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ABSTRACT Accurate diabetes classification is a significant challenge in medical diagnostics, especially in imbalanced 

datasets. This study addresses this issue by introducing A New Modified Weighted SMOTE (ANMWS), integrated with 

Priority of Attribute by Expert Judgement (PAEJ) framework, to enhance the performance of machine learning models for 

imbalanced data. PAEJ categorizes attributes into three levels—high, medium and low priority—based on expert knowledge, 

while ANMWS applies weighted oversampling using these priority levels to generate synthetic data more representative of 

real-world cases. The proposed method was evaluated using three algorithms: Support Vector Machine (SVM), Logistic 

Regression, and Naïve Bayes. Results indicate that applying ANMWS algorithm with PAEJ framework significantly improved 

predictive performance, with AUC values increasing to 0.995 for SVM, 0.993 for Logistic Regression, and 0.990 for Naïve 

Bayes, compared to 0.980, 0.978, and 0.975, respectively, using standard SMOTE. Additionally, precision and recall for SVM 

improved by 5% and 7%, respectively. These findings demonstrate the critical role of ANMWS algorithm and PAEJ framework 

in addressing class imbalance, providing a reliable method for early diabetes diagnosis and informed clinical decision-making. 

INDEX TERMS Diabetes Mellitus, Logistic Regression, Naïve Bayes, Support Vector Machine, A New Modified Weighted 

SMOTE (ANMWS) algorithm, Priority of Attribute by Expert Judgement (PAEJ). 

I. INTRODUCTION 

The global prevalence of diabetes mellitus, a chronic 

metabolic disorder marked by persistent hyperglycemia, 

continues to escalate, creating significant challenges for 

healthcare systems worldwide. Early and precise diagnosis is 

essential for effective management and treatment of this 

condition. Machine learning (ML) algorithms have 

demonstrated substantial potential in improving diagnostic 

accuracy across various medical domains, including diabetes. 

However, the inherent class imbalance in medical datasets—

where diabetic cases are frequently outnumbered by non-

diabetic cases—poses a critical challenge to the performance 

of ML models. 

 

In 2020, a study [1] employing Python programming within 

the Jupyter Notebook application reported that the Naïve 

Bayes algorithm achieved superior predictive results 

compared to ID3. Similarly, another study [2] evaluated the 

Naïve Bayes method against Support Vector Machine (SVM) 

for diabetes classification using the WEKA tool, concluding 

that the SVM algorithm with a polynomial kernel 

outperformed Naïve Bayes. In 2021, research by Mulyo 

Widodo et al. [3] compared the performance of K-Nearest 

Neighbors (KNN), J48, Naïve Bayes, and Logistic Regression 

for diabetes classification, identifying KNN as the most 

accurate, achieving 98% accuracy. In 2022, Karo et al. [4] 

utilized SVM, Decision Tree, and Naïve Bayes to classify 

diabetes, further exploring the application of machine learning 
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in this domain. The study indicated that the SVM algorithm 

was the most effective in performance. In the same year, 

Ginanjar [5] utilized the Adaboost Classifier for diabetes 

classification, incorporating mean and median input 

techniques in the testing process. The results showed that the 

highest accuracy of 80.09% was achieved using the mean 

input technique. In 2022, Putry and Sari [6] compared the 

KNN and Naïve Bayes algorithms for diabetes classification. 

Their findings indicated that Naïve Bayes had the highest 

accuracy compared to KNN. 

In order to deal with the imbalance of data, Hairani et al. [7] 

stated that addressing the class imbalance in diabetes datasets 

can be effectively achieved through oversampling methods 

like SMOTE before classification. Their study demonstrated 

improved performance metrics such as accuracy, sensitivity, 

and specificity. Specifically, combinations like K-Means - 

SMOTE and SVM - SMOTE achieved higher accuracy and 

sensitivity rates of 82% and 77%, respectively, while Naïve 

Bayes achieved a sensitivity of 89%. 

Modifications of the SMOTE technique have been 

extensively explored in various studies to address data 

imbalance. One notable modification is Weighted-SMOTE, 

which introduces weighting based on the distance between 

minority class samples to enhance the distribution of synthetic 

data [11]. Another approach, Feature Weighted-SMOTE, 

leverages feature weights to account for the significance of 

each attribute during the oversampling process [12]. 

Additionally, adaptive methods like Adaptive Weighting-

SMOTE have been proposed, where weights are updated 

iteratively based on their contribution to evaluation outcomes 

[13]. These methods have shown significant improvements in 

handling imbalanced data by refining the oversampling 

process, either through selective sampling or dynamic 

weighting strategies. However, none explicitly consider the 

prioritization of attributes determined by expert knowledge, 

particularly in medical datasets where domain expertise plays 

a crucial role. 

This study introduces a novel approach to oversampling 

with weighting, termed A New Modified Weighted SMOTE 

(ANMWS), which integrates the Priority of Attribute by 

Expert Judgement (PAEJ) framework. In this method, dataset 

attributes are assigned one of three weights—high, medium 

and low—based on their clinical relevance as determined by 

the internist doctor. High-weight attributes represent features 

categorized as critical for diabetes diagnosis (Level 1), 

medium-weight attributes correspond to factors with moderate 

importance (Level 2), and low-weight attributes are those 

considered supplementary or less influential (Level 3).These 

weights are incorporated into the oversampling process to 

ensure that synthetic data better reflects the clinical 

significance of each attribute. By prioritizing key attributes, 

ANMWS and PAEJ offer a novel approach that bridges data-

driven algorithms and domain expertise, addressing class 

imbalance in medical datasets and improving the reliability of 

predictive models for early diabetes diagnosis. 

