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ABSTRACT Chronic Kidney Disease (CKD) describes the gradual reduction in kidney function. According to reports 

published by the World Health Organization (WHO), the prevalence of this disease in Indian adults is comparatively high. The 

data indicate that 220,000 new patients need renal replacement therapy in India annually. The enhanced precision of Machine 

Learning (ML) methods in the diagnosis of CKD has made them more significant in medical diagnostics. In recent times, 

attempts have been made to enhance these methods with the use of effective feature selection algorithms for dataset 

dimensionality reduction. This research suggests the use of an enhanced feature selection method combining Tabu Search (TS) 

and Stochastic Diffusion Search (SDS). Following the use of this method, five of the 24 features were removed. In the diagnosis 

of CKD, the proposed Adaptive Neuro-Fuzzy Inference System (ANFIS) has performed better than other state-of-the-art ML 

methods. With the aid of an improved diagnostic technique that employs the glowworm swarm optimization (GSO) algorithm, 

this work enhances the ANFIS model. The GSO method, which models the behavior of glowworms while foraging, is 

employed to optimize the efficiency of the ANFIS. Additionally, to accelerate convergence during network training, the 

proposed method employs a hybrid learning algorithm combining the Conjugate Gradient Descent (CGD) with the Least 

Square Estimator (LSE). Fuzzy logic is employed in the Adaptive Backpropagation Neural Network (ABPNN) classifier for 

improving its performance. The results demonstrate the efficiency of the ABPNN-GSO-ANFIS algorithm in CKD diagnosis 

with an accuracy of 99.52%, precision of 99.34%, and recall of 97.82%. The results establish that the proposed algorithm 

performs better than other state-of-the-art ML algorithms. 

 

INDEX TERMS ABPNN-ANFIS, DL Algorithms, UCI CKD Dataset, GSO, TS, CKD. 

I. INTRODUCTION 

Diagnosis of CKD is a crucial and complicated issue in 

healthcare and medical science. CKD has a risk of developing 

several conditions such as anemia, bone disease, 

cardiovascular disease, and fluid disturbances. If such 

technique is implemented early in the course, the risk of these 

complications is reduced. Clinical diagnosis is crucial through 

investigation to improve patient outcomes. Early diagnosis 

allows the physicians to initiate therapy when the kidneys are 

in a relatively more effective stage, making the treatment 

effective and improving life. CKD diagnosis is an accurate and 

efficient tool with remarkable impacts on human health, 

medical science, and healthcare quality. Data mining is being 

used extensively in a large number of applications to detect 

and extract valuable patterns from enormous amounts of data 

[1]. In the healthcare system, ML methods are widely used to 

improve the accuracy of disease diagnosis and early diagnosis 

of medical diseases. The classification methods used in the 

healthcare system are an important component in the diagnosis 

of CKD. This study proposes a state-of-the-art feature 

selection technique combining TS and SDS. To further 

improve the ANFIS model, this study uses an optimized 

diagnostic approach using the GSO algorithm. Using the 

foraging process of glowworms for food as an inspiration, this 
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global optimization technique significantly improves the 

efficiency of ANFIS. A hybrid learning algorithm further 

accelerates the rate of convergence in network training. This 

algorithm combines the CGD technique with the LSE, 

enabling efficient and robust learning [2]. 

In addition, the proposed methodology integrates fuzzy 

logic into an ABPNN classifier to improve its classification 

capability. The hybrid use of these innovative methodologies 

demonstrates the potential of the proposed framework to 

expedite both diagnostic precision and computational 

efficiency in diagnosing CKD. 

Researchers examined techniques to classify CKD and 

determined that a Support Vector Machine (SVM) classifier 

with best subset evaluator and Best-First Search (BFS) 

strategy resulted in 98.50% accuracy [3]. Other classifiers 

such as Backpropagation Neural Network (BPNN), radial 

basis function (RBF), and Random Forest (RF) were also 

employed in kidney disease classification, with the RBF 

network resulting in 85.3% accuracy. A comparison study 

between K-Nearest Neighbors (KNN) and SVM was also 

performed. A comparison study of Decision Trees (DT), 

Multilayer Perceptrons (MLP), and Generalized Regression 

Neural Networks (GRNN) revealed that the DT model 

provided the highest average prediction accuracy of 90.38% 

to clinical brain injury data [3]. A comparison trial of four 

algorithms based on information gain, chi-square and relief: 

C4.5 DT, Naïve Bayes (NB), K-NN and SVM, revealed that 

NB provided maximum accuracy in the diagnosis of breast 

cancer compared to a benchmark dataset. 

Under classification of liver disease, K-NN, 

backpropagation, and SVM were best in terms of accuracy, 

precision, sensitivity, and specificity for all features. CKD 

causes the building up of waste products and fluids because 

the kidneys are unable to remove the waste and control fluids 

in the normal manner, causing anemia, electrolyte disorders, 

bone disease, and heart disease [4]. CKD, if not treated, could 

develop into end-stage renal disease and may have to be 

placed on dialysis or a transplant. Early detection and 

treatment will preserve kidney function, slow down the 

progression of the disease, and enhance outcomes in patients. 

Machine learning (ML) has now significantly influenced 

medical diagnostics, and it is possible to develop effective 

models for quick and accurate analysis. Deep learning (DL), a 

form of ML, applies a sequence of operations during training 

to recognize inherent patterns in data [5]. Multi-layer DL 

algorithms are particularly effective in managing non-linear 

data, significantly enhancing medical application. For 

instance, our DL algorithms are trained using vast amounts of 

medical data and are specifically created to predict chronic 

diseases, thus overcoming the limitation of applying standard 

medical data analysis methods. The approach could reduce the 

generative model's robustness and generality, resulting in 

redundant diagnoses and false conclusions. DL thus does not 

necessarily generate optimal weights or effective models [6]. 

Ensemble learning mitigates these shortcomings by 

aggregating multiple models to enhance flexibility as well as 

generalization. It comprises two core elements: necessary 

learners and diversity, and begins with a big dataset in a bid to 

achieve more homogeneous learning. 

