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Abstract Lung infection is an inflammatory condition of the lungs with a high mortality rate. Lung infections 

can be identified using CT-Scan images, where the affected areas are analyzed to determine the infection 

type. However, manual interpretation of CT-Scan results by medical specialists is often time-consuming, 

subjective, and requires a high level of accuracy. To address these challenges, this study proposes an 

automated classification method for lung infections using deep learning techniques. Convolutional Neural 

Networks (CNNs) are widely used for image classification tasks. However, CNN operates locally with limited 

receptive fields, making capturing global patterns in complex lung CT images challenging. CNN also 

struggles to model long-range pixel dependencies, which is crucial for analyzing visually similar regions 

in lung CT-Scans. This study uses a Vision Transformer (ViT) to overcome CNN limitations. ViT employs 

self-attention mechanisms to capture global dependencies across the entire image. The main contribution 

of this study is the implementation of ViT to enhance classification performance in lung CT-Scan images 

by capturing complex and global image patterns that CNN fails to model. However, ViT requires a large 

dataset to perform optimally. To overcome these challenges, augmentation techniques such as flipping, 

rotation, and gamma correction are applied to increase the amount of data without altering the important 

features. The dataset comprises lung CT-scan images sourced from Kaggle and is divided into Covid and 

Non-Covid classes.  The proposed method demonstrated excellent classification performance, achieving 

accuracy, sensitivity, specificity, precision, and F1-Score above 90%. Additionally, the Cohen’s kappa 

coefficient reached 89%. These results show that the proposed method effectively classifies lung infections 

using CT-Scan images and has strong potential as a clinical decision-support tool, particularly in reducing 

diagnostic time and improving consistency in medical evaluations. 

Keywords Lungs; CT-Scan, Classification, Gamma Correction, Vision Transformer. 

I. Introduction 

Lung infection refers to an inflammatory condition of the 
lungs caused by various pathogens, including viruses, 
bacteria, fungi, and parasites [1][2]. Early detection and 
diagnosis of lung infections can help reduce the high 
mortality rate, significantly increasing patient survival 
rates from 14% to 49% [3]. Lung infections are 
categorized into two classes: Covid and Non-Covid. 
The Covid class refers to lung infections caused by the 
coronavirus disease 19 (COVID-19), while the Non-
Covid class indicates that the patient's lungs are not 
infected by the virus [4]. Lung infections are typically 
analyzed using lung images obtained through 
Computed Tomography (CT). CT-Scan is a method of 

visualizing images of human organs using X-rays [5]. 
These CT scans are then manually interpreted by a 
pulmonologist [6]. However, manual diagnosis has 
several disadvantages, such as being time-consuming, 
multi-interpretative, and requiring a high level of 
accuracy [7][8]. Classifying lung CT-scan images using 
deep learning is an effective solution to overcome the 
limitations of manual diagnosis. 

 To overcome these limitations, deep learning-based 

approaches, particularly for image classification, have 

emerged as effective solutions. One widely adopted 

deep learning method is the Convolutional Neural 

Network (CNN), which is capable of extracting local 

features and gradually building complex representations 
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[9]. Xiaoyi et al. [10] applied MobileNetV2 for lung 

classification involving three classes and achieved an 

accuracy of 85%. Toroghi et al. [11] applied VGG16 for 

lung classification involving three classes and achieved 

an accuracy of 88%, although additional performance 

metrics were not evaluated. Ragab et al. [12] used CNNs 

for a similar classification task and achieved an accuracy 

of 89%. However, CNNs operate locally due to the use 

of kernels in a limited area, so it is difficult for CNNs to 

capture global patterns in an image, especially in 

complex images. In addition, CNNs process images 

sequentially, which can result in the loss of relationships 

between distant pixels. Lung images are complex due to 

fine anatomical details, which causes the structure of 

different parts of the lungs to look similar and difficult to 

distinguish.   

