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ABSTRACT Electric vehicles (EVs) are gaining popularity because of their cheap running costs and positive environmental 

impacts. However, EVs' limited battery life is one of their biggest drawbacks. Accurately controlling lithium-ion battery (LiB) 

capacity improves energy storage systems' economic viability, especially in large-scale applications. Long-term cost reductions 

are achieved by replacing or maintaining LiBs less often. This paper presents the Energy Efficient Battery Optimisation Model 

(EE-BOM), a novel model for early battery life detection. The information used in this research comes from the Hawaii Natural 

Energy Institute and comprises 14 different batteries that underwent over 1000 cycles in a controlled setting. Feature selection 

follows data collection and preparation with data normalisation in a multi-step procedure. The XGBoost Approach, which 

combines Artificial Neural Networks (ANN) with Harris Hawk Optimisation (HHO), is also used for early RUL prediction. 

Feature significance analysis makes it simpler to identify critical elements influencing battery lifetime and health. The 

evaluations are carried out based on Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE) and R-Squared rate. The proposed model attains 23.68%, 36.41% and 24.67% of average MSE, MAE and RMSE, 

respectively, which is minimal than other compared works. Outlier reduction improves model accuracy, and statistical analyses 

show no missing or redundant data. Notably, with almost flawless predictions, XGBoost proved to be the most successful 

algorithm. This study emphasises how important RUL prediction is for improving battery lifetime management, especially in 

applications like electric cars, guaranteeing the best possible use of resources, economic viability, and environmental 

sustainability in the future. 

 

INDEX TERMS Energy Efficient, Battery Optimization, Machine Learning, HHO Optimization, Battery Lifetime, XGBoost. 

I. INTRODUCTION 

The majority of lithium-ion (Li-ion) batteries used in electric 

vehicles (EVs) are selected due to their remarkable qualities, 

such as high energy density, lack of memory effect, long 

lifetime, and adaptability in terms of charging and discharging 

[1]. Notwithstanding these benefits, the automobile sector still 

has to contend with unpredictable renewable energy supply 

chains, changing weather patterns, and rising air pollution 

from car emissions [2]. EV batteries' energy storage provides 

a viable way to address environmental uncertainties and 

concerns. The development and broad use of EVs with 

improved range, safety, and dependability are essential to 

decarbonising the transportation industry. However, there are 

drawbacks to using Li-ion batteries, including as capacity loss, 

environmental effects, and difficulties managing end-of-life 

[3]. RUL, which stands for the predicted time or use before a 

component, device, or system is expected to fail or no longer 

satisfy its operational characteristics, is a key term in 

predictive maintenance and reliability engineering [4]. 

Machine learning techniques are used to forecast RUL in the 

context of EV batteries, taking into account a number of 

variables.  

Given the impact of cycling, deterioration, and 

environmental factors, predicting the remaining usable life 

(RUL) of lithium-ion (Li-ion) batteries is crucial to 

guaranteeing the dependable and effective functioning of 

power systems. This deterioration may result in power 

outages, safety risks, and financial losses by lowering 

capacity, raising internal resistance, and raising the chance of 

failure [5]. Power system operators may take preventative 
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action to avoid catastrophic failures, optimise maintenance 

schedules, and enhance overall system dependability by 

accurately determining the RUL of Li-ion batteries [6]. RUL 

projections help utilities use predictive maintenance 

techniques, such planning battery replacements before they 

run out of life, lowering the chance of unplanned outages, and 

enhancing grid stability [7]. Significant improvements in 

battery manufacture, use, and optimisation are possible when 

Li-ion battery lifespan predictions are made using early-cycle 

data. Manufacturers are able to classify new cells according to 

their expected lifetime, verify innovative production 

techniques, and accelerate cell development. Additionally, 

end customers may choose how long their batteries will last. 

Despite regulated operating conditions, nonlinear 

deterioration and unpredictability make it difficult to forecast 

battery lifespan reliably [8]. 

An important difficulty is that an EV battery's capacity 

usually drops by roughly 10% after about 6.5 years of 

continuous use [9]. Given that Li-ion batteries gradually lose 

capacity during cycles of charging and discharging, predicting 

RUL and tracking capacity deterioration are challenging 

problems [10]. Battery management systems are responsible 

for these responsibilities (BMSs). It is crucial to accurately 

predict the complex and non-linear course of battery capacity 

loss. When it comes to forecasting EV battery life, machine 

learning (ML) provides significant benefits. This helps owners 

plan their trips more effectively and helps manufacturers 

create batteries with longer lifespans and better charging 

techniques [11] [12]. 

ML approaches are very helpful in tackling the technical 

problems associated with battery deterioration because of the 

non-linear and complex elements that impact battery 

performance. By overcoming time constraints and scalability 

issues, machine learning algorithms provide accurate, non-

invasive solutions. Infrastructure for transport must be 

electrified in order to meet the dual demands of affordable 

mobility and sustainable energy. In order to assist EV users 

and producers alike and promote sustainable development 

worldwide, this research aims to create a reliable and precise 

approach for predicting EV battery life. This study's main goal 

is to predict the RUL of lithium-ion (Li-ion) batteries, which 

is a crucial undertaking with important practical implications. 

For companies that significantly depend on Li-ion batteries, 

predicting RUL is essential since it enables preemptive 

maintenance plans and effective resource allocation. The 

dataset includes crucial characteristics like the cycle index, 

discharge period, and maximum voltage discharge in order to 

do this. The development of a strong and accurate prediction 

model incorporating these qualities is made possible by the 

goal variable, RUL, which represents the battery's remaining 

operational lifetime. This study focusses on showing how 

artificial intelligence (AI) may significantly increase the 

precision and effectiveness of electric car battery diagnostics 

while also showcasing real-world uses for these technologies. 