GSO algorithm is a bio-inspired optimization method that 

emulates the process of glowworm foraging. Its application in 

machine learning is mainly in the ability to optimize model 

efficiency by optimal parameterization and feature selection. 

GSO is capable of searching the global solution space 

efficiently, thereby avoiding local minimum traps, which is 

important in maximizing the accuracy of complex models like 

ANFIS. The method ensures the model parameters selected 

are globally optimal for CKD-related prediction problems [7]. 

Through the emulating of glowworm movement and 

interaction, GSO optimizes feature selection and therefore 

minimizes computational complexity without compromising 

prediction accuracy. ANFIS is a hybrid model with the 

strength of both neural networks (NN) and fuzzy logic. Its 

application in CKD detection is its ability to deal with 

imprecise and uncertain data common in medical diagnosis. 

ANFIS leverages the learning capability of neural networks 

during the fine-tuning of fuzzy rules, and thus it is highly 

effective in modeling complex relationships inherent in CKD 

data. The two-stage process enables the system to learn from 

the past but still provides room for uncertainty in clinical 

variables. The proposed methodology incorporates a hybrid 

learning algorithm that integrates CGD and the LSE for 

optimization of training in ANFIS. The integration not only 

maximizes the convergence rate but also maximizes effective 

learning from CKD datasets [8]. 

The contribution of this research can be defined as follows: 

1. The suggested method employs a GSO algorithm to 

increase the ANFIS efficiency.  

2. SDS based on TS is used to pick features from the UCI 

CKD dataset. 

The rest of the paper is divided into sections: Section 2 gives 

a detailed overview of the available literature. In Section 3, the 

approach and suggested system model are briefly presented. 

Section 4 covers the experimental results; Section 5 serves as 

a section for a more generalized research discussion, and 

Section 6 serves as the conclusion. 

 
II. LITERATURE REVIEW 

K-NN, backpropagation and SVM have proven very effective 

in diagnosing liver diseases, showing substantial accuracy, 

accuracy, sensitivity and specificity performance. In CKD, 

problems with waste filtration and fluid balance can lead to 

waste accumulation and fluid retention, leading to serious 

complications such as anemia, electrolyte imbalances, bone 

problems, and cardiovascular problems. If left untreated, CKD 

may progress to end-stage renal disease, requiring dialysis or 

a kidney transplant. Early detection and treatment are critical 

to protecting kidney function and improving patient outcomes. 

The researchers also used balanced sampling and data 

standardization to enhance their methods [9]. 

    Artificial intelligence (AI) in medicine has increased 

dramatically in recent years, especially in early detection and 

prevention. This review comprehensively reviews current 

CKD research, analyzing relevant studies, methods, findings, 
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and limitations. It aims to comprehensively summarize the 

challenges and developments in CKD research [10]. 

Additionally, a ML algorithm for early detection of CKD was 

developed using the UCI CKD dataset.  

    This study presents a neuro-fuzzy model that leverages ML 

techniques to detect CKD risk in patients. The model 

outperforms conventional methods such as SVM and K-NN in 

terms of accuracy [11]. 

    The researchers used cross-validation and averaging to 

handle missing data. Although Light GBM has been proven 

effective, there is limited research on advanced techniques 

such as data replacement and scaling, feature selection, 

external testing, and model tuning [12]. ML techniques were 

used to predict baseline chronic kidney disease, such as mean 

and mode methods for missing data, principal component 

analysis, and recursive feature removal for feature selection. 

However, this study did not include data measurements or 

hyperparameter optimization.  

   This research employs a neuro-fuzzy technique combined 

with hierarchical clustering algorithms to determine the risk 

levels of CKD in individuals, enhancing early detection and 

treatment planning [13]. 

    A stacked autoencoder-based deep learning model has been 

suggested for facilitating early diagnosis of CKD. The 

SoftMax classifier performed extremely well for class 

prediction. An improved model with enhanced rare 

autoencoders (SAE) and SoftMax regression was constructed 

[14]. The autoencoder imposes penalties on weights for 

evoking sparsity, and the SoftMax regression model suitable 

for classification excels in test cases. 

The authors in [15] explored the performance of ML models 

in CKD prediction using a subset of chosen features. Feature 

selection methods like Pearson correlation, ANOVA, and 

Cramer's V test were used to select the predictive features. LR, 

SVM, RF, and gradient boosting (GB) models were employed 

for modeling subsequently. The results showed that the 

Gradient Boosting model performed best with the best 

accuracy, having an F-measure of 99.1%. 

The authors in [16] suggest three GSO variants that 

employ varying mutation operators—Gaussian, Cauchy, and 

Lévy—aimed at improving the rate of convergence and 

solution accuracy. The work proves the variants to be efficient 

at optimizing functionally complex functions. 

A machine learning method of predicting the CKD risk based 

on patient data was suggested in [17]. The authors of that study 

extracted twenty features from the initial twenty-five, and 

applied both Random Forest (RF) and Artificial Neural 

Network (ANN) models. The findings reflected that the best 

accuracy was reached by the RF model, representing a 

performance value of 97.12%. This paper provides an 

overview of GSO-based methods, describing the algorithm's 

suitability to simultaneous search of multiple solutions with 

varying objective function values. It also mentions 

applications of GSO in clustering and other optimization 

problems [18]. 

To forecast CKD stages, researchers in [19] have 

compared various ML algorithms, i.e., Probabilistic Neural 

Networks (PNN), Multilayer Perceptron (MLP), SVM, and 

RBF networks. Their work was based on a small dataset 

consisting of limited attributes. The outcome with 96.7% 

accuracy indicated that the PNN algorithm had the highest 

overall classification accuracy. 

In [20], the authors presented an Ensemble Deep Learning-

based Clinical Decision Support System (EDL-CDSS) for the 

diagnosis of chronic kidney disease (CKD) in an Internet of 

Things (IoT) environment. The suggested methodology 

incorporated the Adaptive Synthetic (ADASYN) method in 

order to achieve outlier detection. It utilized the ensemble of 

three models: Deep Belief Network (DBN), Kernel Extreme 

Learning Machine (KELM), and Convolutional Neural 

Network with Gated Recurrent Unit (CNN-GRU). 