Vision Transformer (ViT) is a deep learning method 

designed to capture global image patterns. In contrast, 

CNNs operate sequentially based on the kernel size and 

stride used. ViT operates in parallel by dividing the 

image into several patches and processing each patch 

simultaneously using self-attention [13]. ViT architecture 

comprises multi-head self-attention (MSA) and multi-

layer perceptron (MLP) blocks designed to capture 

global patterns within images. Each pixel in the image is 

considered to have equal importance, allowing all 

relationships between pixels to be preserved. Moreover, 

the complex structures in the image can be more easily 

recognized globally by ViT [14]. ViT is considered more 

effective than CNNs for learning from complex image 

data. Several studies have explored the use of ViT in 

lung infection classification. Mezina et al. [15] applied 

ViT for for classifying lung infections into nine classes, 

and achieved an accuracy of 81.9%. However, the 

sensitivity and specificity remained below 70%. 

Ukwuoma et al. [6] applied ViT for for classifying four 

lung infection classes and achieved an accuracy of 87%. 

However, the F1 score remained below 75%. Toroghi et 

al. [11] applied ViT to classify lung infections into three 

classes, and achieved an accuracy of 83%. However, 

this study did not measure sensitivity, specificity, and F1-

score. 

ViT has the disadvantage of requiring significantly 

more parameters than CNN. The large number of 

parameters makes ViT less effective on small datasets 

due to the risk of overfitting [16]. VIT requires a large 

amount of data. Unfortunately, the availability of medical 

images, such as lung CT-Scan images is still limited [17].  

To address this issue, data augmentation is a commonly 

used technique for increasing the size of a dataset [18]. 

Data augmentation is a technique employed to enhance 

both the quantity and diversity of data by applying 

modifications to the original images [19]. The most basic 

augmentation techniques are flipping and rotation [20]. 

Flipping is performed by reversing the image either 

horizontally, vertically, or both.  In contrast, rotation 

offers greater variability by allowing images to be 

transformed through specified angular shifts [21]. 

Rotation allows the generation of more new images than 

flipping because the rotation angle can be chosen more 

variably, thus significantly increasing the diversity of the 

training data. Flipping and rotation have been widely 

used to improve classification performance [22]. For 

example, Teramoto et al. [23] applied flipping and 

rotation for lung cancer classification using VGG16, 

involving two classes, and achieved an accuracy of 

79.2%.  Bushara et al. [24] applied a flipping for lung 

cancer classification using CNN, involving two classes, 

and achieved an accuracy of 95%. Yadlapalli et al. [25] 

applied flipping and rotation for lung cancer classification 

using DenseNet-169, involving two classes, and 

achieved an accuracy below 85%. However, these 

studies employed only basic augmentation techniques, 

which may limit to generate new data variations.  In 

contrast, rotation enables the generation of more diverse 

data, as it allows the application of rotation angles 

ranging from 0° to 360°. However, applying excessively 

large rotation angles may result in distorted or inaccurate 

images due to the inclusion of irrelevant features, which 

can ultimately lead to misclassification [26].  

Another technique for increasing the amount of data 

involves modifying image contrast. Contrast modification 

is a form of data augmentation, as it generates new 

images with varying lighting and contrast characteristics 

[21]. One common method for adjusting contrast is 

gamma correction [27]. This technique improves image 

quality by applying non-linear adjustments to pixel 

values, including exposure adjustments that enhance 

contrast and detail [28]. Gamma correction is employed 

both to adjust contrast and to fine-tune the 

transformation function’s intensity [29]. The effect of 

gamma correction can be observed through the image 

intensity distribution histogram, which show the 

distribution of pixel values [30]. By comparing the 

histograms before and after augmentation, it can be 

seen that the intensity distribution changes, indicating 

that a new and different image has been generated 

[30][31]. Gamma correction has been used in several 

studies as an augmentation technique. Maiyanti et al. 

[21] used gamma correction on soil images, while 

Rahman et al. [32] applied it to chest X-ray images. Sun 

et al. [33] employed it retinal images. These studies 

show that gamma correction contributes to improved 

classification performance across diverse domains.  