The use of these technologies enhances battery performance 

management, prolongs battery life, lowers maintenance costs, 

and boosts overall operating efficiency—all of which support 

the sustainable growth of electric cars Considering those 

things, the contribution of the proposed model is given below.  

1. Obtaining data from benchmark dataset and perform data 

pre-processing 

2. Integrating HHO with ANN for parametric optimization 

based on filters for enhancing the result efficacy of model.  

3. In order to improve the CNN-XGBoost model's 

performance for battery RUL prediction, a new set of 

features is proposed by concatenating features that have 

been retrieved from the CNN model with another set of 

features that were obtained from measured data to feed 

with XGBoost. 

4. Results are evaluated using evaluation metrics. 

The remainder of this work is organized as follows, Section 2 

deliberates the related works in the domain of RUL predictions 

and performance efficacy. The working procedure of 

proposed model is presented in Section 3 with system flow. 

The results and discussions are given in Section 4. Finally, 

section 5 completes the paper with conclusions and future 

work. 

 
II.  RELATED WORKS 

The difficult problem of forecasting the RUL of lithium-ion 

batteries is taken on by J.-H. Chou et al. [13]. They suggest a 

hybrid approach based on transfer learning that combines 

models of bidirectional long short-term memory with attention 

mechanisms, support vector regression, and empirical mode 

decomposition. With relative error levels of 6.96%, 0.6%, and 

6.25% for various charging policy target batteries, this method 

dramatically improved RUL forecast accuracy, especially for 

batteries with higher cycle numbers. The difficulties in 

forecasting battery capacity for electric vehicles (EVs) are 

discussed by J. Zhao et al. [14]. They create a two-step noise 

reduction technique and use a stacking ensemble learning 

strategy using feature-based machine learning on a dataset that 

includes 420 cells and 9 battery packs. In the complex setting 

of EV battery systems, The work helps to provide predictions 

that are both accurate and physically consistent. 

Scholars often use DDB models to study a battery's 

degrading performance in order to estimate its state-of-health 

(SOH) [15], end-of-life (EOL) [16], SOC [17], and RUL [18]. 

To ensure safe and effective operation, the battery 

management system (BMS) must accurately estimate the 

battery's RUL and EOL under various operating situations. 

This forecast helps to maximise longevity, ensure optimum 

battery use, and prevent unplanned failures. In order to 

estimate battery health variations and accurately forecast 

EOL, a DDB framework is provided in [19] that use an 

automated feature selection to create customised inputs for a 

Gaussian Process Regression (GPR) model. This 

methodology's feature selection process prioritises elements 

that have a major influence on battery deterioration and 

exhibits adaptability in response to a variety of inputs.  

In order to improve SOH estimation using the NASA 

dataset, a hybrid strategy including variation mode  

decomposition, multi-kernel support vector regression, and 

the sparrow search algorithm is described in [20]. However, 
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the proposed methodology is incompatible with RUL 

prediction. In [21], an analogous circuit model of a battery is 

evaluated on 65 batteries in order to extract physics-informed 

characteristics and use unsupervised learning to propose a 

combination detection and prediction model. The proposed 

model has a life prediction performance RMSE of 53.56% and 

detects deterioration stages with above 90% accuracy. A 

moving window-based approach for in-situ battery life 

categorisation and prediction using machine learning methods 

is provided in [22]. This method produces EOL predictions 

with RMSE and MAPE rates of 100 cycles and 10%, 

respectively, by using GPR and SVM to extract features from 

incomplete charging data  FIGURE 1. 

 Lithium plating in lithium-ion batteries during rapid 

charging in embedded systems is the main topic of C. Zoerr et 

al. [23]. They successfully reduce the dangers of lithium 

plating by introducing a unique charging process that is based 

on the relationship between anode potential and negative 

electrode polarisation. This proven method, which is used in a 

variety of settings, uses an anode potential control that is 

developed from a Newman-type P2D modelling framework 

and shows a significant decrease in the dangers associated 

with lithium plating. A novel end-to-end deep learning 

architecture for quick lithium-ion battery RUL prediction is 

presented by D. A. Najera-Flores et al. [24]. The method 

improves the mean absolute error rate by a significant 10.6% 

and makes predictions 25 times quicker by focussing on 

temporal patterns and cross-data correlations from raw data, 

such as terminal voltage, current, and cell temperature. 

A thorough approach to battery RUL prediction is put out 

in [25], which includes an improved PSO method for figuring 

out the ideal degradation parameter values as well as an 

information entropy-based technique. In order to handle noise 

and capacity degradation problems in the experimental data, a 

Moving Average Filter (MAF) is also used. The datasets from 

Maryland University and NASA are used to illustrate the 

efficacy of the proposed technique. According to the results, 

the method outperforms DDB alternatives in terms of 

prediction accuracy while using less training data. To conduct 

RUL prediction, the authors of [26] provide a DDB model that 

strengthens the relationship between features and the battery's 

ageing condition by combining the PSO approach with feature 

improvement via box-cox transformation. PSO is used in the 

model parameter optimisation procedure. Experimental 

findings show that this approach is successful, and its efficacy 

is confirmed using real Li-ion battery deterioration data. In 

order to forecast the RUL of Li-ion batteries, the authors in 

[27] use the NASA dataset to create a model of battery 

deterioration by integrating Support Vector Regression (SVR) 

with the Artificial Bee Colony (ABC) method. The SVR 

kernel parameters are optimised using ABC. The findings 

show that when it comes to parameter optimisation, the ABC 

method performs better than the PSO approach. The study in 

[28] emphasizes how crucial lithium-ion battery health is 

becoming to the electrification of transportation. In order to 

forecast RUL, they propose a novel method that combines 

transfer learning, Gaussian process regression, and gated 

recurrent neural network approaches. This approach improves 

accuracy beyond conventional techniques by optimising 

health indicators, introducing a self-correction mechanism, 

and implementing online model correction—all of which are 

critical for future maintenance in battery management. 