Additionally, the Quasi-Oppositional Butterfly Optimization 

Algorithm (QOBOA) was utilized for the DBN and CNN-

GRU model hyperparameter optimization. The authors 

declared that the EDL-CDSS approach has significant 

potential for the precise CKD diagnosis in IoT-based medical 

applications. 

[21] considered a number of different ML classifiers like 

KNN, ANN, SVM, NB, and LR and feature selection methods 

like Recursive Feature Elimination (RFE) and the Chi-Square 

test (CST). An available public database including healthy 

samples and kidney patients was used by the study in training 

and comparison of predictive models. Their conclusions 

demonstrated that an LR-based predictive model, in 

conjunction with an optimum set of features chosen from CST, 

scored a maximum of 98.75% accuracy. 

Comparative study of seven supervised Machine Learning 

algorithms—KNN, DT, SVM, RF, NN, NB, and LR— were 

conducted with the intention of finding the most appropriate 

model for Binary Classification Diagnosis (BCD) [22]. It was 

compared using a series of metrics, and the outcome indicated 

that the KNN algorithm was the most optimal on the BCD 

dataset with a 97% accuracy.   Heterogeneous learning often 

involves using multiple models, with ensemble classifiers 

created through methods like bagging, boosting, and stacking 

[23]. We extend the stacked ensemble model to offer a 

practical and adaptive solution. Research shows that ensemble 

learning can produce reliable and valuable models. 

The reviewed studies highlight that significant research has 

been conducted on predicting CKD using ML techniques. 

Various factors, such as dataset size, dataset quality, and the 

data collection period, play a crucial role in enhancing model 

performance. 

   Based on the literature review, several critical research 

challenges have been identified as essential for advancing 

predictive capabilities in the field of CKD detection and 

management: 

1. Complexity of CKD Progression: CKD usually hides its 

presence very well at first and often doesn't show clear 

symptoms until it's far along. Often the time to get a 

diagnosis done comes when a condition has progressed 

quite a bit. To tackle this challenge, the new ML 

algorithms select very subtle clues from patient 

information that signal very early stages of CKD. Getting 
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ahead of the disease and intervening at an early stage can 

help doctors give better clinical results. The clinician gets 

a heads up sooner and that leads to better patient 

management.  

2. Integration of Diverse Data Sources: Getting clear 

diagnoses of CKD ensures looking at all kinds of different 

aspects like personal information, clinical symptoms 

someone's reporting, blood check and results from related 

lab tests and any other medical conditions they might be 

managing too. This research puts together a really diverse 

bunch of information and combines it in one consistent 

framework which allows us to forecast on CKD much 

better and more accurately than things have been done 

before. The proposed approach now produces much more 

sharp predictions about CKD than ever before. 

3. Performance of models: The performance of ML models 

in healthcare applications depends significantly on 

identifying relevant features and appropriate data 

preprocessing. Advanced techniques, such as correlation 

analysis and variance thresholding, are employed in this 

study to enhance the predictive accuracy of the proposed 

models. 

4. Model Selection and Validation: Choosing the best 

Machine Learning model to figure out people who have 

CKD is significantly important for this research. Multiple 

classifiers are systematically compared and evaluated to 

identify the model best suited for CKD detection, 

ensuring high accuracy and reliability. 

This research tackles some really big challenges like how to 

detect and manage CKD. This research altogether puts 

together new techniques that work super well and that are also 

very easy to use for noting and managing this condition. 

A. PROBLEM STATEMENT 

If this problem is not detected and treated promptly, kidney 

damage can be irreparable. As the illness develops, hazardous 

electrolytes can build up to dangerously high levels in your 

blood, making you sick. The advent of CKD is exceptionally 

concerning since it can damage nearly every organ in the 

human body. It is a long-term condition with a high morbidity 

and death rate, costly medical costs, and a substantial risk of 

developing other illnesses, such as cardiovascular disease. Ten 

percent of people require medical treatment to survive, 

although over two million people depend on kidney 

transplants or dialysis to survive. Approximately 12% of the 

world's population lives in five wealthy countries, with 2 

million people living with primary renal failure [24]. By 

comparison, less than 20% of the world's population, or more 

than half of the countries, have access to treatment in more 

than 100 developing countries. One million people die each 

year from untreated kidney failure in 112 low-income 

countries due to the high costs of dialysis and transplantation 

[24]. Early detection, management and treatment of CKD are 

crucial given the complexity and varying severity of the 

disease, which requires accurate prognosis due to patient 

diversity and often hidden early stages. 

III. METHODOLOGY 

A. DATASET  

The fundamental chronic renal disease dataset for this job is 

available in the UCI ML repository [25]. Several writers 

have utilized this dataset to obtain experimental findings. 

Out of the 400 patients, 150 had CKD negative and 250 had 

CKD positive, according to the statistics. In the dataset that 

was utilized, a category label had two values. In other words, 

0 and 1 denote negative and positive CKD, respectively. 

There are 13 category features and 11 numerical features out 

of the 24 features in the dataset. The link to the dataset is the 

UCI ML Repository. 

B. PREPROCESSING 

The UCI dataset contains 25 features (11 numeric features, 11 

nominal features, and one categorical feature), provides data 

from 400 patients, and is used in the proposed model. Of these, 

250 were diagnosed with CKD, and 150 were not [25]. 

Dealing with missing values makes data classification 

particularly difficult. The dataset contains a categorical 

response variable called "category," indicating the presence or 

absence of CKD. This variable has two values: "ckd" for 

patients with CKD and "notckd" for patients without CKD. 

Eliminate missing values in the data set before analysis to 

ensure reliable results. 

The purpose of missing value imputation is to maintain the 

integrity of the data set without reducing the sample size [26]. 