This study proposes data augmentation techniques 

and the Vision Transformer architecture for classifying 

lung infections in lung CT scan images. Augmentation is 

applied during the preprocessing stage to enhance both 
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the quantity and variability of the dataset. The 

augmentation techniques used include rotation, flipping, 

and gamma correction. Rotation is applied randomly 

within a range of 1°–15°, while flipping consists of both 

horizontal and vertical flips. Gamma correction is 

performed using a random gamma value between 0.5 

and 2.  

Following augmentation, the classification process is 

conducted using the Vision Transformer architecture. 

This architecture utilizes Multi-Headed Self-Attention 

(MSA) and Multi-Layer Perceptron (MLP) blocks for 

better feature learning. Lung infections are categorized 

into two classes, which are Covid and Non-Covid. The 

performance of the Vision Transformer in classifying 

lung CT-Scan images is evaluated using accuracy, 

sensitivity, specificity, F1-score, and Cohen’s kappa. 

This study aims to provide a robust and accurate lung 

infection classification model based on lung CT-Scan 

images. The proposed system is intended to support the 

development of automated diagnostic tools in the 

medical field, assisting medical personnel in early 

detection, and treatment of lung infections in patients. 

 

II. Materials and Methods 

This study consists of several stages, including data 
collection, data augmentation, Covid and Non-Covid 
classification, and performance evaluation. The data 
augmentation stage is applied to the dataset using 
methods, such as flipping, rotation, and gamma 
correction. In the classification stage, the augmented 
dataset is used with the Vision Transformer 
architecture. The classification process with the Vision 
Transformer architecture involves several steps, 
including patch embedding, CLS token embedding, 
transformer encoder, self-attention mechanism, multi-
head attention, and multilayer perceptron. This stage 
includes both training and testing phases. The 
performance evaluation of the Vision Transformer 
architecture in classifying Covid and Non-Covid is 
measured by calculating accuracy, sensitivity, 

specificity, precision, F1-Score, and Cohen’s kappa. An 
overview of the workflow is illustrated in Fig. 1.  

 

A. Source Data 

This study uses a dataset of CT-Scan images of the 
lungs sourced from Kaggle, accessible at https://www. 
kaggle.com/code/travishong/covid-19-lung-ctsegmen-

 
Fig. 1. Proposed method in lung classification on CT-Scan images using Vision Transformer architecture 
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Fig. 2. Image sample of lung dataset (a)Covid 
(b)non-Covid 
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tation-classification. This dataset was selected 
because it contains representative images that 
highlight key features relevant to distinguishing 
between Covid and Non-Covid lung infections. The 
dataset consists of two classes: Covid and Non-Covid. 
Sample images from datasets is shown in Fig. 2.  
 

B. Augmentation 

Data augmentation is employed to enhance the size 
and variability of the dataset by applying specific 
transformations to existing images. This process 
generates new image variations that maintain the 
essential characteristics of the originals. The 
augmentation techniques used in this study include 
rotation, flipping, and gamma correction. 

1. Rotation 

Rotation is an augmentation technique that adjusts the 
image by rotating it within a defined angular range. 
Smaller rotation angles produce minimal changes to the 
image, while larger angles create more noticeable 
differences. Empty areas resulting from the rotation are 
filled with a black background to preserve the original 
image size. In this study, CT-Scan lung images are 
randomly rotated between 1° and 15°. This range 
ensures that the augmented images remain similar to 
the original and preserve key features of the lung 
images. 

2. Flip 

Flipping is an augmentation method that mirrors the 
original image vertically or horizontally. This technique 
is used to effectively increase the f dataset size. The 
reversal will generate an image that differs from the 
original 

3. Gamma Correction 

Gamma correction is an image enhancement 
technique that adjusts the brightness and darkness of 
an image. Gamma correction uses a non-linear 
operation to modify the contrast, especially for dark 
images, by applying a power-law transformation. 
Increasing the gamma value enhances the image 
brightness, while decreasing the gamma value reduces 
the brightness, resulting in a darker image. This study 
uses a random gamma value between 0.5 and 2. This 
range ensures the augmented images are neither too 
bright nor too dark, which could cause important 
features to be lost during the learning process. The 
image value after gamma correction can be calculated 
using Eq. (1) [34]. 