Examine the end-of-life prediction and degrading behaviour 

of lithium titanate oxide (LTO) batteries in [29]. Using a feed-

forward neural network model for precise health condition and 

end-of-life predictions, the study investigates the effects of 

temperature, current rate, and cycle depth on capacity 

deterioration and cycle life. Their study highlights variables 

influencing the lifespan and performance of LTO batteries, 

showing that high temperatures increase deterioration. Using 

 
FIGURE 1. Workflow of RUL Prediction model 
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a machine learning technique, the authors in [30] investigate 

how coolant flows and road gradient affect the electrical 

components of electric vehicles that are powered by batteries. 

While acknowledging the processing resources needed for 

training bigger datasets, the study highlights the critical impact 

that data quantity plays in improving prediction accuracy for 

artificial neural networks (ANNs), implying that sufficient 

data is essential for maximum performance. 
 
III. PROPOSED MODEL 

The working procedure of the proposed model is 

comprehensively detailed in this section to illustrate its 

robustness and effectiveness. The model initiates with data 

acquisition, where the necessary data is collected from a 

relevant dataset, ensuring it encompasses all critical 

parameters for battery health monitoring. Following this, data 

pre-processing is performed, which includes cleaning the data 

to remove inconsistencies and normalizing it to standardize 

the range of features for uniformity and to enhance the model's 

performance. Subsequently, the Harris Hawks Optimization 

(HHO) algorithm is employed for feature extraction, which 

identifies and selects the most relevant features contributing to 

accurate predictions. These features are then utilized by 

machine learning techniques, specifically XGBoost and 

Artificial Neural Networks (ANN), to predict the Remaining 

Useful Life (RUL) of the batteries based on their current levels 

and operational conditions. The prediction accuracy and 

efficacy of the model are validated using regression 

performance metrics such as RMSE and MAE. Lastly, a 

feature importance analysis is carried out to determine which 

characteristics in the dataset exert the most influence on the 

predictions, providing valuable insights into the critical factors 

affecting battery life. The workflow, illustrated through the 

block diagram in FIGURE 1 highlights the seamless 

integration of these stages, showcasing the structured 

approach adopted by the proposed RUL prediction model. 

 A.DATA ACQUISITION 

The data comes from a research by the Hawaii Natural Energy 

Institute that examined 14 distinct 18,650 Nickel Manganese 

Cobalt-Lithium Cobalt Oxide (NMCLCO) batteries, each of 

which had a 2.8 Ah nominal capacity. "18,650" refers to a 

certain battery size standard that is around 18 mm in diameter 

and 65 mm in length. These batteries were subjected to a 

rigorous cycling schedule, lasting more than 1000 cycles at a 

regulated 25 °C. Using a constant current–constant voltage 

(CC-CV) charge rate set at a C/2 rate—that is, charging at half 

the battery's capacity per hour—the charging and discharging 

procedures were standardised. They were also discharged at a 

rate of 1.5 C, which means that the battery was being charged 

at a rate that was 1.5 times its capacity per hour. The dataset is 

openly available in  

(https://www.kaggle.com/datasets/ignaciovinuales/battery-

remaining-useful-life-rul) 

Specific characteristics were extracted from the original 

dataset in order to assist predictive modelling and extract 

valuable insights. These characteristics draw attention to the 

patterns of voltage and current seen throughout each battery 

cycle [21]. The carefully selected properties provide crucial 

information with the goal of accurately predicting these 

batteries' RUL, a crucial indicator for evaluating battery 

health. Electric cars are among the many applications that 

often employ NMC-LCO batteries. The behaviour and 

chemistry of those batteries in the dataset may provide light on 

the lifespans and patterns of deterioration of comparable 

batteries used in EVs. The dataset's batteries experienced more  

than 1000 cycles, which is comparable to the kind of cycle life 

testing that EV batteries would experience. A comprehensive 

dataset for comprehending how these batteries deteriorate 

over time and cycles is provided by this thorough cycling. 

B.   DATA PRE-PROCESSING 

Duplicate and missing values were checked in the data. 

Following preprocessing, the dataset was found to be free of 

duplicate or missing occurrences. Maintaining the dataset's 

integrity involves making sure there are no duplicate or 

missing entries. Particularly in machine learning models, any 

missing data might result in skewed analysis or incorrect 

predictions. Every record in the dataset is guaranteed to be 

unique by eliminating duplicates. The quality and efficiency 

of statistical analyses and machine learning model training 

may be impacted by duplicated data, therefore this is very 

crucial. There were no missing or duplicate occurrences in this 

dataset. Here, Min-Max normalization is used here for 

normalizing data, which are specifically in the range of (0, 1) 

or (-1, 1). The mathematical expression can be given in Eq. 

(1),  

𝑑𝑛𝑜𝑟𝑚 =
𝑑−𝑚𝑖𝑛(𝑑)

𝑚𝑎𝑥(𝑑)−𝑚𝑖𝑛(𝑑)
                  (1) 

Here, ‘𝑑’ is the obtained data and ‘𝑑𝑛𝑜𝑟𝑚’ is the data after 

normalization, max(𝑑) 𝑎𝑛𝑑min(𝑑) are the maximal and 

minimal rates of ‘𝑑’ in the dataset, considerably.  