There are various methods for supplementing missing data, 

each with unique characteristics designed to solve a specific 

data problem. The first step in data preparation is to fill in any 

gaps in the dataset obtained from the UCI ML repository. To 

account for missing data, average the current values and use 

the derived average to fill in the gaps [27]. After this pre-

processing stage, the dataset is subjected to ML algorithms 

and the results are evaluated for accuracy and error rate. The 

dataset is first segmented hierarchically using target features 

to achieve reliable evaluation. 

To preserve a 70/30 ratio, this divides the 280 instances into 

the training set and the 120 instances into the held-out test set. 

The appropriate parameters found during the preprocessing 

and training stages are then validated by evaluating the 

model's performance using hidden data from the held-out test 

set [28]. Three threads handle data preparation's numerical, 

nominal, and ordinal aspects. This covers feature selection, 

scaling/encoding, and missing data imputation. The 

preprocessed data is then combined for the training step of 

five-fold cross-validation. Considering the small size of the 

dataset (400 examples), 5-fold cross-validation reduces 

overfitting and improves the model's applicability to 

classification tasks.  

Imputation algorithms are adapted to the dataset's 

characteristics to handle missing data. Ordinal and nominal 

variables are imputed using the mode (most common value), 

and numerical data are imputed using the mean value. 

Numerical features are scaled using the minimum-maximum 

scaling technique during the encoding stage. Nominal 

characteristics are encoded as 0 or 1 depending on their 
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categories, whereas ordinal features are encoded into 

numerical categories ranging from 0 to 5 with a step unit of 1. 

The steps needed for preprocessing raw data are mentioned 

below. 

1) DATA ENCODING  

Utilize the Scikit-learn toolkit's label encoder module to 

handle the dataset's combination of numerical and categorical 

attributes. This module transforms categorical data into 

numerical representation to enhance the performance of ML 

models. 

2) DATA IMPUTATION 

When choosing the most appropriate statistical method to 

handle incomplete data, it is crucial to consider the amount of 

missing data and the importance of the missing features. If the 

proportion of missing information is sufficient, traditional 

mean, maximum, and mode techniques can work well [29]. 

This study contains many missing data points, as shown in 

FIGURE 1. We addressed this problem using iterative 

substitution, a statistical method that fills in missing values 

and estimates covariate correlations based on observed data. 

This iterative approach gradually improves the estimate over 

multiple iterations, resulting in complete and accurate data. 

 

FIGURE 1. Missing Values in the Dataset 

3) DATA SCALING 

The application of sequential scaling procedures has 

accomplished data normalization and ideal value resolution. 

Start the process with considerable improvements to increase 

resilience and decrease the impact of extreme values. This is 

accomplished by deleting the median (𝑄2) and dividing by the 

interquartile ranges (𝑄3 − 𝑄1). This is depicted in Eq. (1) [6]  

and Eq. (2) [6]  . 𝑥 denotes the original value in the dataset, 𝜎 

is the standard deviation of the dataset, representing the spread 

of data and 𝜇 represents the mean (average) of the dataset. 

 

𝑅𝑜𝑏𝑢𝑠𝑡 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 (𝑥) =
𝑥−𝑄2

𝑄3−𝑄1
             (1) 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑥) =
𝑥−𝜇

𝜎
      (2) 

Last but not least, min-max scaling is achieved by dividing by 

the range (x_max, x_min) after the minimal value (x_min) has been 

removed. To obtain characteristics within a specific range 

(often 0-1). This is depicted in Eq. (3) [5] . 𝑥 signifies the 

original value in the dataset, 𝑥𝑚𝑖𝑛 is smallest value in the 

dataset and 𝑥𝑚𝑎𝑥  is the largest value in the dataset. 

 

𝑀𝑖𝑛 − 𝑀𝑎𝑥 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 (𝑥) =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
       (3) 

C. TS-BASED SDS FEATURE SELECTION 

After the first step of population initialization, SDS starts 

searching or optimizing. Every agent keeps track of a fresh 

hypothesis that outlines a fix for the issue. After startup, the 

testing and propagation procedures are carried out. After 

assessing the sub-hypotheses in the first scenario, the agent 

produces a Boolean result. As a result, SDS can evaluate the 

accuracy of the agent's assumptions and the accuracy of all the 

data needed for the solution. Each agent completes a Partial 

Functional Evaluation (pFE) during the testing phase. This 

demonstrates that the agent believes that pFE is determined by 

f(h). All agents interact with one another and seek additional 

agents to spread the idea during the propagation stage [30]. 

For most search algorithms, locating the perfect response is 

frequently quite complex. The next challenging step is to find 

a local minimum or, better yet, a maximum. This job aims to 

enhance TS functionality and possible solutions. SDS 

provides various potential solutions to satisfy the TS when the 

best option is unavailable. It works for all the best solutions 

and offers broader results for TS candidates by replacing 

existing solutions with new ones and adding them to the 

TABU list [31]. This iterative approach (f(j) > f(i)) allows 

many unmodified transitions from V* to i to j, which helps 

avoid regional lows. Tabu-SDS is shown in FIGURE 2. The 

various stages of Tabu-SDS are explained in ALGORITHM 

1. The parameters are defined as follows: I represents the 

solution in the solution set, S represents the maximum number 

of iterations, V* is the list, and k is the tabu list N, which 

defines the subset of solutions for i. N(i,k) represents a list 

containing iteration k and solution i. 
 

ALGORITHM 1. 

Selecting Optimal Subsets using a TS approach 

Step Code 

1.1 

1.2 

Select a starting point i in S 

Assign i∗=i and k = 0 

2.1 Set k = k + 1 
2.2 Generate subset V* as a solution N(i,k) 

3.1 Select the best j from V* 

3.2 Update i = j 

4.1 From N(i,k), select the best subset and add it to B 

5.1 If no optimal solution is found, request an SDS with the 
best subset from the TABU list 

6.1 From the SDS result, choose the response that best fits 

the criteria (i.e., highest degree of accuracy) 

6.2 Add the selected response to the corresponding TABU 

list 
7.1 If the final state is reached, either return to step 2 or 

terminate 
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FIGURE 2. Proposed approach showing the TS Algorithm-based hybrid 
SDS  

D. ABNN CLASSIFICATION 

This study implemented an ABNN Classification integrated 

with fuzzy logic to develop a CKD diagnostic system. The 

training process involves three stages, with 17 input 

parameters and one output parameter indicating the presence 

of abnormal or healthy conditions. The preprocessing layer 

manages missing values and normalizes the data to handle 

noise. Missing values are addressed using methods like 

averaging and moving averages of existing values. The 

ABPNN ML algorithm is trained using the preprocessed data 

in the application training layer [32]. 