𝐺𝑖,𝑗 = 255 (
ℎ𝑖,𝑗

255
)

𝛾

                                (1) 

In Eq. (1), 𝐺𝑖,𝑗 is the gamma corrected pixel result at-

(i,j), ℎ𝑖,𝑗 is the input image value at pixel (i,j). γ is the 

gamma value. If γ is greater than 1, then the output 
result will be dark. Otherwise, if γ is smaller than 1 then 
the output result will be lighter. An illustration of the 
rotation and flip technique can be shown in Fig. 3. 

Fig. 3(a) and Fig. 3(b) illustrate the image 
augmentation techniques used in this study. As shown 
in Fig. 3(a), a single image can be rotated at multiple 
angles to produce different variations, thereby 
increasing the model’s ability to generalize. Fig. 3(b) 
demonstrates the flipping technique, where an image is 
mirrored either horizontally or vertically. The blue 
rectangles in the figure indicate the axis of reflection to 
the left or right for horizontal flips and above or below for 
vertical flips. 

 

 

Original Image 5° 10° 

   
 (a)  

Original Image Flip Vertical Flip Horizontal 

   
 (b)  

Fig. 3. Illustration of data augmentation (a) rotation technique (b) flip technique 
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C. Vision Transformer 

The Vision transformer is one of the most architectures 
designed for image classification tasks. This 
architecture consists of several components: patches, 
CLS embedding, encoder transformer, self-attention, 
Multi-Head Attention, and Multilayer Perceptron. Fig. 4. 
illustrates the Vision Transformer process using nine 
image patches. 

Based on Fig. 4, Vision Transformer architecture is 
broadly divided into three stages. The first stage is 
patch embedding. The image is split into several 
equally sized sections, which are then combined to 
form an embedding sequence. The second stage is the 
transformer encoder, which is the core of the Vision 
Transformer architecture. This stage aims to accept the 
embedding sequence as input and generate the 
encoding sequence. In this part, the encoder 
transformer mainly consists of MSA and MLP. The 
output sequence is transformed back to its original 
position. The final stage involves the MLP head, which 
is responsible for producing the final classification 
predictions [35]. 
1. Patch Embedding 
A patch is a sub-region of the input image obtained by 
partitioning the image into fixed-size, non-overlapping 
segments. In the Vision Transformer architecture, the 

input image is decomposed into these uniform patches, 
which are subsequently flattened and arranged 
sequentially to form a one-dimensional input sequence. 
Eq. (2) is used to divide the image into n patches [36]. 

𝑛 =  
ℎ𝑤

ℎ𝑝𝑤𝑝

                                         (2) 

Where n is the number of patches to be formed, (h, w) 
denotes the resolution of the original image, h is the 
image height, w is the image width, and 
ℎ𝑝𝑤𝑝 represents the resolution of each image patch, 

assuming a square patch size of m x m pixels. 
2. Position and Class Embedding 
After patch embedding, a embedding matrix performs 
a linear projection of the patches into a vector space 
compatible with the model. The resulting embedded 
representations are subsequently combined with a 
learnable classification token 𝑿𝒄𝒍𝒂𝒔𝒔 which serves as a 

representative feature for the entire image during 
classification. The resulting input sequence 𝒁𝟎 can be 

calculated as shown Eq. (3) [16].  
𝑍0 = [𝑋𝑐𝑙𝑎𝑠𝑠 ; 𝑋1𝐸; 𝑋2𝐸, … , 𝑋𝑛𝐸] +  𝐸𝑝𝑜𝑠            (3) 

where 𝑋𝑐𝑙𝑎𝑠𝑠 is one hot encoding of the class label or a 

token matrix built by the computer, 𝑋𝑛 is the n-th patch 

in matrix form, E is the embeddings matrix or patch 
encoding and 𝐸𝑝𝑜𝑠 is the encoding position in the form 

of an embedding position matrix or position encoding. 