C.   FEATURE SELECTION 

Feature selection makes it easier to select a subset of 

characteristics, which significantly improves ML models' 

capacity for prediction. HHO is used to pick features in order 

to achieve this. Feature extraction is the procedure of choosing 

and removing a subset of important features from a larger 

redundancy rate and undesired data in order to achieve 

effective training.  To improve training results for learning 

performance detection and design project duration, feature 

selection is a technique for removing redundant and 

unnecessary information. Certain computations may be 

eliminated with the use of feature selection rather than replica 

complexity. In this instance, HHO is used for feature selection. 

The freshly developed HHO meta-heuristic algorithm is based 

on the concept of swarm intelligence. To mimic their 

behaviour in the wild, Harris Hawks' characteristic chasing 

techniques are used to capture their prey. In HHO, many 

hawks work together to chase prey in various ways, making it 

a population-based algorithm. The exploration phase and the 

exploitation phase are the two main phases of the Harris 
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Hawk. Hawks utilise a range of attack strategies, make a quick 

jump, and get ready to find their target throughout these stages. 

The HHO method may be used to any optimisation problem. 

The primary working exploitation and exploration phases are 

shown based on the prey energy level (EL) and activity 

chances (𝑎𝑎𝑛𝑑𝑏). 

1)EXPLORATION PHASE: 

The hawks are said to have extraordinary vision for following 

and finding their prey in HHO. Thus, the region is set up to 

keep an eye on the prey. As a result, the hawks use the two 

unofficial surveillance locations to view their prey and pole at 

the region. When 𝑎 < 0.5, the hawks rest on the same tree as 

their prey; when 𝑎 ≥ 0.5, however, they rest unpredictably on 

any tree of any size. Every monitoring strategy has the same 

likelihood rate. The HHO model may go from the exploration 

phase to the exploitation phase based on the energy rate that 

the prey is exerting in Eq. (2).  

𝑋 = 2𝑋0
1−𝑛

𝑁
                            (2) 

With ‘𝑁standing for the total number of iterations, ‘𝑛’ for the 

current iteration, and 𝑋0 for the prey's beginning energy, the 

above equation represents the prey's energy level, which may 

decrease as the number of iterations increases. The prey is 

regarded as influential, and the initial energy level, 𝑋0, for 

each cycle begins with (−1,−1), albeit it may range from 

(0,1). 

2)  EXPLOITATION PHASE 

Prey can often dodge dangerous situations with ease. The 

hawks use a variety of chase techniques as a result. During the 

exploitation stage, the hawks' plan asks for the use of four 

main tactics. Here, ‘𝑏’ stands for the prey's likelihood under 

two conditions:𝑏 ≥ 0.5 for being unable to escape, or 𝑏 <
0.5 for being able to do so. Hard besieges (HB) and soft 

besieges (SB) are processed for encircling the prey. The hawks 

may circle the prey at various locations depending on its EL. 

The hawks attack their target in unison to increase their 

chances of catching it. As soon as the victim releases energy, 

the hawks increase the intensity of their siege to capture it. SB 

is processed when 𝑎 ≥ 0.5, while HB is used when |𝑋| < 0.5. 

In ALGORITHM 1, the HHO pseudo code is introduced. The 

prey may begin moving quickly and the SB can be processed 

before a sudden assault occurs when (𝑎 < 0.5)and 𝑋 < 0.5. 

However, when (𝑏 < 0.5) and |𝑋| < 0.5, the HB is used, 

which prevents the prey from running. Here, the TABLE 1 

presents the RUL feature dataset for the proposed model. 

 
ALGORITHM 1: HHO Algorithm for Feature Selection 

 

1.𝑃 ← 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒,  
𝑁 ← 𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠), 𝑛 ← 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

2. 𝑃𝑖 (𝑖 = 1,2,3, … ,𝐾) 
3. WHILE (𝒆𝒏𝒅) 
4.COMPUTE 

(𝑛𝑒𝑤𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑟𝑎𝑡𝑒(𝐹), 𝑖𝑑𝑒𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝐿), 𝑝𝑟𝑒𝑦’𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 
5. FOR 𝒆𝒗𝒆𝒓𝒚𝒉𝒂𝒘𝒌(𝑷𝒊) 
6.  UPDATE 𝑋0 
7. CALCULATE 𝑒𝑛𝑒𝑟𝑔𝑦(𝑝𝑟𝑒𝑦)(𝑋)𝑢𝑠𝑖𝑛𝑔(1) 

8. IF (|𝑿| ≥ 𝟏) THEN 
9.  (𝑅𝑢𝑛𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑃ℎ𝑎𝑠𝑒) 
10. IF (|𝑿| < 𝟏) THEN  
11. (𝑅𝑢𝑛𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑃ℎ𝑎𝑠𝑒)  
12. ELSE IF(𝒂 ≥ 𝟎.𝟓𝒂𝒏𝒅|𝑿| < 𝟎. 𝟓) THEN  
13. EXECUTE HB 
14.UPDATE 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝐻𝑎𝑤𝑘) 
15. ELSE IF (A< 𝟎.𝟓𝒂𝒏𝒅|𝑿| ≥ 𝟎. 𝟓) THEN  
16. EXECUTE SB 
17. COMPUTE 𝐹(ℎ𝑎𝑤𝑘) 
18. result← 𝒃𝒆𝒔𝒕𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔𝒖𝒃𝒔𝒆𝒕 
19. return result 

TABLE 1 

RUL feature Dataset 

Features Depiction 

Cycle Index Represents the chronological number of 
battery cycle 

Battery Discharge Time 

(s) 

Denotes the time of discharge period for 

each cycle 

Max. Voltage Charging 

(v) 

Denotes the maximal battery discharge 

Min. Voltage Charging 

(v) 

Denotes the minimal battery discharge 

Time Constant Current 

(t) 