    ANNs have proven effective across diverse fields such as 

finance, medicine, engineering, geology, physics, and 

biology. They are particularly intriguing from a statistical 

perspective due to their potential in prediction and 

classification tasks. FIGURE 3. illustrates the architecture of 

an underlying ABPNN, an ANN algorithm utilized 

effectively for identifying common patterns that differentiate 

various classes in classification processes. Input is processed 

via many non-linear hierarchical layer levels in ANNs to 

learn and categorize features. A robust BPNN with 13 input 

layers, 36 hidden layers, and three output layers is shown in 

FIGURE 3. Eq. (4) [31] , which represents the sigmoid 

function of input 𝑥, describes how this network is trained 

using a supervised learning technique that uses the sigmoid 

function. Where 𝜑1(𝑥) I  s sigmoid function output for the 

input 𝑥, 𝑥 refers as the input variable to the sigmoid function, 

𝑎 is the scaling factor that adjusts the maximum value of the 

sigmoid function, b is the parameter that determines the 

steepness of the sigmoid curve and e denotes the base of the 

natural logarithm (≈2.718). 

 

𝜑1(𝑥) =
𝑎

1+𝑒−𝑏𝑥                              (4) 

 

    The evaluation layer assesses the accuracy, precision, and 

Mean Square Error (MSE) of the ABPNN output. 

Compliance with the Learning Standards (LC) is therefore 

validated. If the conditions are satisfied, the data is uploaded 

to t6.2he cloud; otherwise, redevelopment is required. The 

proposed approach generally outperforms the other because 

it combines the outcomes of the two methods with fuzzy 

logic [33]. A fusion-based training model uses the obtained 

data to predict chronic renal disease in individuals. This 

model is saved to a central server when the LC are fulfilled. 

    The ABPNN comprises a sequence of input, output, and 

hidden layers that use backward and forward error 

propagation [34]. During forward propagation, data travels 

from input to output via hidden layers. In the forward 

direction, the output layer reduces mistakes and responds to 

backpropagation faults by modifying weight values to close 

discrepancies. The suggested ABPNN model uses a 

supervised learning approach similar to the structure of a 

Takagi-Sugeno fuzzy inference system [35]. Throughout 

training, this model continually adjusts its network 

parameters. A hybrid technique was developed to solve the 

delayed convergence commonly associated with gradient 

descent backpropagation algorithms employed in ANFIS 

training. This hybrid learning technique combines the least 

squares estimator with the conjugate gradient algorithm. 

    The least-square algorithm is used as a forward pass to 

select subsequent parameters in the fourth layer. In contrast, 

CGD is used as a backward pass to fine-tune premise 

parameters that correspond to fuzzy sets in the input domain 

[36]. During training, the network's actual output is 

compared to the desired output (expected output). Any 

differences between these outputs cause an error propagating 

back across the network levels, beginning with the first layer. 

The primary purpose of this adaptive learning system is to 

reduce mistakes across the network. 

    ABPNN with fuzzy logic and ANFIS are combined to 

produce a denervated classifier in the classification step. Sort 

and categorize the many forms of chronic renal disease. In 

this work, we employed ANFIS to classify images of chronic 

renal disease. Creating a neuro-fuzzy classifier, in which a 

neural network selects fuzzy system parameters—we 

integrate ABPNN with fuzzy logic [37]. This work identified 

brain magnetic resonance imaging anomalies using the 

Neuropurge classifier. It is an intelligent hybrid system that 

was created by neural purification. Its main advantage—that 

this brain cleaning system has the necessary universal load 

capacity—is that it approaches interpretable If-Then rules. 

Numerous crucial tasks, such as extraction, application to 

tangible input variables, and satisfaction computation, are 

learned by neural network-based learning algorithms. This is 

why most neural purification systems rely on such 

purification systems. After the language step measurement, 

we apply the assumptions and consider the inference 

parameters of the cleared pairs before clearing the findings 

[38]. The procedure mentioned above builds the neural 

network layers one at a time. It is possible to alter the weights 

in the form of extracted rule parameters thanks to the neural 

network's design. The weight parameters mentioned above 

are expressed using the following formula. It complies with 

a motion constant learning rule. This is depicted in Eq. (5) 
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[37].In this case, the weights are denoted by 𝑤𝑛 and 𝑤(𝑛 −
1).𝑤𝑖(𝑛 + 1) symbolizes the updated weight for the 𝑖-th 

parameter at time step 𝑛+1, 𝑤𝑛 describes the weight at the 

current time step, 𝑤(𝑛 − 1) denoting the weight at the 

previous time step 𝑛 − 1 and 𝜌 as a learning rate or scaling 

factor that determines the impact of the weight adjustment. 

 

𝑤𝑖(𝑛 + 1) = 𝜌(𝑤𝑛 + 𝑤(𝑛 − 1))               (5) 

 

The ABPNN activation function, often known as sigmoid 

gain, has limited smoothness. The recommended strategy 

reduces the scaling factor value, which expedites training 

along the selected path and expands the range of the sigmoid 

function. The mentioned activation function is depicted in 

Eq. (6) [37]. 𝑍𝑖(𝑡) expressed as the output of the activation 

function for the 𝑖-th neuron at time 𝑡, 𝑍𝑛 stands for a scaling 

factor or weight associated with the 𝑛-th neuron, 𝑑𝑖𝑛 as  an 

input distance or deviation (possibly related to input features 

or errors), 𝜎𝑎 is a parameter controlling the spread or 

smoothness in the numerator (likely related to scaling or 

variance), 𝜎𝑏  defines a parameter controlling the spread or 

smoothness in the denominator (affecting scaling or 

smoothness of the sigmoid function) and 𝑒 denotes the base 

of the natural logarithm (≈2.718). 