 

3. Transformer Encoder 
The output from the embedding process serves asthe 
input in the Transformer Encoder. Transformer 
Encoder consists of two main connected parts: MSA 
and MLP. Calculations for both parts can be seen in 
Eq. (4) and Eq. (5) [16]. 

𝑍′
ℓ = 𝑀𝑆𝐴 (𝐿𝑁(𝑍ℓ−1)) + 𝑍ℓ−1  , ℓ = 1,2,3, … , 𝑛   (4) 

𝑍ℓ = 𝑀𝐿𝑃(𝐿𝑁(𝑍′
ℓ)) + 𝑍′

ℓ  , ℓ = 1,2,3, … , 𝑛           (5) 

where 𝑍ℓ is the embedding at the n-th layer, 𝑍ℓ−1 is the 

embedding at the (l-1)-th layer, 𝑍′
ℓ is the result of Multi-

Head Self-Attention, and LN is Layer Normalization. 
4. Self-Attention 
Scaled Dot-Product Attention input consists of query 
(Q), key (K), and value (V). The calculation is 
performed through matrix multiplication (MatMul) 
operation between Q and K, followed by dividing the 

result by the scaling factor √𝒅𝒌 and applying the 

 
Fig. 4. Vision Transformer Architectures 
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softmax function. The formulas for calculating the Q, K, 
and V are provided in Eq. (6), Eq. (7), and Eq. (8), while 
the output matrix can be seen in Eq. (9) [16]. 

𝑄 = 𝑊𝑞𝑍                                           (6) 

𝐾 = 𝑊𝑘𝑍                                          (7) 

𝑉 = 𝑊𝑣𝑍                                           (8) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
1

√𝑑𝑘

𝑄𝐾𝑇) 𝑉    (9) 

where 𝑊𝑞, 𝑊𝑘, 𝑊𝑣 are the linear transformation weights 

for Q, K, and V, are usually small numbers and 

randomly initialized using a random distribution. 

5. Multi-Head Attention 
The Q, K, and V in self-attention are linearly projected 

h times. At each projection, the attention function is 

executed in parallel. Multi-head attention enables the 

model to focus on information from different 

representation subspaces at different positions 

simultaneously. The calculation can be performed 

using Eq. (10) [37]. 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑1)𝑊0   (10) 

with ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄𝑊𝑖
𝑄, 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉), Q is 

query, K is key, V is value, and 𝑊0 is the applied linear 

projection matrix. 

6. Multilayer Perceptron (MLP) 
MLP is part of an artificial neural network commonly 
used to model functional patterns in non-linear systems 
[38]. MLP consists of three layers: input, hidden, and 
output layers. Data from the input layer is passed 
through a perceptron to the next layer, continuing until 
it reaches the output. The final output is processed 
using a SoftMax function. The operation of MLP is 
shown in Eq. (11) [39]. 

𝑌𝑘 = 𝑓 {𝑏𝑘 + ∑(𝑚𝑘𝑖 𝑥 𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑 (𝑄, 𝐾, 𝑉)

𝑛

𝑖=1

}   (11) 

where 𝑌𝑘 is the result of the k-th perceptron, d is the 

activation function, 𝑏𝑘 is the perceptron bias. 

D. Training and Testing 
The dataset is divided into two parts: 80% for training 
data and 20% for testing data. The training process uses 
the Vision Transformer architecture to enable the model 
to learn and recognize feature patterns. The training 
data is further divided into training and validation data. 
Initially, the model is first trained on the training data, and 
then the results are validated using the validation data. 
The validation process evaluates the model's 
classification performance. In the training process, the 
best-performing weights are saved and later used to 
evaluate the model on the unseen test set. 
E. Evaluation 
The model's performance is evaluated using a confusion 

matrix, which quantifies the number of correctly and 

incorrectly classified samples. The evaluation metrics 

include accuracy, sensitivity, specificity, F1-Score, 

Cohen’s kappa, and ROC. Accuracy reflects overall 

correctness, sensitivity and specificity measure the 

model’s ability to predict positives and negatives, 

precision assesses positive prediction accuracy, 

Cohen’s Kappa corrects for chance agreement, ROC 

shows class separation ability, and F1-Score balances 

precision and sensitivity. 