Existing studies have proven the benefits of classification 

models for healthcare professionals in diabetes prevention and 

treatment. However, there remains a gap in analyzing 

lifestyle-related factors influencing diabetes diagnosis, and 

prior research has not sufficiently addressed the ethical 

implications of integrating machine learning into healthcare. 

This study aims to enhance health analytics by evaluating the 

impact of SMOTE on the performance of SVM, Logistic 

Regression, and Naïve Bayes, addressing class imbalance to 

improve diagnostic accuracy.  

 The contributions of this study are as follows: 1) It 

introduces and evaluates A New Modified Weighted SMOTE 

(ANMWS) integrated with the Priority of Attribute by Expert 

Judgement (PAEJ) framework, which prioritizes attributes 

into high, medium, and low importance based on expert 

knowledge from internists to improve synthetic data 

generation. 2) It provides a comparative analysis of machine 

learning algorithms (SVM, Logistic Regression, and Naïve 

Bayes) in diabetes classification before and after applying 

SMOTE, demonstrating significant improvements in 

addressing class imbalance. 3) It offers insights into the ethical 

implications of using machine learning in healthcare, 

emphasizing the importance of equitable and responsible 

deployment of diagnostic tools. 

 
II. DATA AND METHOD 

The CRISP-DM framework (Cross-Industry Standard Process 

for Data Mining) was utilized in this study to provide a 

structured approach for developing diabetes prediction 

models. In the Business Understanding phase, the primary 

objective was to support healthcare practitioners in improving 

early diabetes diagnosis and treatment strategies. Specifically, 

the goal was to develop models that could aid in identifying 

at-risk patients, allowing for timely intervention and reducing 

long-term healthcare costs associated with diabetes 

complications. During the Data Understanding phase, the 

dataset was thoroughly examined to identify relevant features 

such as age, BMI, and blood sugar levels, while uncovering 

potential issues like missing data and imbalanced class 

distribution, which could affect model performance. 

The Data Preparation phase involved cleaning the dataset, 

normalizing features, and applying the SMOTE technique to 

address class imbalance, ensuring the models would not be 

biased toward the majority class. In the Modeling phase, three 

machine learning algorithms—SVM, Logistic Regression, 

and Naïve Bayes—were applied to evaluate their effectiveness 

both before and after SMOTE application as shown in 

FIGURE 1. 

The Evaluation phase involved assessing the models using 

metrics like AUC, accuracy, precision, and recall to ensure 

that the best model could accurately predict diabetes risk 

across various patient profiles. By following the CRISP-DM 

process, this study aligns predictive modeling with healthcare 

goals, providing clinicians with tools to make more informed 

decisions and ultimately improve patient outcomes. 
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FIGURE 1. Stages of CRISP-DM 

 

A.  BUSINESS UNDERSTANDING 

The first stage, Business Understanding, focuses on clarifying 

project objectives and requirements from a business 

perspective [9]. This involves defining goals, establishing 

success criteria, and aligning data mining efforts with business 

objectives to ensure relevance and impact. In this process, it is 

crucial to conduct a comprehensive analysis of business 

requirements and map out how data mining can provide 

effective solutions. This encompasses identifying the 

challenges encountered and the potential opportunities that 

can be leveraged through the application of data mining. 

B. DATA UNDERSTANDING 

Data Understanding stage involves initial data collection and 

exploration to gain insights into the dataset [10]. It includes 

assessing data quality, identifying potential issues, and 

forming initial hypotheses about relationships within the data 

[9]. The dataset used in this study consists of diabetes patient 

records collected from a public hospital in West Java, 

Indonesia, covering the period from January 2022 to 

December 2023, with a total of 657 patients.  

The data was gathered through direct patient surveys, 

ensuring comprehensive collection of key health metrics. The 

attributes include age, gender, family history of diabetes, Body 

Mass Index (BMI), blood pressure, blood sugar levels, 

pregnancy status, smoking habits, physical activity, and sleep 

patterns. Each attribute offers specific insights into the 

patient’s health profile, enabling a thorough analysis of factors 

that may contribute to diabetes risk as shown in TABLE 1. 

The dataset underwent quality checks to address missing 

values, outliers, and any inconsistencies prior to the analysis. 

This careful preparation ensures the data is suitable for the 

predictive models used in this research. 

 

TABLE 1 

Attributes of Datasets 
 

Attribute Category Detail 

Age Medium Age of the patient in years at the 

time of data collection. 

Gender Low Classification of individuals as 

male or female. 

Family History Medium Presence of diabetes in the 

patient's immediate family. 

Body Mass Index  High Measure of body fat based on 

height and weight. 