 

𝑍𝑖(𝑡) = ∑ 𝑍𝑛 (𝑒𝑑𝑖𝑛
2 2𝜎𝑎⁄ ) 𝑒𝑑𝑖𝑛 2𝜎𝑏⁄⁄𝑛

𝑖=1      (6) 

 

This is the input distance for each image set displayed by the 

din variable. The following limitations are relevant when 

exponential functions describe activation functions. These 

activation functions are described in Eq. (7) [37]. 

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑖 is the activation value of the 𝑖-th unit, which 

depends on certain conditions, 𝑑𝑖𝑛 expresses input distance 

or input value, which serves as part of the calculation for 

activation, 𝜎𝑎 represents a parameter likely related to the 

scaling or width of the exponential function, often used to 

control the spread or sensitivity. 𝑑𝑖𝑛
2 2𝜎𝑎⁄  symbolizes the 

argument of the exponential function, which represents a 

specific transformation of 𝑑𝑖𝑛 and 𝑒 denotes the base of the 

natural logarithm (≈2.718). 

 

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑖 = {
𝑑𝑖𝑛 = 0  𝑖𝑓 𝑒𝑑𝑖𝑛

2 2𝜎𝑎⁄ > 1
𝑑𝑖𝑛 = 0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (7) 

 

Each open connection has a weight and an integer. Weights 

and numbers regulate the signal between two separate 

neurons. Therefore, if the network yields consistent results, 

there's no need to change the weights. As a result, you can 

generate an error function for unwanted results using the 

formula mentioned in Eq. (8) [37]. 𝑣𝑖 corresponds to the 

computed value (possibly related to the error or outcome) for 

the 𝑖-th unit or system, 𝑄𝑖𝑛(𝑘) as a quantity related to the 

input 𝑖 and possibly dependent on a variable 𝑘 representing 

probability statistics or a related measure, 𝛿 stands for the 

error function related to the 𝑘-th probability statistics and 𝛿2 

is the square of the error function, amplifying its effect in the 

computation. 

𝑣𝑖 = ∑ √𝑄𝑖𝑛(𝑘)𝑛
𝑖=1 ∗ 𝛿2                       (8) 

    A fuzzy logic diagnostic system consists of rules and 

activation functions. It is helpful in scenarios where data are 

missing, unclear, or complex, and it isn't easy to draw 

reliable conclusions [38]. During the cleaning process, raw 

data is fed into the intelligent system and processed into 

fuzzy sets or values. Expert systems use fuzzy logic to 

interpret instructions and map specific inputs to fuzzy 

outputs based on derived rules. In the refinement stage, the 

results of the inference process are converted from fuzzy 

values to discrete values. 

 

FIGURE 3. Adaptive Backpropagation Neural Network 

E. GLOWWORM SWARM ALGORITHM WITH ANFIS 

FIGURE 2 of the proposed study presents a novel predictive 

model for medical diagnostics that improves the ANFIS 

performance by modifying the GSO algorithm. This method, 

known as the GSO-ANFIS model, improves the ANFIS 

model by including GSO algorithms. By maximizing the 

weights between layers 4 and 5 of the model, the parameters 

of ANFIS may be modified. A fuzzy C-means (FCM) 

clustering technique determines how many membership 

functions are needed. The GSO method, which searches the 

solution space for ideal weights, is used to modify the ANFIS 

weights iteratively. After initializing a population, the GSO 

looks for the optimal weights for ANFIS [39]. The objective 

function value, which represents the error reduction between 

observed and predicted values during training, is minimized 

to find the optimal solution. After that, ANFIS incorporates 

these adjusted weights to produce predictions. The 

determined ideal weights are fed into ANFIS during testing 

to generate precise diagnostic outcomes. 

This medical diagnostic method uses the following input 

factors: age, weight, body mass index (BMI), blood pressure 

during diastole, blood glucose levels, renal function, and 

smoking. The stage of chronic renal disease is one output 

variable. Expert systems have a hierarchical organizational 

structure. As can be seen in Figure 2, this layer takes seven 

input components and calculates their CKD stage. 

    The topmost layer is the purification layer, Level 1, where 

each input variable undergoes elimination. At this level, 

inputs to an attribution function are represented by clear-cut 

values. Each node within this hierarchy functions as a 

component allocated to its respective function. 

Layer 2 houses the rule layer in ANFIS. This tier of ANFIS 

consists of the rule layer, represented through logarithmic 

product notation. This layer governs how rules respond to 

system inputs [40]. Layer 3 is the normalization layer. Each 
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node is standardized and represented in this structure by the 

letter "N." This layer uses the effectiveness of rule 

enforcement in layer 2, often called the normalization layer, 

to automatically compute normalized weights [41]. Layer 4 

is the anti-purge layer. Also known as the inverse 

purification layer, this fourth layer incorporates multiple 

linear functions for each input signal. It includes versatile 

nodes across its structure. At the general level, precisely 

level 5 in ANFIS, the last layer designated as "∑" is the 

summation layer. This layer's primary objective is to 

calculate the overall output by summing all signals from the 

preceding levels. 

IV. RESULTS  

Based on our experimentation, Table 1 shows that TP (true 

positive) is 37, FN (false negative) is 02, FP (false positive) is 

03, and TN (true negative) is 38. The performance metrics 

used for evaluating the model are mentioned in Eq. (9) [38], 

Eq. (10) [38], Eq. (11) [38], Eq. (12) [38]. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                        (9) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                      (10) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                   (11) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
          (12) 

 

In TABLE 1, the performance of the proposed model is 

depicted with selected features. The model's accuracy is 

98.5%, the sensitivity is 96.01%, and the specificity is 97.68%. 