Represents the time constant during the 

battery cycle 

Charging Time Denotes the time taken for the battery to 
be charged fully 

RUL Denotes Remaining Useful Life 

D.   TRAINING AND RUL PREDICTION 

This section introduces the proposed methods for estimating 

Li-ion battery RUL. We have created an ANN that effectively 

pulls features from training data in order to solve this 

difficulty. 20% of this data is used for validation, while the 

remaining 80% is used for training. Following training and 

validation, the CNN model is adjusted by removing the last 

two layers and obtaining a collection of features from the layer 

before it. The chosen features from the measured data and the 

newly proposed feature taken from the battery charging 

regulations are then concatenated with the ANN-derived 

feature set. For early RUL prediction, this combined feature 

set is then put into an XGBoost model. The ANN model and 

feature extraction process hyperparameters are fine-tuned 

using the COM to increase the accuracy of the proposed 

technique. The best feature subset values for the ANN model 

are found with the help of COM. In-depth mathematical 

illustrations and descriptions of the used techniques—ANN, 

XGBoost, COM, hyperparameter tweaking, and evaluation 

metrics—are given in the following subsections.  

1) ANN IN RUL PREDICTION 

A subtype of deep learning models called ANN models are 

ideal for handling grid-like data, including pictures. ANNs are 

often used for tasks involving a lot of visual input, such as 

object identification and picture categorisation. Convolution is 

the main method used in the construction of ANNs to find 

patterns in data. The input data is filtered before the 

convolution procedure is carried out. Once the filter, which is 

a compact matrix of weights, has been moved, the dot product 

between the input data and the filter is calculated at each 

location. Upon completion of the convolution process, a 

https://jeeemi.org/index.php/jeeemi/index


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 7, No. 2, April 2025, pp: 380-390;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                              385               

feature map is generated. The feature map is then subjected to 

a nonlinear activation function, such as the rectified linear unit 

(ReLU). The activation function adds nonlinearity to the 

model, enabling it to recognise intricate patterns. Filters that 

increase in complexity with each new layer are often produced 

by repeatedly iterating the activation function and convolution 

process. In general, the final element of ANN is the fully 

connected layer, computing the classification of processed 

data. The input data matrix is considered as, 𝑀 of size × 𝑦 , 

‘𝐻’ is considered as filter matrix with size 𝑞 × 𝑟, hence, the 

convolution matrix can be defined as Eq. (3),  

𝐶𝑖,𝑗 = ∑ ∑ 𝐻𝑚𝑛𝑀𝑖+𝑚,𝑗+𝑛
𝑟=1
𝑛=0

𝑞=1
𝑚=0               (3) 

Here, the output feature map is ‘𝐶𝑖,𝑗’, where, 𝑖, 𝑗 are the indices 

of output element. One way to conceptualise the convolution 

procedure is as a sliding window applied to the incoming data. 

The dot product of the input data and the filter is computed 

when the filter is positioned in the upper-left corner of the data. 

The dot product is then computed once again after moving the 

filter one pixel to the right. Until the filter has been applied to 

all of the input data, this procedure is repeated. The features 

that have been retrieved from the input data are represented in 

the feature map, which may subsequently be used to categorise 

the input data. 

2) BOOSTING WITH XGBOOST: 

XGBoost is a type of gradient-boosting machine that is 

designed for speed and accuracy, and is commonly used for 

regression and classification tasks. XGBoost works by 

building a series of decision trees. Each decision tree is built 

on a subset of the data, and the predictions from the individual 

trees are combined to make a final prediction. XGBoost uses 

a gradient-boosting algorithm to train the decision trees. 

Gradient boosting is an iterative algorithm that builds a model 

by repeatedly adding new decision trees to the model. Each 

new decision tree is built to correct the errors of the previous 

trees. The objective function of the model can be defined as 

Eq. (4)  

𝐿(𝑐, �̂�) = ∑ 𝑟(𝑐𝑖 , �̂�𝑖) + 𝜑(𝑝�̂�)𝑛
𝑖=1                                  (4) 

Here, ′𝑐′ denotes the true label, ‘�̂�’ denotes the predicted label, 

and the loss function is ‘n’ with ‘𝜑’ is the regularization term, 

for managing the model complexity. The computation can be 

given as Eq. (5),  

𝜑(𝑝�̂�) = 𝛾𝑁 +
1

2
𝑙 ∑ 𝑔𝑗

2𝑚
𝑗=1                                         (5) 

Here, 𝑝�̂� is the predicted function, ‘𝛾𝑎𝑛𝑑𝑙’ are regularization 

factors, 𝑔𝑗
2,is the weight factor.  

3)HYPERPARAMETER TUNING 

Optimising hyperparameters becomes a crucial step in 

building an ML model in order to increase the model's 

efficiency. Finding the ideal values for the parameters that 

control the model's behaviour is the process of hyperparameter 

optimisation. Aspects such as learning rate, number of trees, 

estimators, maximum depth, minimum child weight, and 

regularisation parameters are among the hyperparameters in 

consideration. There are many ways to optimise 

hyperparameters, but the most often used ones include grid 

search, random search, and Bayesian optimisation. These 

approaches may provide computational challenges, especially 

when dealing with large search areas. Grid search, which 

evaluates all possible combinations of hyperparameters within 

preset limits, was used in this work. By developing a 

hyperparameter-tuned version of XGBoost, which is achieved 

by Grid Search CV, its effectiveness is increased. Learning 

rate, number of trees, maximum depth of each tree, and 

number of samples and features in each tree are among the 

XGBoost model hyperparameters optimised in this study. 
 
IV. RESULTS 

The performance of the proposed model is evaluated with 

some factors such as, Mean Squared Error (MSE), Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE) 

and R-Squared rate. The mathematical computations of these 

factors are given with 𝑥𝑎 denotes actual rate and 𝑥𝑝 denotes 

the predicted rate for the set of ‘𝑚’ samples. The R-squared 

value, obtained from the coefficient of computation, 

determines the variation proportion in the dependent variable 

that is conventional from self-determining variables. The 

formulae are given in Eq. (6), Eq. (7), Eq. (8), and Eq. (9).  

𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐸𝑟𝑟𝑜𝑟(𝑀𝑆𝐸) =
|(𝑥𝑎−𝑥𝑝)|

𝑚
                   (6) 

𝑀𝑒𝑎𝑛𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝐸𝑟𝑟𝑜𝑟(𝑀𝐴𝐸) =
∑(𝑥𝑎−𝑥𝑝)

2

𝑚
                (7) 

𝑅𝑜𝑜𝑡𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐸𝑟𝑟𝑜𝑟(𝑅𝑀𝑆𝐸) = √
∑(𝑥𝑎−𝑥𝑝)2

𝑚
  (8) 

𝑅2 = 1 −
∑(𝑥𝑎−𝑥𝑝)

2

∑(𝑥𝑎−𝑥�̂�)
2                          (9) 

Here, ‘𝑥�̂�’ is the average of all the actual rates. The unit for the 

above metrics is volts (V). 

Here, the performance measures of many machine learning 

methods are compared in order to predict the RUL values of 

batteries. For both the training and test datasets, the MAE, 

MSE, RMSE, and R-Squared metrics are assessed. In both the 

training and test sets, the XGBoost algorithm has the lowest 

MAE and RMSE values, demonstrating its better RUL 

prediction accuracy. Furthermore, the R-Squared values are 

quite high, indicating that the model fits the data almost 

exactly. The other regression models has somewhat higher 

MAE and RMSE values than XGBoost of EE-BOM, despite 

its strong performance, particularly in the training set. Its R-

Squared values, however, are always high, suggesting a high 

degree of predictive power. Existing models like Support 

Vector Regression (SVR) and Gaussian Process Regression 

(GPR) are used to assess the outcomes.  

V. DISCUSSIONS 

TABLE 2 presents the overall findings, and the related graphs 

for comparative assessments are provided below. The 

FIGURE 2 portrays the comparison graph for MSE among 

models. It can be observed from the Figure that the proposed 

model with XGBoost technique attains minimal rate of MSE 
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and MAE, showing the results in FIGURE 3. Further, the 

results for RMSE and R2 are demonstrated in FIGURE 4 and 

FIGURE 5. Both the graphs evidence that the proposed EE-

BOM model with HHO and ANN with XGBoost produce 

better results than compared models. MSE tells the average 

squared difference between the actually measured and the 

predicted value of battery performances; thereby making it a 

suitable measure for estimating the accuracy of a model. As it 

can be evidenced, based on the MSE values depicted in 

FIGURE 2, the EE-BOM outperforms GPR, and SVR in all 

the datasets used in the study. For instance, in dataset 1, the 

value of MSE for EE-BOM is 21:1 while GPR and SVR=27:3 

MSE and 43:1 MSE respectively. The same trend is observed 

in all the datasets; however, EE-BOM has smaller error 

bounds. It is also noticeable in the figure that the highest MSE 

is depicted by SVR implying that the measure of mean squared 

error denotes a higher level of prediction error than the rest of 

the models. Therefore, it can be concluded that in cases of 

energy variations, EE-BOM can be considered as having the 

lowest prediction errors which are important in battery 

management. MAE offers a rather simple average of absolute 

errors and is effective to check the models’ resilience to real-

life conditions. As it can be observed in the FIGURE 3, EE-

BOM has the lowest MAE values for all the datasets. In 

dataset 1, MAE of proposed EE-BOM is 22.3 while for GPR 

it is 44.6 and SVR 59.3. This format is repeated in all the data 

sets to show that EE-BOM is capable of handling the reduction 

of the extent of the prediction errors. Comparing the values, it 

can be conclusion that SVR has higher MAE that may signify 

that it has low accuracy in predicting the optimal battery level. 

MAE and RMSE are outlined as follows: RMSE is more 

severe type of error measure as compared to MAE used in 

battery capability applications as they punish large errors in 

battery efficiency. It is worthwhile to mention that in all the 

scenarios defined in the experiment, EE-BOM consistently 

yields the lowest RMSE values as illustrated in FIGURE 4. 

For instance, in dataset 3, the RMSE score is recorded as 13 

for EE-BOM while the GPR and SVR give out 28.5 and 44 

respectively. The same applies to other sets; these statistics 

support the effectiveness of EE-BOM in efficiency of battery 

optimization, not in large oscillations in the forecast. 

R² defines the proportion of variance in battery 

performance that is predictable by the model; values closer to 

1 are the best. In contrast to the general observations made in 

terms of the error measures indicated above, the following 

trends of R² as depicted in FIGURE 5 can be deduced, EE – 

BOM has lesser R² values as compared to GPR as well as 

SVR. For example, in dataset 1, EE-BOM results of R² is 

0.294 while in the case of GPR it is 0.787 and for the SVR it 

is 0.654. In every data case, SVR has both higher R² values 

and coefficient of determination than the other algorithms, 

which indicate that SVR presents higher variance in battery 

performance though it has higher error rates. These are the 

tradeoffs: EE-BOM is good at preventing errors 

overshadowing them, but SVR may be superior in capturing 

varied behavior of batteries. 

The analysis of state-of-health (SOH) and remaining useful 

life (RUL) prediction for batteries has gained significant 

traction due to advancements in methodologies and the 

availability of diverse datasets. These studies play a critical 

role in enhancing battery performance, extending battery life, 

and ensuring reliability across a variety of applications, such 

as electric vehicles (EVs), renewable energy storage, and 

portable electronic devices. Researchers have explored 

innovative techniques, combining physics-based models, 

data-driven methods, and hybrid approaches to achieve 

remarkable improvements in prediction accuracy and 

computational efficiency. 