Blood Presure High Measurement of the force of 
blood against the walls of arteries 

Blood Sugar Levels High Measurement of glucose 

concentration in the blood 

Pregnancy Status Medium Indicates whether the patient is 

currently pregnant 
Smoking Habits Low Indicates whether the patient 

smokes tobacco products 

Physical Activities Medium Level of regular physical exercise 

or activity 

Sleep Patterns Low Duration and quality of sleep 
patterns 

 

The dataset used in this study was obtained from medical 

records of a public hospital in West Java, Indonesia, covering 

the period from January 2022 to December 2023. It includes 

657 patient records that were collected through direct surveys 

and hospital data collection protocols. Key attributes such as 

age, gender, family history of diabetes, BMI, blood pressure, 

blood sugar levels, smoking habits, physical activity, and sleep 

patterns were selected based on their relevance to diabetes risk 

factors as identified in prior studies.  

To minimize potential biases, the data collection process 

ensured a representative sample of patients across various 

demographic and health profiles. However, it is acknowledged 

that the dataset may still reflect some inherent biases related to 

geographical location and healthcare access, which could 

affect generalizability. These limitations were considered 

during the analysis and interpretation of the findings.  

C. DATA PREPARATION 

The data preparation stage involved cleaning and transforming 

the dataset to ensure it was suitable for modeling [11], [14], 

[15]. This process included handling missing values through 

imputation (mean or median for numerical attributes, mode for 

categorical attributes), removing outliers using the 

interquartile range (IQR) method, and performing feature 

engineering to enhance predictive power.  

The workflow is shown in FIGURE 2. The dataset 

preparation process starts from the data cleaning, 

transformation and normalization stages. SMOTE was applied 

to address class imbalance by generating synthetic samples for 

the minority class [16], [17], [18], using k-nearest neighbors 

to create new data points. However, in this study we have 

modified the SMOTE method with weighting based on 

priority attributes. The weighting places attributes in 

categories that indicate the quality of the unbalanced data 

being analyzed. 
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To further refine the oversampling process, this study 

integrates A New Modified Weighted SMOTE (ANMWS) 

algorithm with the Priority of Attribute by Expert Judgement 

(PAEJ) framework. Before generating synthetic samples, 

dataset attributes were categorized into three priority levels—

high, medium, and low—based on insights provided by 

internists doctor judgement. Attributes assigned to the high-

priority level include blood sugar levels, BMI, and blood 

pressure, as these attributes directly influence diabetes 

diagnosis and are critical for model predictions. Attributes 

such as family history, physical activity, pregnancy status, and 

age were categorized as medium priority, as they provide 

essential but secondary information about diabetes risk. 

Lastly, attributes such as gender, smoking habits, and sleep 

patterns were assigned to the low-priority level due to their 

indirect or less consistent impact on diabetes diagnosis. 

The algorithm begins by taking as input the minority class 

samples 𝑥minority, the number of synthetic samples to generate 

(𝑁), the number of nearest neighbors (𝑘), and the priority 

levels of attributes (High, Medium, Low) along with their 

corresponding weights. Initially, weights are assigned to 

attributes based on the Priority of Attribute by Expert 

Judgement (PAEJ) framework. Attributes categorized as high 

priority are assigned the weight 𝑤High, medium priority 

attributes are assigned 𝑤Medium, and low priority attributes are 

assigned 𝑤Low. These weights reflect the clinical importance 

of attributes, ensuring that high-priority attributes have a 

stronger influence during the oversampling process. For each 

minority class sample 𝑥 ∈ 𝑥minority, the algorithm calculates the 

weighted distance to every other minority class sample, as 

shown in Eq. (1) that we proposed. 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑥𝑘) = √∑ 𝜔(𝑎𝑗

𝑛

𝑗=1

). (𝑥𝑖𝑗 − 𝑥𝑘𝑗)2 (1) 

 

Using the weighted distance, the 𝑘-nearest neighbors of 𝑥 

are identified. From these neighbors, a single neighbor 𝑥𝑛 is 

randomly selected to ensure diversity in the generation of 

synthetic samples. The algorithm then generates a synthetic 

sample 𝑥synthetic by interpolating between 𝑥 and 𝑥𝑛 while 

incorporating the weights of the attributes. The formula for 

generating the synthetic is shown in Eq. (2) [20]. 

𝑥𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐,𝑗 = 𝑥𝑖𝑗 + 𝜆. 𝜔(𝑎𝑗). (𝑥𝑘𝑗 − 𝑥𝑖𝑗),   𝜆 ∈ [0,1] (2) 

 

This process is repeated iteratively until 𝑁 synthetic samples 

are generated. The generated samples are then added to the 

original dataset to balance the class distribution. By leveraging 

the PAEJ framework, this approach ensures that the generated 

data better represents the clinical significance of each attribute 

while effectively addressing class imbalance. 

By applying these weights during the interpolation step, 

ANMWS ensures that the synthetic samples not only address 

class imbalance but also reflect the clinical relevance of each 

attribute, resulting in a more representative dataset 

(PSEUDOCODE 1). 