 
TABLE 1 

The Performance of the Model with Selected Features 

Method Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

Accuracy 

(%) 

ANN 90.62 92.05 91.02 90.07 

OCNN 91.83 94.56 93.69 94.23 

RF 95.23 95.45 96.58 96.54 
Tabu-SDS 96.01 97.68 97.50 98.5 

A heat map is a representation of the Pearson correlation 

coefficient matrix. The Pearson correlation coefficient 

represents the linear relationship between two qualities. 

Eighty tests were performed with the created fuzzy 

intelligence system to evaluate chronic renal failure. A group 

of medical professionals also examined every patient and 

disseminated their findings. Expert opinion findings and the 

outcomes produced by the fuzzy inference system were 

contrasted. By merging these two outcomes, we could 

accurately categorize 75 out of the 80 tests and create five or 

more system outputs. 

TABLE 2 displays the confusion matrix. Fifteen healthy 

individuals are shown in the first column; they all fall into the 

appropriate group (generic category). The second column 

rates the impact information for ten patients as a concern level. 

However, as a result, two of the ten patients were classified as 

having poor health and the other eight as bothersome [42]. 

Fifteen out of the sixteen patients in the third column with the 

highest severity were correctly identified, while the last patient 

was classified as sick. Ten of the eleven identified persons 

were correctly classified, while one was misclassified in the 

fourth column. The fifth column further illustrates how well 

the essential traits of the 14 test patients were identified. 

Column 6 indicates that one essential patient out of every 

fourteen is fat or overweight. 
 

TABLE 2 
CKD Confusion Matrix 

Extremely 
sick 

Very 
sick 

Sick Very 
concerning 

Concerning Healthy Class 
names 

014 000 000 001 000 000 Extremely 

sick 

000 014 000 000 000 000 Very sick 

000 000 010 000 000 001 Sick 

000 000 001 015 000 000 Very 

concerning 

000 002 000 000 008 000 Concerning 

000 000 000 000 000 015 Healthy 

 

Here, the total number of tests = 80, and the number of 

successes = 75. Using the confidence index analysis technique 

mentioned in Eq. (13) [42], 93.75% of the fuzzy inference 

system's outputs were accurately categorized. The proposed 

fuzzy expert system allows doctors to identify CKD by 

evaluating the dependent indicators. The results indicate a 

6.25% error rate in CKD classification with this fuzzy 

inference approach. The initial categories of "General," 

"Concerning," and "Very Concerned" were reclassified as 

"No." Consequently, additional benign categories were 

introduced, such as "bad health," "serious disease," and 

"dangerous disease." TABLE 3 shows the confusion matrix 

for the 2×2 matrix. Preciseness, specificity, sensitivity, and 

responsiveness are among the criteria considered in 

determining the effectiveness of the developed professional 

healthcare system. 

 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 = (
𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑛𝑢𝑚𝑏𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑡𝑒𝑠𝑡𝑠
∗ 100)    (13) 

 
TABLE 3 

Matrix With Reduced Dimensionality 

Yes No Class name 

38 002 Yes 

003 038 No 

 

In TABLE 4, we have compared the proposed ABPNN-

GSO-ANFIS model with certain optimized models namely 

Gaussian Naïve Bayes (Gaussian NB), K nearest neighbors 

(KNN), Optimized CNN(OCNN), Optimized ANN(OANN), 

Deep Belief Networks(DBN), Deep Separable 

CNN(DSCNN). The table depicts that the proposed ABPNN-

GSO-ANFIS achieved an accuracy of 99.52%, while the 
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traditional DSCNN achieved 99.18%. Balancing the dataset 

ensures near-perfect accuracy, a crucial metric that all 

classifiers depend on, indicating the percentage of instances 

classified correctly. The high accuracy of the proposed model 

can be attributed to the advantages of GSO-ANFIS, which pre-

trains the model by optimizing both local optima and 

weighting factors in a single step. This approach resolves 

mismatch issues and optimizes the entire DL model in a single 

iteration, significantly reducing training time compared to 

traditional methods such as backpropagation in existing 

ANFIS. Backpropagation tends to converge towards nearby 

local minima, potentially missing better solutions at distant 

points. In contrast, the proposed algorithm navigates around 

local optima and avoids local maxima through its exploratory 

behavior, while its exploitative behavior rapidly converges 

towards global minimum and maximum solutions. 
 

TABLE 4 

The performance of the model with classifiers 

Gaussian  Accuracy Precision Recall F1-Score 

Gaussian NB 89% 79.34% 76.15% 77% 

KNN 90.16% 82.53% 78% 78.68% 

Optimized CNN 98.4% 97.35% 94.25% 96.24% 

Optimized ANN 99.75% 97.97% 95.42% 98.89% 

DBN 98.63% 96.655% 97.22% 96.76% 

DSCNN 99.28% 97.76 98.08% 97.98% 

ABPNN-GSO-ANFIS 99.64% 98.23% 97.73% 99.14% 

 

FIGURE 4. Performance evaluation of various models 

 

From TABLE 4, ANFIS necessitates a substantial amount 

of labeled data to produce accurate results. The new attribute, 

urine microalbumin, contributes significantly to decision-

making, resulting in improved precision rates with the 

proposed ABPNN-GSO-ANFIS model. Existing algorithms 

often encounter network paralysis when weights fluctuate 

between low and high values. In contrast, the proposed 

ABPNN-GSO-ANFIS stabilizes through multiple 

presentations of input patterns, gradually adjusting weights to 

achieve an optimal solution. This enhancement notably 

improves recall percentages in the proposed algorithm. 

FIGURE 4 describes the performance evaluation of the 

models. Our model is compared with standard algorithms 

from the literature. This clearly depicts that our proposed 

model outperforms all the existing algorithms. 

We used the UCI CKD test set to assess how well our pipeline 

identified nodule development. First, we evaluated the 

accuracy of illness diagnosis based on physician reports. 

Given that nodule detectors provide many candidates with 

related nodule probabilities, our goal was to detect the most 

significant number of annotated nodules by finding the fewest 

candidates [43]. Receiver Operating Characteristic curve 

(ROC) curves were built to assess the sensitivity of identifying 

annotated (unique) nodules per scan over a range of false 

positive rates for both the training and test datasets. The 

confusion matrix showing the model's performance is shown 

in FIGURE 5. This clearly depicts the True Positives and False 

Positives for our model. 

