeDistributed-CNN-LSTM: A Hybrid 

Approach Combining CNN and LSTM to 

Classify Brain Tumor on 3D MRI Scans 

Performing Ablation Study [5] 

 

TimeDistributed 

CNN-LSTM 

 

98.90% 

 

3D MRI scans 

 

Focused on medical 

imaging, not HAR. 

 

Human Activity Recognition Method Based 

on FMCW Radar Sensor with Multi-

Domain Feature Attention Fusion Network 

[22] 

 

CNN+SMAN 

 

97.58% 

 

FMCW radar data 

Complex architecture; high 

computational cost. 

 

Human Multi-Activities Classification 

Using mmWave Radar: Feature Fusion in 

Time-Domain and PCANet [25] 

 

PCANet + 

CNN-BiLSTM 

 

99.75% 

 

mmWave radar 

data 

 

Limited to specific radar 

data; not generalizable to 

other modalities. 

 

Multi-Sensor Data Fusion and CNN-LSTM 

Model for Human Activity Recognition 

System [26] 

 

CNN-LSTM + 

Multi-Sensor 

Fusion 

 

98.26% 

 

Multi-sensor data 

(camera + radar) 

 

Requires multiple sensors; 

not applicable to single-

modality systems. 
 

TABLE 4 
Algorithm Comarison 

Classifier Accuracy(%) MAE (%) F1-Score Recall Precision 

3DCNN 82.99 45.24 0.8287 0.8299 0.8310 

3DCNN+LSTM 89.06 31.02 0.8898 0.8906 0.8894 

3DCNN+Bi-LSTM 89.66 29.38 0.8968 0.8966 0.8978 

PointNet 83.04 45.88 0.8269 0.8304 0.8270 

PointNet++ 80.45 51.69 0.7996 0.8045 0.8011 

RNN 87.72 34.02 0.8768 0.8772 0.8770 

RNN+LSTM 89.59 29.72 0.8961 0.8959 0.8968 
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the model has not yet been tested in real-time scenarios, despite 

the fact that real-time responsiveness is a critical requirement for 

health monitoring systems, especially when used for continuous 

assessment of patient activity or emergency detection in home-

care settings. Second, experiments were conducted in a 

controlled environment with a limited number of participants 

(only three individuals), so broader generalization to larger 

populations requires further investigation. Third, the system has 

not been tested under varying environmental conditions, such as 

different room layouts, potential signal interference, or the use of 

mobility aids. These factors are crucial to ensure the system’s 

applicability in diverse clinical settings. The implications of this 

study are highly promising in supporting more adaptive and 

personalized healthcare services. With its ability to classify 

patient activities accurately without the need for wearable 

devices or cameras, this system opens significant opportunities 

for developing remote rehabilitation services—especially for 

post-operative patients with limited mobility or in rural areas 

lacking access to rehabilitation specialists. The use of mmWave 

radar also allows for continuous monitoring without intruding on 

patient privacy, thereby improving both comfort and safety 

during recovery. In the future, this system has the potential to be 

integrated into telemedicine platforms or Electronic Health 

Records (EHRs), supporting smarter, more efficient, and 

targeted medical decision-making. 

V. CONCLUSION 

This study aimed to analyze the significant differences in 

classification accuracy among various deep learning models 

applied to point cloud data for human activity recognition 

(HAR). The results demonstrate that the 3D CNN + BiLSTM 

model outperformed other models, achieving an accuracy of 

89.66%, while the 3D CNN model had the lowest accuracy of 

82.99%. These findings highlight the effectiveness of combining 

spatial feature extraction (via 3D CNN) with temporal sequence 

modeling (via BiLSTM) for HAR tasks. Below, we provide a 

deep interpretation of the results, compare this study with 

previous works, discuss limitations, and explore the implications 

of the findings. This study aimed to analyze the significant 

differences in classification accuracy among various deep 

learning models applied to point cloud data for human activity 

recognition (HAR). The results demonstrate that the 3D CNN + 

BiLSTM model outperformed other models, achieving an 

accuracy of 89.66%, while the 3D CNN model had the lowest 

accuracy of 82.99%. These findings highlight the effectiveness 

of combining spatial feature extraction (via 3D CNN) with 

temporal sequence modeling (via BiLSTM) for HAR tasks. 

Below, we provide a deep interpretation of the results, compare 

this study with previous works, discuss limitations, and explore 

the implications of the findings. 
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