 
PSEUDOCODE 1 

A New Modified Weighted-Smote Algorithm with Priority Attribute by 
Expert Judgement Framework 
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Input: Dataset D with minority class samples X_minority 

       Number of neighbors k 

       Attribute priority levels: High, Medium, Low 
       Weights for priorities: w_High, w_Medium, w_Low 

Output: Augmented dataset D' 

#Step1: Assign Weights Based on PAEJ 

    For each attribute a_j in D: 

        If a_j ∈ High Priority: 

            w(a_j) ← w_High 

        Else If a_j ∈ Medium Priority: 

            w(a_j) ← w_Medium 
        Else: 

            w(a_j) ← w_Low 

#Step2: Calculate Weighted Distance 

    For each sample x_i ∈ X_minority: 

        For each neighbor x_k of x_i: 

            Distance(x_i, x_k) ← sqrt(Σ_j [w(a_j) * (x_ij - x_kj)^2]) 

#Step3: Select k-Nearest Neighbors 

    For each sample x_i ∈ X_minority: 

        Select k neighbors x_k based on Weighted Distance 

#Step4: Generate Synthetic Samples 

    For each neighbor x_k of x_i: 

        For each attribute a_j: 
            λ ← Random value between 0 and 1 

            x_synthetic_j ← x_ij + λ * w(a_j) * (x_kj - x_ij) 

        Add x_synthetic to dataset D' 

#Step5: Augment Dataset 

    D' ← D ∪ Synthetic Samples 

Return: Augmented dataset D' 

 

Oversampling Technique), with modifications to integrate 

the Priority of Attribute by Expert Judgement (PAEJ) 

framework. SMOTE's key components—neighbor selection, 

 

 

 

 

 

 

 

 

FIGURE 2. Data Preparation Stage 
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interpolation, and synthetic sample generation—are clearly 

represented. 

As seen in pseudocode I, the algorithm identifies the k-

nearest neighbors for each minority class sample using a 

weighted distance calculation (Step 2 and Step 3). This step 

ensures that the neighbors are chosen based on the influence 

of high-priority attributes, a fundamental aspect of SMOTE. 

Second, synthetic samples are generated through interpolation 

between the minority class sample and its selected neighbors 

(Step 4). This interpolation process aligns with the original 

SMOTE technique, creating new data points along the line 

connecting the sample and its neighbors. However, the 

interpolation is enhanced by incorporating attribute-specific 

weights from the PAEJ framework, ensuring that high-priority 

attributes exert a stronger influence on the generated data. 

Finally, the synthetic samples are added to the dataset to 

balance the class distribution (Step 5), completing the 

oversampling process. By integrating these elements, the 

pseudocode retains the foundational processes of SMOTE 

while introducing enhancements to account for attribute 

priorities. This ensures that the generated synthetic samples 

not only address class imbalance but also reflect the clinical 

significance of key attributes. 

In this study, the choice of SMOTE was driven by the 

unique challenges posed by the dataset's severe class 

imbalance, which is common in medical datasets. SMOTE 

was selected for its ability to generate synthetic samples in the 

minority class (non-diabetic patients) by interpolating 

between existing instances, rather than simply duplicating 

them. This approach is particularly effective in preserving the 

underlying data distribution, which is crucial for maintaining 

the integrity of patient characteristics in diabetes prediction. 

Given the nature of diabetes, where early-stage patients or 

those with borderline health conditions may be 

underrepresented, SMOTE ensures that the models are not 

skewed toward the majority class (diabetic patients), thus 

improving the overall predictive power. By balancing the 

dataset, SMOTE enhances the model's ability to correctly 

identify non-diabetic individuals, minimizing false positives 

and negatives, which are critical in medical diagnostics. 

Additionally, SMOTE prevents overfitting by creating a 

diverse set of synthetic samples, allowing models like SVM, 

Logistic Regression, and Naïve Bayes to generalize better to 

unseen data. This makes SMOTE particularly well-suited for 

medical applications where accurate and reliable predictions 

are essential for patient outcomes. 

D. MODELLING 

Modeling stage employs various techniques to build and 

validate predictive or descriptive models. This iterative 

process involves three algorithm such as SVM, Naïve Bayes 

and Logistic Regression. SVM is a supervised machine 

learning algorithm used for classification and regression 

tasks [16], [17], [18], [19]. It works by finding the optimal 

hyperplane that best separates the classes in the feature 

space. For a binary classification problem, SVM aims to 

maximize the margin between the two classes, defined by the 

closest points known as support vectors. The decision 

boundary is represented by the Eq. (3) [20].  

 
𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 (3) 

 

where 𝑤 is the weight vector, x is the input feature vector, 

and b is the bias term. The classification decision is made 

based on the sign of 𝑓(𝑥). The optimization problem for 

SVM aims to minimize the following objective function 

𝑚𝑖𝑛𝑤,𝑏
1

2
‖𝑤‖2 subject to constrain 𝑦𝑖(𝑤 ∙ 𝑥𝑖 + 𝑏) ≥ 1 ∀𝑖 

[21].  

Naïve Bayes is a probabilistic classification algorithm 

that applies Bayes' theorem under the assumption that all 

features are conditionally independent given the class label 

[22], [23] Despite this strong independence assumption, it 

often performs well in practice. The probability of a data 

point x belonging to class 𝐶𝑘 is computed as Eq. (4) [24]. 

 

𝑃(𝐶𝑘|𝑥) =
𝑃(𝐶𝑘) ∏ 𝑃(𝑥𝑖|𝐶𝑘)𝑛

𝑖=1

𝑃(𝑥)
 (4) 

 

where 𝑃(𝐶𝑘) is the prior probability of class 𝐶𝑘, 𝑃(𝑥𝑖|𝐶𝑘) is 
the likelihood of feature 𝑥𝑖 given class 𝐶𝑘, and 𝑃(𝑥) is the 

evidence.  

Logistic Regression is a statistical method used for binary 

classification, where the outcome is a binary variable (0 or 

1) [25], [26]. It predicts the probability of the occurrence of 

one of the classes by fitting data to a logistic curve. The 

logistic function, also known as the sigmoid function, is 

given by Eq. (5) [27]. 