 

FIGURE 5. The confusion matrix of the models’ 

 

 

FIGURE 6. ROC curve of the proposed model 
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FIGURE 6 shows the ROC curve of the ABPNN-GSO-

ANFIS model, plotting the True Positive Rate (TPR) against 

the False Positive Rate (FPR) to illustrate the model's ability 

to differentiate between positive and negative heart disease 

cases at different thresholds. Lower FPR and higher TPR 

reflect better performance. The ROC curve of the HDP-DTRF 

method helps determine the optimal classification threshold, 

balancing specificity and sensitivity. Points near the upper left 

corner of the ROC curve indicate superior model performance. 

 FIGURE 7 and FIGURE 8 show the training and testing loss 

functions and the training and testing accuracy. The prepared 

training dataset was used to train the proposed algorithm over 

100 epochs with a fixed learning rate of 0.1. In current ANFIS 

models, the backpropagation algorithm is often used, which 

tends to converge to nearby local minima, which may lead to 

the loss of superior solutions further away. Far away. The 

proposed algorithm solves this problem through its 

exploratory behavior, which helps avoid local optima and 

local maxima. FIGURE 9 discusses the heatmap for 

correlation. Furthermore, its exploitative behavior allows fast 

convergence to minimum and maximum global solutions.  

The proposed approach facilitates the identification of 

early-stage CKD by analyzing non-linear relationships among 

diverse clinical parameters, enabling timely interventions. 

These can, in short, bridge healthcare gaps in remote and 

under-resourced areas by allowing remote diagnosis and 

telemedicine support.  

V. DISCUSSIONS 

This research focuses on predicting CKD using a combination 

of different machine learning techniques. This is mainly done 

by combining multiple algorithms for feature selection and 

final selection process. The original dataset initially comprised 

of 24 features, but due to the introduction of hybrid feature 

selection algorithms TS-SDS, the number of features were 

reduced drastically to 19. During the preprocessing phase, 

missing values present in the dataset were addressed 

appropriately.  When diagnosing stages of CKD, the proposed 

new hybrid technique outperforms all the standard state-of-

the-art algorithms. This study enhances the predictability of 

the model by combining GSO. By replicating the behaviors of 

glowing beetles when they scavenge for food, this novel 

method helps in predicting faster. 

 
TABLE 5 

State of art techniques of the proposed model 
Study and Year Sampling Strategy  Accuracy                           

(%) 

[44] -     70% training and 

30% testing 

96.00 

[45] - 10-fold cross-

validation 

96.12 

[46] - 10-fold cross-

validation 

91.40 

[47] - 70% training and 

30% testing 

96.00 

Proposed Model - 80% training and 

20% testing 

99.52 

 

The high accuracy achieved by the proposed model is due to 

the GSO-ANFIS framework, which trains the model by 

simultaneously optimizing local optima and weighting factors 

in a single step. This method greatly reduces training time 

compared to standard methods. To measure the model’s 

performance, 10-fold cross validation was used. The 

confusion matrix was designed to classify the correct and 

incorrect instances, which ultimately depicted the model’s 

efficiency.  TABLE 5 indicates the comparison of the 

proposed model with few recent literatures, who have tried 

deploying varieties of hybrid models. The results depict that 

the proposed model has better performance in terms of all the 

metrics than the recent works. Thus, the integration of GSO 

with ANFIS significantly improves the model’s classification 

performance, making it a valuable tool for CKD diagnosis. By 

optimizing local optima and weighting factors in a single step, 

the proposed model achieves efficiency in training, reducing 

computational time compared to traditional methods like 

backpropagation [42]. This makes it more practical for real-

time applications. The hybrid TS-SDS feature selection 

technique reduces dimensionality while preserving relevant 

information, improving model interpretability and robustness. 

 

 

FIGURE 7. Training accuracy vs testing accuracy 
FIGURE 8. Training loss vs testing loss 
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The model's high accuracy and efficiency also suggest it could 

be integrated into clinical decision-support systems, assisting 

healthcare professionals in diagnosing CKD more effectively 

[44]. 

 

VI. CONCLUSIONS 

CKD stands as a leading cause of renal disease-related deaths 

worldwide. According to the 2024 World Kidney Day report, 

kidney-related diseases account for at least 2.4 million deaths 

annually, making them the sixth fastest-growing cause of 

mortality worldwide. In this study, we introduced the 

ABPNN-GSO-ANFIS technology to enhance the automated 

classification of CKD. Utilizing the TS-SDS algorithm, we 

identified optimal relationships between each feature and the 

target features, prioritizing them based on their correlation 

percentages. The proposed ABPNN-GSO-ANFIS model 

achieved an accuracy of 99.52%, surpassing the conventional 

models. It would be inaccurate to suggest that the developed 

fuzzy expert system could replace specialist doctors or the 

collective expertise of medical teams. Instead, it is intended to 

serve as a supportive tool for doctors, aiding decision-making 

without supplanting their valuable contributions. Moreover, 

implementing this medical expert system requires only 

computers and software, making it feasible for use in hospitals 

with limited resources and in geographic areas where hospital 

access is limited or unavailable. A limitation of this research 
was that the data size was small (400 records). Better 

analysis can be performed when this data size increases and 

we receive balanced data. Moreover, AI models trained on 

datasets from specific regions or demographic groups may 

not generalize well to other populations with different 

genetic, environmental, or lifestyle factors. Ensuring patient 

data confidentiality and compliance with regulations like 

GDPR and HIPAA is a significant challenge. This needs to 

be considered when we work with real-time records. This 

study employed supervised ML algorithms and feature 

selection techniques to identify the optimal subset of features 

for model development. Future work could explore the 

performance differences achieved using unsupervised or DL 

algorithms. Developing a mobile-based system would 

further enhance its utility by enabling experts to monitor 

patients' status remotely and allowing patients to assess their 

condition independently. 
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