Chou et al. [13] introduced a groundbreaking hybrid 

approach that leverages transfer learning, Bi-LSTM, attention 

mechanisms, support vector regression (SVR), and empirical 

mode decomposition (EMD). This comprehensive method 

significantly reduced relative errors to as low as 6.96%, 

showcasing its robustness across diverse charging policies and 

battery datasets. Zhao et al. [14], on the other hand, utilized a 

feature-based machine learning approach with a stacking 

ensemble technique to analyze a dataset comprising 420 cells 

and 9 battery packs. By employing a two-step noise reduction 

process tailored for EV batteries, they achieved highly 

accurate and physically consistent predictions. 

Greenbank et al. [19] presented a data-driven Bayesian (DDB) 

approach, integrated with automated feature selection and 

Gaussian process regression (GPR), to predict the end-of-life 

(EOL) of batteries. Their model demonstrated remarkable 

adaptability, handling diverse input datasets with precision. 

Meanwhile, Chen et al. [20] developed a hybrid framework 

combining variational mode decomposition (VMD), multi-

kernel SVR, and the salp swarm algorithm (SSA) for SOH 

estimation. Although effective for SOH prediction, this 

method faced challenges when applied to RUL estimation. 

Further extending these efforts, Zhao et al. [21] combined 

equivalent circuit models with unsupervised learning to 

identify physics-informed features, achieving a high 

deterioration detection rate exceeding 90% with an RMSE of 

53.56% on data from 65 batteries. Zhang et al. [22] tackled 

battery life classification using a moving window technique, 

GPR, and SVM, achieving impressive results with an RMSE 

of 100 cycles and a mean absolute percentage error (MAPE) 

of 10% from incomplete charging data. Ali et al. [23] 

addressed lithium plating risks during fast charging through 

anode potential control and P2D modeling, demonstrating a 

significant reduction in degradation risks during rapid 

charging. 

Montesinos López et al. [24] developed an end-to-end 

deep learning framework capable of capturing temporal and 

cross-data correlations from raw voltage, current, and 

temperature data. Their approach achieved a 10.6% 

improvement in mean absolute error (MAE) while operating 

25 times faster than traditional techniques. Similarly, Long et 

al. [25] employed particle swarm optimization (PSO) 

alongside information entropy and moving average filtering 

(MAF) to address noise and capacity degradation, surpassing 
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the performance of DDB models with minimal training data 

requirements. 

Peng et al. [26] harnessed the power of PSO and Box-Cox 

transformations for optimizing feature selection in battery 

degradation datasets, while Wang et al. [27] applied artificial 

bee colony (ABC) optimization for SVR kernel parameter 

tuning, showcasing superior results over PSO on NASA 

datasets. Zhao et al. [28] proposed a novel method combining 

transfer learning with GPR and gated recurrent units (GRU). 

Their self-correction mechanism enabled online RUL 

prediction for EV batteries with enhanced accuracy and 

adaptability to dynamic conditions. Soltani et al. [29] utilized 

feed-forward neural networks (NNs) to investigate the effects 

of environmental and operational factors, such as temperature, 

current rate, and cycle depth, on the degradation of lithium 

titanate oxide (LTO) batteries. Their findings revealed that 

elevated temperatures significantly accelerated battery 

degradation. Finally, Çolak et al. [30] employed machine 

learning techniques to analyze the impact of coolant flow and 

road gradients on EV battery performance. They demonstrated 

that artificial neural network (ANN) accuracy improved 

significantly when trained on larger datasets. 

These diverse studies collectively highlight the 

transformative potential of hybrid methods, feature-based 

models, and deep learning frameworks in advancing battery 

SOH and RUL predictions. By combining physics-informed 

models with data-driven insights, researchers can enhance 

prediction accuracy while accounting for real-world 

variability in battery performance. As the field evolves, 

integrating interdisciplinary approaches and leveraging 

emerging technologies such as IoT, edge computing, and 

advanced sensors will further optimize battery management 

systems. These advancements not only support the 

development of efficient energy storage solutions but also 

contribute to the scalability of renewable energy systems. 

Ultimately, these innovations pave the way for sustainable 

energy transitions and improved reliability in critical 

applications like electric vehicles and smart grids.

TABLE 2 
Performance of different models’ comparison 

Authors Methodology Dataset Key Features Performance Metrics 

Chou, J et al. 
[13] 

Transfer learning + Bi-LSTM + 
Attention + SVR + EMD 

Various charging 
policy batteries 

Hybrid approach for 
improved RUL 

prediction 

Relative error: 6.96%, 0.6%, 
6.25% 

Zhao, J et al.  
[14] 

Feature-based ML + Stacking 
ensemble 

420 cells, 9 battery 
packs 

Two-step noise 
reduction for EV 

batteries 

Accurate, physically consistent 
predictions 

S. Greenbank et 
al. [19] 

DDB + Feature selection + GPR Custom dataset 
Automated feature 

selection for EOL 
prediction 

Adaptability in diverse inputs 

Y Chen et al. 
[20] 

VMD + Multi-kernel SVR + SSA NASA dataset 
Hybrid method for 

SOH estimation 
Not applicable for RUL 

prediction 

Zhao, M et al.  
[21] 

Equivalent circuit model + 
Unsupervised learning 

65 batteries 
Physics-informed 

features 
RMSE: 53.56%, Deterioration 

detection: >90% 

Zhang, Y et al. 
[22] 

Moving window + GPR + SVM 
Incomplete charging 

data 
In-situ battery life 

classification 
RMSE: 100 cycles, MAPE: 10% 

Ali et al. [23] 
Anode potential control + P2D 

model 
Embedded systems 

Mitigates lithium 
plating during fast 

charging 

Significant reduction in plating 
risks 

Montesinos 
López et al. [24] 