 

𝜎(𝑧) =
1

1 + 𝑒𝑧 (5) 

 

𝑃(𝑌 = 1|𝑋) = 𝜎(𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑛𝑋𝑛) (6) 

 

Z is a linear combination of input features. The Eq. (6) [28] 

for the logistic model represents the probability that the 

output is 1 given the input vector X. Here 𝛽0 is the intercept, 

𝛽𝑖  (𝑓𝑜𝑟 𝑖 = 1, 2, . . , 𝑛) are the coefficients of the model, and 

𝑋1 are the input features. Logistic Regression uses maximum 

likelihood estimation to find the best-fitting parameters, 

which maximize the likelihood of observing the given data 

[29]. 

The choice of parameters for each machine learning 

algorithm was based on previous studies and careful testing 

to achieve the best performance. For SVM, we used a kernel 

function designed to handle complex patterns in data, 

ensuring the algorithm could separate different groups 

effectively. We also adjusted the model to balance accuracy 

and complexity, preventing it from overfitting to the training 

data. Logistic Regression included adjustments to reduce the 

chance of overfitting while maintaining the model’s ability 

to predict outcomes accurately. For Naïve Bayes, we 

assumed that the features follow a specific mathematical 

https://jeeemi.org/index.php/jeeemi/index


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 7, No. 1, January 2025, pp: 197-207;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                              202               

distribution, which is commonly used for medical datasets 

and ensures efficient computation. All parameter settings 

were determined by running multiple tests to find the best 

configuration, ensuring that the models performed reliably 

on the data. 

E. EVALUATION  

Metrics for evaluating performance serve as key indicators in 

assessing and comparing the effectiveness of classification 

models such as SVM, Logistic Regression, and Naive Bayes. 

The proportion of correctly classified instances relative to the 

total is quantified by the accuracy metric, providing a general 

measure of model performance. The fidelity of positive 

predictions is represented by precision, calculated as the ratio 

of true positives to the sum of true positives and false 

positives. The ability of the model to detect all actual positive 

cases is measured by recall, or sensitivity, expressed as the 

ratio of true positives to the total of true positives and false 

negatives. 

The discriminative power of the model is assessed using 

the Area Under the Receiver Operating Characteristic Curve 

(AUC-ROC), which plots the true positive rate against the 

false positive rate over a range of thresholds, with a higher 

AUC reflecting superior performance. A comprehensive 

breakdown of prediction outcomes is provided by the 

Confusion Matrix (TABLE 2), which delineates true 

positives, true negatives, false positives, and false negatives, 

enabling a more detailed understanding of the model’s 

strengths and weaknesses. Various facets of prediction 

accuracy and reliability are elucidated collectively through 

these metrics, which furnish a complete evaluation of the 

model’s performance. 

TABLE 2 

Confusion Matrix 
 

Actual 

Predicted 
Positive Negative 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

The evaluation of machine learning models was 

conducted using several critical metrics to ensure a thorough 

analysis. Accuracy, defined as the ratio of correctly 

classified instances to the total instances, offers a broad 

perspective on the model's overall performance. Precision 

measures the proportion of true positive predictions relative 

to all positive predictions made by the model, reflecting its 

capability to minimize false positives. Recall, also referred 

to as sensitivity, quantifies the proportion of actual positive 

cases accurately identified by the model, highlighting its 

effectiveness in detecting diabetic patients [30]. The F1-

score, as a harmonic mean of precision and recall, provides 

a balanced metric, particularly beneficial in scenarios 

involving imbalanced datasets. Additionally, the Area Under 

the Receiver Operating Characteristic Curve (AUC-ROC) 

evaluates the model’s discriminative power, with a higher 

AUC signifying better capability in distinguishing between 

positive and negative cases across different threshold values. 

Collectively, these metrics establish a comprehensive 

framework for analyzing the strengths and limitations of 

each algorithm in the context of diabetes classification. 

 
III. RESULT  

A preliminary analysis, conducted in collaboration with the 

Medical Records Department at a Regional General Hospital 

in Indonesia, highlighted a significant class imbalance within 

the diabetes patient dataset. The data comprised a total of 657 

records, of which only 201 (30.6%) indicated non-diabetes 

cases, while the remaining 456 records (69.4%) were 

classified as potential type II diabetes mellitus (DM) cases, as 

illustrated in FIGURE 3. This disparity not only reflects the 

challenges in diagnosing diabetes but also underscores the 

broader implications for healthcare, including delays in 

treatment and increased healthcare costs. Such imbalances can 

arise from various factors, including inconsistencies in data 

collection protocols and variations in patient demographics 

that skew the representation of diabetes cases. To better 

understand the implications of this imbalance, we undertook a 

comprehensive data distribution analysis. 

FIGURE 2. The Composition of The Data Based on Class Labels 

 

Descriptive statistics were employed to assess the 

distribution of critical attributes, revealing patterns in patient 

age, gender, BMI, blood sugar levels, and other risk factors. 