 

III. Result 

A. Augmentation 

In this stage, the lung images from the CT-Scan image 

dataset were resized to 224×224 pixels. To increase 

data variation, data augmentation techniques such as 

flipping, rotation, and gamma correction methods were 

applied. The image results obtained from the 

augmentation process can be seen in Fig. 5. The 

histogram comparison of the original images and 

gamma correction images can be seen in Fig. 6. 

 

 

   

(a) (b) (c) 

   

Original image (d) (e) (f) 

Fig. 5. Illustration of Augmentation Technique, (a) Rotation 5°, (b) Rotation 10°, (c) Vertical Fip, (d) 

Horizontal Flip, (e) Gamma Correction 0.8, and (f) Gamma Correction 1.2 
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Fig. 5(a) and 5(b) illustrate examples of CT-Scan 

images rotated by 5° and 10°. Rotation was applied 10 

times on each class, resulting in 3,490 images for the 

COVID class and 3,970 images for the non-Covid class. 

Fig. 5(c) and 5(d) illustrate examples of original CT-Scan 

images on each class that were flipped vertically and 

horizontally, resulting 698 images for the COVID class 

and 794 images for the non-Covid class. Fig. 5(e) and 

5(f) illustrate examples of the original CT-Scan image 

applied gamma correction with gamma values of 0.8 and 

1.2. The gamma correction results in 698 images for the 

Covid class and 794 for the non-Covid class. Based on 

the augmentation results, the total CT-Scan images 

used for the following process are 5,235 for the Covid 

class and 5,955 for the non-Covid class. This 

augmentation technique produces images that are 

different from the original images, thereby increasing the 

diversity of the data. 

Fig. 6 shows the histogram comparison of the original 

images and gamma correction images. In the original 

image, the histogram displays an uneven pixel 

distribution, with concentrations in both low and high-

intensity ranges, indicating suboptimal contrast.  The 

histogram becomes more evenly distributed in the 

gamma-corrected image, especially in the medium to 

high intensity range. This demonstrates that gamma 

correction successfully enhances the image contrast 

and brightness, making previously obscured details and 

enhancing the overall visual quality. 

B. Training 

During the training stage, the augmented CT-Scan 
dataset consisting of 10,920 images was split into 80% 
training (8,736 images) and 20% testing (2,184 
images). The training data was further divided into 75% 
actual training data (6,552 images) and 25% validation 
data (2,184 images). The model was trained using a 
Vision Transformer with 50 epochs and a batch size of 
32, resulting in 274 weight updates per epoch. Weight 
parameters were iteratively updated to minimize 
prediction error. If validation loss decreases, the 
corresponding weights are retained; otherwise, 
updates continue until the optimal weights are 
achieved. Accuracy and loss curves for both training 
and validation data are shown in Fig. 7.  

Based on Fig. 7(a), the training and validation data 
loss graph has decreased and increased at several 
epochs. The training accuracy improved from 0.6376 
at the first epoch to 0.9117 at epoch 25, while the 
validation accuracy increased from 0.6367 to 0.9038 at 
epoch 24. In the following epochs, both values 
remained stable above 0.90, indicating that the Vision 
Transformer model achieved a high level of 
classification accuracy. Based on Fig. 7(b), the training 
and validation loss values fluctuated across epochs. 
The training loss decreased from 0.9765 to 0.0815, 
while the validation loss decreased from 0.8267 to 
0.1596 by the final epoch. Although slight fluctuations 
were observed, both loss values remained low, 
indicating that the ViT model has a low prediction error. 

 

  

(a) (b) 

Fig. 6. Histogram Comparison (a) Original Image (b) Gamma Correction Image 

  
(a) (b) 

Fig. 7. Results Graph (a) Accuracy and (b) Loss in the Training Stage 
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C. Testing 

At this stage, the performance of the Vision 
Transformer model was measured using the test 
dataset. The results of the lung infection classification 
are contained in the confusion matrix, which serves to 
evaluate the performance of the model. The model 
performance is calculated, including accuracy, 
sensitivity, specificity, precision, and F1-score. These 
metrics are presented in Fig. 8, which illustrates the 
results for accuracy, sensitivity, and specificity metrics.   