End-to-end deep learning 
Raw voltage, current, 

temp data 

Captures temporal & 
cross-data 

correlations 

10.6% MAE improvement, 25× 
faster 

B. Long et al.  
[25] 

PSO + Information entropy + MAF 
NASA, Maryland 

University datasets 
Handles noise, 

capacity degradation 
Outperforms DDB models with 

less training data 

Peng J et al.  
[26] 

PSO + Box-Cox transformation 
Real battery 

degradation data 
Feature improvement 

for ageing analysis 
Successful parameter 

optimization 

Y. Wang et al. 
[27] 

SVR + ABC NASA dataset 
ABC for SVR kernel 

parameter 
optimization 

ABC outperforms PSO in 
optimization 

Zhao, G et al. 
[28] 

Transfer learning + GPR + GRU EV battery datasets 
Self-correction, online 

model correction 
Improved RUL prediction 

accuracy 

Soltani, M et al. 
[29] 

Feed-forward NN LTO batteries 
Impact of temp, 

current rate, cycle 
depth 

High temp accelerates 
degradation 

Çolak, B et al. 
[30] 

ML for coolant flow & road gradient 
effects 

EV battery systems 
Evaluates impact on 

electrical components 
ANN accuracy improves with 

more data 
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High-importance features are useful, but it's crucial to make 

sure they don't cause overfitting or add biases into the model. 

Even if a feature is very predictive, relying too much on it 

might weaken the model's resilience or limit its 

generalisability. As a result, it is essential to take into account 

all qualities fairly, especially those with lower ratings. The 

research's findings will contribute to long-term improvements 

in the infrastructure for electric vehicles. According to this 

proposed work, enterprises that depend on Li-ion batteries 

may save money and improve operational efficiency by using 

preventative maintenance and resource optimisation made 

possible by precise RUL prediction. Li-ion batteries are 

essential parts of many different sectors, but especially of EVs. 

It is essential to forecast these batteries' RUL values in order 

to carry out preventative maintenance plans. Because it allows 

companies or other applications to accurately plan 

maintenance as required, accurate RUL prediction promotes 

effective resource utilisation. Cost reductions and improved 

operational effectiveness may arise from this. Li-ion battery 

longevity may be increased by comprehending and forecasting 

RUL. Longer-lasting batteries lessen the environmental effect 

of frequent replacements and disposal, which is essential for 

sustainable growth. Accurate RUL forecasts let electric car 

owners plan their trips more effectively. This model is in line 

 

  
FIGURE 2. (a) MSE among Models Vs Dataset FIGURE 2. (b) MAE among Models Vs Dataset 

  

FIGURE 2. (c) RMSE among Models Vs Dataset FIGURE 2. (d) R2 among Models Vs Dataset 

Figure. (a) MSE among Models Vs Dataset (b) MAE among Models Vs Dataset, (c) RMSE among Models Vs Dataset, (d) R2 amond Models Vs 
Dataset 

 

TABLE 3 
Observations of MSE, MAE, RMSE, R2 

Model/Training 

data 

10 20 30 40 50 Model/Training 

data 

10 20 30 40 50 

EE-BOM 21.1 18.3 22.2 22.5 26.2 EE-BOM 22.3 23.8 28.7 36.6 44.1 

GPR 27.3 30.4 51.3 59.9 45.0 GPR 44.6 43.4 54.5 74.6 59.0 

SVR 43.1 47.9 61.9 71.9 57.3 SVR 59.3 63.5 83.5 88.2 87.6 

A. MSE B.MAE 

Model/Training 

data 
10 20 30 40 50 Model/Training 

data 
10 20 30 40 50 

EE-BOM 10.4 11.3 13.0 23.6 29.5 EE-BOM 0.294 0.333 0.292 0.321 0.334 

GPR 22.9 49.3 28.5 50.2 41.2 GPR 0.787 0.561 0.391 0.452 0.595 

SVR 34.4 41.9 44.0 58.4 50.3 SVR 0.654 0.693 0.632 0.624 0.791 

C.RMSE D.R2 
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with the continuous changes occurring at the nexus of industry 

and technology. Comparative evaluation of different machine 

learning methods offers important information on how well 

they predict RUL. Finding better algorithms, such as XG 

Boost in this instance EE-BOM, sets standards for further 

study and use in related fields. The environmental effect of Li-

ion batteries is acknowledged in this paper, and it is proposed 

that precise RUL projections might allay worries about battery 

disposal. Technologically driven sustainable practices are 

essential for reducing environmental impacts. 

 
V. CONCLUSIONS  

The paper devices a model for RUL prediction of EVs using 

machine learning approaches. Initially, data acquisition is for 

obtaining input dataset, following data-pre-processing is 

employed for enhancing the input data quality. When a 

variety of machine learning methods are tested, XGBoost 

performs better in RUL prediction. By employing HHO to 

acquire the extracted features, the results demonstrate how 

well the XGBoost algorithm minimises errors and predicts 

RUL. Mean Squared Error (MSE), Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and R-Squared 

rate are used to conduct the assessments. In comparison to 

previous examined works, the suggested model achieves a 

minimum average MSE, MAE, and RMSE of 23.68%, 

36.41%, and 24.67%, respectively. The proposed work 

promotes effective travel planning and makes it easier 

batteries to create with longer lifespans. 

In future, the research can be enhanced by removing the data 

quality and availability limitations. Additionally, this study 

could not have taken into consideration changes in the 

surrounding environment that might affect battery 

performance. Although they weren't specifically mentioned, 

variables including temperature, humidity, and use patterns 

may have an impact on RUL. 
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