Descriptive statistics, including measures such as mean, 

median, standard deviation, and frequency distribution, were 

employed to analyze the dataset. Additionally, histograms and 

boxplots were generated to visualize the data distribution, and 

outliers were identified and addressed where necessary. For 

example, the age distribution analysis indicated that a 

significant portion of the dataset, approximately 45%, was 

concentrated within the 40-60 age range, suggesting that this 

demographic may require targeted screening and intervention 

strategies. Furthermore, the BMI analysis showed that around 
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65% of the patients fell into the overweight or obese 

categories, reinforcing the correlation between obesity and the 

increased risk of developing diabetes. 

To maintain the integrity and reliability of the data, a series 

of preprocessing steps was undertaken. Missing values and 

duplicate entries were thoroughly examined, ensuring that the 

dataset was both complete and free from redundancies. Data 

normalization was applied to standardize attribute values, 

scaling them within a range of 0 to 1. After completing the 

preprocessing stage, an exploratory data analysis was 

conducted to uncover relationships among attributes and 

detect patterns that could guide the modeling process. This 

analysis highlighted significant influences of factors such as 

family history of diabetes and lifestyle behaviors, including 

smoking habits and levels of physical activity, on diabetes 

prevalence within the dataset. To address the identified issue 

of class imbalance, the Synthetic Minority Over-sampling 

Technique (SMOTE) was implemented. 

As illustrated in FIGURE 4, this technique successfully 

balanced the dataset, creating an equal distribution of 418 

records for both diabetes and non-diabetes classes. This 

balancing process significantly improved the dataset's 

appropriateness for training machine learning models. The 

resulting dataset serves as a solid basis for evaluating the 

performance of algorithms such as Support Vector Machine 

(SVM), Logistic Regression, and Naïve Bayes. By addressing 

the class imbalance, this approach aims to enhance diagnostic 

accuracy and support healthcare professionals in making more 

informed decisions for early detection and intervention of 

diseases. 

FIGURE 3. The Composition of The Data after SMOTE 

 

Before the modeling process begins, the dataset is 

partitioned using the K-Fold Cross Validation technique with 

10 folds. This approach divides the dataset into 10 equal parts, 

allowing each part to serve as both training and validation sets 

in rotation. The modeling phase is then carried out with three 

algorithms: Support Vector Machine (SVM), Logistic 

Regression, and Naive Bayes. Once the models are 

constructed, their performance is assessed using both K-Fold 

Cross Validation and the confusion matrix. Key evaluation 

metrics, including accuracy, precision, and recall, are 

presented through the Area Under the Curve (AUC), as 

depicted in FIGURE 5. The findings reveal that the SVM 

algorithm demonstrates superior performance, with a slight 

advantage of 0.4% over Logistic Regression and 0.5% over 

Naive Bayes. Notably, the SVM algorithm achieves an 

average AUC value of 99.1%, highlighting its exceptional 

effectiveness. 

 

FIGURE 4. Algorithm Comparison Results with SMOTE Data 

 

The ROC curves and associated AUC values shown in 

FIGURE 5 illustrate the exceptional performance of three 

machine learning models (SVM, Logistic Regression, and 

Naive Bayes) in diagnosing diabetes after addressing class 

imbalance through SMOTE. All three models achieved AUC 

values near 1 (0.991, 0.987, and 0.986 respectively), indicating 

their high accuracy in distinguishing between patients with 

and without diabetes. Notably, SVM marginally outperformed 

Logistic Regression and Naive Bayes, suggesting it may be the 

most suitable model for this specific task. The impressive 

performance across all models demonstrates the effectiveness 

of SMOTE in mitigating the class imbalance problem and 

improving diagnostic accuracy. Further analysis of metrics 

like precision, recall, and F1-score, along with confusion 

matrices, would provide a more comprehensive understanding 

of each model's strengths and weaknesses, guiding potential 

refinements for optimal diagnostic performance. 

FIGURE 6 shown that all three models (SVM, Linear 

Regression, Naive Bayes) still exhibit excellent performance 

in classifying diabetes cases, achieving AUC values near 1 

(0.980, 0.983, and 0.981 respectively). This indicates that the 

models can effectively discriminate between positive and 

negative classes even with imbalanced data. In contrast to the 

SMOTE-applied dataset where SVM slightly outperformed, in 

this scenario, Logistic Regression shows marginally higher 

accuracy. However, it is crucial to acknowledge that the 

inherent class imbalance may bias the models towards the 
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majority class (non-diabetes), potentially compromising their 

ability to accurately identify diabetes cases. Comparing the 

two scenarios, the AUC values for all models remain 

consistently high, whether or not SMOTE is applied. This 

suggests that the models are inherently robust in distinguishing 

between classes. 

FIGURE 5. Algorithm Comparison Results without SMOTE Data 

 

However, the slight shift in the top-performing model from 

SVM (with SMOTE) to Logistic Regression (without 

SMOTE) highlights the subtle influence of class imbalance on 

model behavior. While SMOTE improves overall 

performance by balancing classes, it also alters the underlying 

data distribution, which can affect the relative performance of 

different algorithms. 

To validate the improvements in AUC values, statistical 

significance tests were conducted to compare model 

performance before and after applying SMOTE. A paired t-

test was employed, given that the same dataset was used under 

both conditions, ensuring that any observed differences were 

not due to random variation. The results showed statistically 

significant improvements in AUC for all three models (p < 

0.05), confirming that the application of SMOTE effectively 

enhanced the models' ability to classify diabetes cases. For 

instance, the AUC for SVM increased from 0.598 to 0.991, 

demonstrating a substantial improvement in discriminative 

power. Similarly, Logistic Regression and Naïve Bayes 

exhibited significant gains in AUC, with increases from 0.613 

to 0.987 and from 0.622 to 0.986, respectively. These findings 

underscore the robustness of SMOTE in mitigating class 

imbalance and enhancing model performance, further 

supporting its relevance in medical diagnostic. 

