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ABSTRACT Neonates in the initial weeks postpartum frequently experience jaundice, a prevalent medical condition 

characterized by the yellow discoloration of the sclera and integumentary surfaces. This phenomenon transpires as a result of the 

elevation of bilirubin concentrations within the circulatory system. When bilirubin levels reach critical thresholds, they present a 

considerable risk for severe complications, including neurological impairment, which represents one of the gravest outcomes that 

may ensue if the condition is not addressed with due diligence.  This study investigates a non-invasive method for assessing 

jaundice severity in full-term infants from 1 to 29 days, focusing on infants in Mosul city. A dataset of 344 images was collected 

using an iPhone 12 Pro Max (9MP camera) at Ibn Al-Atheer Hospital, capturing various skin tones and lighting conditions to 

ensure accurate analysis.  Advanced computer vision techniques were used to classify jaundice severity into three and four 

categories based on skin images. Pre-trained deep transfer learning models, namely VGG16 and ResNet50, were utilized for 

training, with the fully connected layer removed and a suitable classifier designed for each model. VGG16 achieved 91.71% 

accuracy for the three-category classification, while ResNet50 reached 95.98%. For the four-category classification, accuracies 

of 94.92% and 94.66% were achieved, respectively.  These high accuracy levels suggest that non-invasive, image-based 

assessments can reduce the need for repeated blood tests. This research highlights the potential of using smartphone-based 

methods for jaundice screening in neonatal care, providing a reliable, accessible tool to reduce strain on medical facilities and 

improve early detection. 

 

INDEX TERMS Neonatal jaundice, Machine Learning, bilirubin, Total Serum Bilirubin, deep-learning, 

VGG16, ResNet50.

I. INTRODUCTION Newborn jaundice is common due to 

increased levels of bilirubin in the blood, causing yellowing of 

the skin and eyes. Jaundice is one of the most prevalent 

medical conditions, affecting 80% of preterm neonates and 

between 65% to 75% of term infants. Globally, about 50% of 

newborns are affected by neonatal hyperbilirubinemia, with an 

estimated 1.1 million cases of acute jaundice occurring 

annually. Regions such as South Asia and Sub-Saharan Africa 

show the highest prevalence, where the incidence is 100 times 

greater in places like Nigeria compared to developed 

countries.  

The incidence of neonatal jaundice per 1,000 live births 

varies widely by region, with rates between 667.8 and 738.5 

in Africa, 251.3 to 473.2 in South Asia, and 3.7 to 4.4 in 

Europe and the Americas.  This condition's incidence decreases 

with improvements in socioeconomic status, showing wide 

regional variations, with Africa having the highest rates. 

Neonatal jaundice remains a major public health concern, 

particularly in low-income areas where access to early 

detection tools is limited. [1], [2]. The main cause of newborn 

jaundice is the underdeveloped liver, which can't process 

excess bilirubin effectively [3]. Thus, effective methods for 

detecting jaundice are crucial.  The assessment of bilirubin 

levels in the bloodstream is commonly conducted through the 

extraction of blood from the neonate, as shown in FIGURE 1, 

a process that may induce discomfort and distress. 

Alternatively, several non-invasive methodologies exist, such 

as the transcutaneous bilirubin (TcB) device, which is a non-

invasive method that estimates bilirubin levels by transmitting 
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light through the skin, which shows strong correlations with 

total serum bilirubin (TSB) levels, making it a reliable 

screening tool[4],[5]. Also, screening for jaundice through 

smartphone applications shows a significant correlation with 

total blood bilirubin (TSB) levels, making it effective in 

screening for jaundice in newborns [6]. 

There is also skin reflectance spectroscopy. This method, 

integrated into smartphone applications, allows real-time color 

analysis, facilitating the quantification of bilirubin levels 

through skin reflectance [7]. The algorithms pertinent to 

machine learning, particularly Convolutional Neural 

Networks (CNN), have been widely utilized in the fields of 

image processing and classification [8], [9], [10], with 

significant emphasis on applications in the healthcare sector 

[10], [11], [12]. Deep learning architectures such as VGG and 

ResNet have experienced considerable progression over time, 

transforming from initial models with constrained capabilities 

into highly advanced structures adept at managing intricate 

tasks. The advancement of these models was propelled by the 

necessity for enhanced computational efficiency, the capacity 

to analyze extensive datasets, and advancements in feature 

extraction techniques. In the formative stages, traditional 

CNNs faced significant challenges, including the vanishing 

gradient problem and limitations in deep architectures, which 

catalyzed the development of more advanced structures such 

as VGG and ResNet. 

VGG16 brought simplicity and depth to CNN 

architectures, using smaller filters but with more layers, 

making it one of the most efficient models for image 

classification. Conversely, ResNet50 profoundly 

revolutionized the domain of deep learning by integrating 

residual connections, which adeptly alleviated the vanishing 

gradient phenomenon and enabled the training of considerably 

deeper neural networks without detracting from performance. 