Based on Fig. 8, Covid and non-Covid classes 
achieved a high accuracy of 94.01%, indicating strong 
reliability in distinguishing between COVID and Non-
COVID cases. The sensitivity metric shows a slight 
variation between the two classes, with the model 
performing better in detecting the COVID class, 
97.10% compared to the non-Covid class, 91.67%. 
This suggests a potential risk of misclassifying certain 
non-Covid cases. Conversely, the specificity is higher 

for the non-Covid class, 97.20%, than for the COVID 
class, 91.66%, indicating that the model is more 
effective at correctly identifying non-Covid cases. This 
difference in specificity reflects the possibility that some 
COVID cases may be incorrectly classified as non-
Covid.  

The highest precision of 97.10% is achieved for the 
COVID class, demonstrating that the model produced 
few false positives in this class. However, the slightly 
lower precision for the Non-COVID class indicates 
occasional misclassification as COVID. The F1 score 
was 93.33% for COVID and 94.56% for Non-Covid, 
with slightly better performance predicting non-Covid 
cases. The model balances excellent classification, 
minimizing misclassifications. A high F1-score for 
COVID is useful for avoiding unnecessary 
interventions. Cohen's Kappa for Non-Covid is 91.07%, 
indicating little difference in performance, with better 
results for COVID classification. 

The performance of the vision transformer model can 
also be seen based on the Receiver Operating 
Characteristic (ROC) Curve graph, which describes the 
trade-off relationship between True Positive Rate 
(TPR) and False Positive Rate (FPR). The proposed 
model's ROC results are shown in Fig. 9.  

 

Based on Fig. 9, the orange ROC curve approaches 
the upper left corner, meaning that the model has a 
high TPR and low FPR. The high TPR value indicates 
that the vision transformer model can distinguish 
between the two classes. The Area Under Curve (AUC) 
value is excellent at 90%. The high AUC value 
indicates that the vision transformer model can 
distinguish between each class very well. This 
suggests that applying data augmentation techniques 
such as rotation, flipping, and gamma correction can 
significantly enhance the performance of the Vision 
Transformer model. 

IV. Discussion 

In this study, the Vision Transformer architecture is 
used to classify lung infections based on two classes, 
namely Covid and non-Covid. The model’s 
performance was then compared with results from 
several previous studies. This comparative analysis 
helps determine whether the performance of the Vision 
Transformer model used is good. Comparison of the 
classification results of this study with other studies with 

  
Fig. 8. Model Performance Graph Based  
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Fig. 9. Receiver Operating Characteristic (ROC) 
Graphs 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.588
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 881-893                                                e-ISSN: 2656-8632 

 
Manuscript Received 28 September 2024; Revised 10 March 2025; Accepted 5 July 2025; Available online 9 July 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.588 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 889               

datasets consisting of Covid and Non-Covid classes 
can be seen in Table 1 for accuracy, sensitivity, and 
specificity, and Table 2 for precision, F1-Score, and 
Cohen's kappa. 

Based on Table 1, the proposed method achieved 
the highest accuracy and sensitivity (the bolded values 
represent the highest scores). This indicates that the 
proposed method provides highly accurate predictions 
that closely correspond to the actual class labels. The 
high sensitivity value suggests that the proposed 
method can correctly detect samples that are truly 
Covid class. The specificity value obtained in the 
proposed method is still lower than research [39]. 
However, the specificity value obtained is already very 
good because it exceeds 90%. This value shows that 
the proposed method also has an excellent ability to 
identify non-COVID classes that are truly non-COVID 
classes. 