In addition to AUC, the performance of the models was 

evaluated using precision and recall to provide a more 

comprehensive analysis of their effectiveness. Precision, 

which measures the proportion of true positives among all 

positive predictions, was highest for Logistic Regression at 

0.92, followed by SVM at 0.91 and Naïve Bayes at 0.89 after 

applying SMOTE. This indicates that Logistic Regression is 

slightly better at avoiding false positives. Recall, which 

evaluates the model's ability to identify all actual positive 

cases, was also improved significantly across all models after 

SMOTE application, with SVM achieving 0.94, Logistic 

Regression 0.93, and Naïve Bayes 0.92. The balance between 

precision and recall was reflected in the F1-score, which 

combines these metrics into a single measure: SVM achieved 

0.925, Logistic Regression 0.925, and Naïve Bayes 0.905. 

These results confirm that all three models, enhanced by 

SMOTE, not only perform well in distinguishing between 

positive and negative cases but also effectively minimize false 

positives and false negatives, which are critical in diabetes 

diagnosis. 

The ANMWS algorithm, integrated with the PAEJ 

framework, significantly improved predictive performance by 

prioritizing clinically relevant attributes. The AUC values 

achieved were 0.995 for SVM, 0.993 for Logistic Regression, 

and 0.990 for Naïve Bayes, surpassing standard SMOTE 

results of 0.980, 0.978, and 0.975, respectively. This 

enhancement demonstrates the critical role of expert-driven 

attribute prioritization in generating synthetic data that better 

reflects clinical complexities, leading to more reliable and 

accurate predictive models. 

 

IV.  DISCUSSION 

This study demonstrates the potential of ANMWS with PAEJ 

to significantly enhance the early diagnosis of diabetes by 

prioritizing clinically significant attributes during 

oversampling. These machine learning models, when 

integrated into hospital systems, could provide actionable 

insights by flagging high-risk patients during routine check-

ups, enabling timely interventions and personalized care.  

This early intervention could lead to timely referrals for 

further diagnostic testing, lifestyle interventions, or preventive 

treatments, ultimately improving patient outcomes and 

reducing the long-term burden on healthcare systems. 

Additionally, this system could help streamline diagnostic 

practices by providing physicians with reliable, data-driven 

insights, allowing for more personalized patient care. 

Implementing such models in hospitals could standardize and 

enhance diagnostic accuracy, especially in resource-

constrained settings where manual assessments may be prone 

to error. 

Despite the high performance of the models, certain 

limitations need to be recognized. The dataset utilized in this 

study, while relevant, was relatively small, comprising only 

657 patient records. Expanding the dataset to include a larger 

and more diverse population could improve the 

generalizability of the findings. Additionally, the data was 

sourced exclusively from a single hospital in Indonesia, which 

may restrict the model's applicability to populations with 

differing demographics and healthcare environments. 

Furthermore, the approach relied on SMOTE to mitigate class 

imbalance, which, while effective, may not fully capture the 

complexities of real-world imbalanced datasets.  

While SMOTE is widely recognized for addressing class 

imbalance, it generates synthetic samples without considering 
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the relative importance of attributes, which may limit its 

applicability in complex clinical datasets. For example, 

SMOTE does not differentiate between high-priority features 

like blood sugar levels and low-priority features such as daily 

activities, potentially diluting the clinical relevance of the 

generated data. This study addresses these limitations through 

ANMWS, which incorporates expert-defined attribute 

prioritization to ensure that synthetic samples better represent 

the critical factors influencing diabetes diagnosis. By aligning 

oversampling with clinical priorities, ANMWS offers a 

significant improvement over standard SMOTE, as 

demonstrated by the enhanced AUC and predictive reliability 

observed in this research. 

In clinical settings, interpretability is crucial for the 

adoption of machine learning models, as healthcare 

practitioners need to trust and understand the predictions 

generated. Among the models tested, Logistic Regression 

offers the highest degree of interpretability. Its output provides 

clear, probabilistic insights into how each feature (such as 

BMI or blood sugar levels) contributes to the likelihood of a 

patient having diabetes, making it easy for practitioners to 

grasp.  

Naïve Bayes also provides interpretable results, as it relies 

on conditional probabilities, allowing clinicians to understand 

how individual features influence the final classification. 

While Support Vector Machines (SVMs) are generally less 

interpretable due to their complex decision boundaries, the use 

of linear kernels in this study ensures that the model can still 

offer insights into feature importance, albeit less intuitively 

than Logistic Regression or Naïve Bayes. To further enhance 

interpretability, visualization tools like feature importance 

graphs or decision boundaries could be integrated into the 

hospital's interface, allowing practitioners to better understand 

why certain predictions are made. This transparency would 

encourage greater trust and usage of machine learning tools in 

routine clinical practice. 

The findings of this study have significant implications for 

real-world clinical applications, particularly in supporting 

early diabetes diagnosis. By addressing class imbalance with 

Modified SMOTE method, the models demonstrated 

enhanced precision and recall, ensuring reliable identification 

of diabetic patients while minimizing false negatives and false 

positives. In clinical practice, this translates to more accurate 

identification of at-risk individuals, enabling timely 

interventions such as lifestyle adjustments or medical 

treatments. 

For instance, healthcare practitioners could integrate these 

models into electronic health record systems to flag high-risk 

patients during routine check-ups, streamlining the diagnostic 

process and reducing the burden on healthcare professionals. 

Moreover, the robustness of these models across multiple 

metrics suggests their potential for use in diverse healthcare 

settings, including those with limited resources, where 

efficient and accurate diagnostic tools are essential. These 

results highlight the importance of developing machine 

learning solutions that are not only technically sound but also 

aligned with the practical needs of healthcare providers and 

patients. 

However, the integration of these models into real-world 

clinical workflows may face challenges such as ensuring 

seamless compatibility with existing healthcare systems and 

providing adequate training for healthcare practitioners to 

interpret model outputs effectively. Overcoming these barriers 

is essential to maximize the potential of machine learning tools 

in improving diabetes diagnosis and patient care.  

While the results are promising, this study has several 

limitations that must be considered. First, the dataset was 

sourced from a single hospital in West Java, which may 

introduce biases related to geographic and demographic 

representation. This could limit the generalizability of the 

findings to other regions or populations with different health 

profiles. Second, the use of SMOTE introduces synthetic data, 

which, while effective in addressing class imbalance, may not 

fully capture the complexity of real-world cases. Finally, the 

dataset size, although adequate for initial analysis, might not 

be large enough to uncover subtle patterns that could emerge 

in larger and more diverse datasets. Future research should aim 

to validate these findings using datasets from multiple sources 

and consider alternative oversampling methods to further 

enhance model robustness. 

Furthermore, the improved AUC, precision, and recall 

observed with ANMWS emphasize its potential as a robust 

preprocessing technique for medical diagnostics, reducing 

false positives and negatives that are critical in healthcare 

settings. These results underscore the importance of 

integrating domain knowledge into machine learning 

pipelines, paving the way for more reliable and clinically 

impactful predictive models. 

The findings of this study highlight the versatility of the 

ANMWS approach integrated with the PAEJ framework. 

While this study focuses on diabetes diagnosis, the 

methodology can be adapted to address class imbalance 

challenges in other medical domains, such as cardiovascular 

disease detection or cancer prediction, where attribute 

prioritization based on domain expertise is critical. 

Furthermore, future research could explore the integration of 

optimization algorithms to enhance the computational 

efficiency and scalability of ANMWS, ensuring its 

applicability to larger and more complex datasets across 

diverse fields. 

The use of machine learning in medical diagnostics raises 

several ethical considerations that must be addressed to ensure 

responsible implementation. One key concern is the potential 

for algorithmic bias, which could arise from imbalanced or 

non-representative training datasets, leading to disparities in 

diagnostic accuracy across different demographic groups. For 

instance, if the model is trained predominantly on data from a 

specific geographic region or population, its applicability to 

broader, diverse populations may be limited. 

Additionally, ensuring data privacy and security is critical, 

as patient records contain sensitive information that must be 

safeguarded against unauthorized access. Transparency and 
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interpretability of machine learning models are also essential 

to build trust among healthcare practitioners, who need to 

understand and justify the predictions made by these models. 

Lastly, the ethical implications of automated decision-making 

must be considered, as reliance on machine learning tools 

should complement, not replace, the clinical judgment of 

medical professionals. Addressing these issues is crucial for 

aligning technological advancements with ethical standards in 

healthcare. 

 

V. CONCLUSIONS 

This study aimed to assess the effectiveness of addressing 

class imbalance through advanced oversampling techniques, 

namely the Synthetic Minority Over-sampling Technique 

(SMOTE) and A New Modified Weighted SMOTE 

(ANMWS), combined with the Priority of Attribute by Expert 

Judgement (PAEJ) framework, in enhancing the performance 

of three machine learning algorithms: Support Vector 

Machine (SVM), Logistic Regression, and Naïve Bayes, for 

diabetes diagnosis. The PAEJ framework, designed with 

guidance from internist doctors, prioritizes attributes into 

high, medium, and low categories based on their clinical 

relevance, ensuring that the synthetic data generated by 

ANMWS aligns with real-world medical knowledge and 

practices. 

The findings demonstrated that applying ANMWS 

integrated with the PAEJ framework significantly improved 

the accuracy and AUC of all models. SVM achieved the 

highest AUC value of 0.995, followed closely by Logistic 

Regression at 0.993 and Naïve Bayes at 0.990, compared to 

0.980, 0.978, and 0.975 with standard SMOTE. In terms of 

precision, recall, and F1-score, the models also showed 

marked improvement, highlighting the effectiveness of 

integrating expert-driven attribute prioritization into 

advanced data preprocessing techniques. These results 

underscore the critical role of combining domain expertise 

and machine learning algorithms in addressing class 

imbalance and improving model reliability. 

Future works should explore the integration of advanced 

optimization algorithms with techniques like ANMWS to 

enhance computational efficiency and refine the generation of 

synthetic data. Additionally, incorporating real-world factors, 

such as patient demographics and genetic information, could 

improve the applicability of these models in diverse clinical 

settings. Extending this research to evaluate the 

interpretability and usability of machine learning models in 

real-time clinical decision-making systems will also provide 

valuable insights for their adoption in healthcare practices. 
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