Based on Table 2, the highest precision, F1-Score, 
and Cohen's kappa were obtained by the proposed 

method. Shafi et al. [40] applied M-Segnet and Hybrid 
SqueezeNet with rotation augmentation, obtained a 
precision of 88.05% and F1-Score of 88.00%. 
Meanwhile, Krit et al. [41] applied ResNet50 which also 
uses rotation only achieved of precision 79.34% and 
F1-Score of 79.28%. Alshazly et al. [42] applied 
SqueezeNet with horizontal flip, cropping, and 
Gaussian noise augmentation, obtained F1-Score of 
69.70%. Wang et al. [43] applied M-Inception did not 
use any augmentation techniques and only obtained 
Cohen’s kappa of 77%.  Meanwhile, He et al. [44] 
applied DenseNet-169 with horizontal flip, cropping, 
and color jittering, obtained an F1-score of 85%. In 
comparison, the proposed method with flip, rotation, 
and gamma correction augmentation obtains a 
precision of 94.38%, an F1-score of 93.95%, and a 
Cohen’s kappa of 89.49%, showing excellent 
performance in improving the accuracy and 
consistency of the results.

 

These findings confirm the effectiveness of the 
proposed method   for potential application in the 
medical field for classifying lung infections. The 
application of this method can assist medical personnel 
in improving the speed and accuracy of Covid and non-
Covid diagnoses and support better decision-making in 
patient care. However, collaboration between medical 

personnel, data availability, security, and technology 
compatibility with existing systems is essential to apply 
this method in medical practice. The combination of 
augmentation and classification techniques proposed 
in this study shows good performance, although the 
research is limited to two classes and uses specific 
augmentation techniques. These limitations can be 

Tabel 1. Comparison of Accuracy, Sensitivity, and Specificity with Other Studies 

Method Augmentation Method 
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 

M-Segnet and Hybrid 
Squeezenet [40] 

Rotation 93.99 87.96 96.01 

Resnet50 [41] Rotation 79.43 79.24 - 

SqueezeNet [42] 
Horizontal Flip, Cropping, 

and Gaussian Noise 
73.89 62.24 84.76 

M-Inception [43] -  89.5 88 87 

DenseNet-169 [44] 
Horizontal Flip, Cropping, 

and Color Jittering 
86 - - 

Proposed Method 
Flip, Rotation, and 
Gamma Correction 

94.01 94.38 94.43 

 

Tabel 2. Comparison of Precision, F1-Score, and Cohen’s Kappa with Other Studies   

Method Augmentation Method 
Precision 

(%) 
F1-Score  

(%) 
Cohen’s 

Kappa (%) 

M-Segnet and Hybrid 
Squeezenet [40] 

Rotation 88.05 88.00 -  

Resnet50 [41] Rotation 79.34 79.28 - 

SqueezeNet [42] 
Horizontal Flip, Cropping, and 

Gaussian Noise 
79.22 69.70 -  

M-Inception [43] -  -  77 69 

DenseNet-169 [44] 
Horizontal Flip, Cropping, and 

Color Jittering 
-  85 -  

Proposed Method 
Flip, Rotation, and Gamma 

Correction 
94.38 93.95 89.49 
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addressed by modifying or improving the proposed 
method. Further research on lung infection 
classification using augmentation techniques and the 
Vision Transformer architecture is needed to support 
accurate and reliable diagnosis.  

V. Conclusion  

This study aimed to classify lung infections using the 
Vision Transformer (ViT) architecture combined with 
data augmentation techniques to improve performance 
on CT-Scan image data. The main finding 
demonstrates that the proposed model achieved strong 
classification results, with accuracy, sensitivity, 
specificity, precision, and F1-score all above 90%, and 
a Cohen’s Kappa score of 89%, indicating high 
agreement with the ground truth. An additional finding 
is that the application of augmentation techniques: 
rotation, flipping, and gamma correction, not only 
increased the dataset size from 746 to 11,190 images 
but also enhanced data variability, allowing the model 
to generalize better and learn distinguishing features 
between Covid and Non-Covid cases. Further research 
is necessaryto explore the integration of more diverse 
datasets from different sources to improve robustness, 
and to evaluate the model's performance in real-time 
clinical environments. 
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