These developments allowed models to manage extensive 

volumes of image data while preserving elevated levels of 

accuracy in classification endeavors. Moreover, sophisticated 

deep learning architectures like ResNet and VGG have 

assumed a crucial role in applications such as brain tumour 

identification [13], bone anomaly classification [14], medical 

image classification [15], classifying collateral circulation in 

stroke patients [16], and organ segmentation, with the 

implementation of transfer learning further enhancing their 

effectiveness by addressing issues related to data scarcity and 

overfitting [17]. 

These architectural frameworks, particularly VGG16 and 

ResNet50, were selected for the current investigation due to 

their remarkable effectiveness in the classification of medical 

imaging datasets. ResNet50’s ability to mitigate vanishing 

gradient issues through residual connections has consistently 

shown excellent results in image recognition and analysis. 

Furthermore, the implementation of transfer learning has 

significantly augmented the effectiveness of these models by 

allowing them to achieve satisfactory performance even when 

utilizing limited datasets frequent challenge encountered in the 

domain of medical imaging. The ability of these models to 

learn from weights and adapt to specific medical challenges 

makes them particularly suitable for non-invasive techniques 

such as jaundice detection. 

The ongoing advancement of these technologies highlights 

their capacity to transform clinical decision-making processes 

by providing accurate, non-invasive diagnostic tools. 

However, challenges related to interpretability and 

computational requirements persist, and these remain critical 

areas for further scholarly investigation. Several algorithms 

have been employed to quantify bilirubin concentrations in the 

bloodstream through non-invasive methodologies. One 

notable study, conducted by Mansour et al., utilized a specific 

color detection algorithm to monitor jaundice in infants. In this 

study, multiple images of jaundiced infants were captured 

from different angles, distances, and lighting conditions to 

improve diagnostic accuracy [18].   

Olusanya et al. [19] focused on detecting newborn 

jaundice utilizing a color chart. They applied image processing 

techniques such as segmentation, pixel similarity, and white 

balancing to extract key pixel information using RGB (red-

green-blue) values [20]. Following this, the feature extraction 

stage involved color mapping conversions and feature 

calculations to compare color change values with a specially 

designed 8-color calibration card on the RGB plane. In the 

final bilirubin level estimation stage, K-nearest neighbors and 

support vector regression were employed, using the features 

extracted earlier. The system demonstrated an 85% success 

rate in relation to a control group, predicated on the correlation 

between the outcomes derived from the proposed 

methodology and the results obtained from conventional 

blood tests. 

R. Karim et al. [20] conducted a comprehensive study 

examining the methodologies employed for the detection and 

identification of jaundice inneonates through the application 

of machine learning and image processing techniques. The 

studies referenced in their analysis include focusing on the 

integumentary system as a physiological component. A. Gupta 

et al. [21], A. Althnian et al. [22], in the research [22], they 

analyzed data from infants with and without jaundice sourced 

from King Khalid University, employing methodologies such 

as MLP, SVM, DT, and RF. The performance metrics of recall, 

accuracy, and precision were documented at 64.39%, 64.77%, 

FIGURE 1.Blood Draw Procedure for Measuring Bilirubin 
Levels in an Infant. 
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and 67.39%, respectively, as derived from the amassed 

dataset. Conversely, when the linear, lasso, KNN, and SVR 

methodologies were utilized in a separate study [21], 

contrasting results pertaining to bilirubin levels were 

observed. The actual bilirubin level was approximately 15, 

whereas the predicted level was approximately 15.8. 

Regression analysis was conducted by J. A. Taylor et al. 

[23] and S. Swarna et al. [24]. The focal regions in [24] 

included the skin of the sternum and abdomen, with images 

procured from India and China, amounting to a total of 35 

images. The findings revealed a correlation coefficient of 0.6 

for the sternum region. Conversely, the investigation in [23] 

exclusively targeted the sternum skin, employing a dataset 

comprising 350 images representative of various ethnicities in 

the United States. The findings indicated a sensitivity of 

84.6% alongside a specificity of 75%. 

The investigation conducted by J. Castro-Ramos et al. [25] 

primarily concentrated on the dermal tissues of the arms, 

forehead, palms, and soles. Employing the Support Vector 

Machine (SVM) technique on a set of twenty images depicting 

Mexican infants, the assessment unveiled a sensitivity of 

71.8% coupled with a specificity of 78.8%. 

In relation to the skin situated on the face, arms, feet, and 

central torso, linear regression methodologies were employed, 

as delineated by W. Y. Hsu and H. C. Cheng [26]. The study 

achieved an accuracy rate of 92.5%, utilizing a collection of 

196 photographs sourced from Firat University. 

Aydin et al. [27] gathered images of 80 infants, evenly split 

between jaundiced and healthy, using a 12-megapixel camera 

on a Samsung Galaxy Alpha smartphone. Their methodology 

involved placing a calibration card with eight distinct colors 

on the infants' abdominal area. The initial phase of the 

framework focused on color adjustment, ensuring that 

incidental light, reflections, or shading did not impact the 

process. Essential skin areas and their data were retained, 

while unnecessary regions were converted to black. The colors 

on the calibration card were then matched with skin details 

across three color spaces—RGB, YCbCr, and Lab—using 

feature computation and colormap conversions. These results 

were subsequently fed into KNN and SVR classifiers, yielding 

accurate results with minimal processing time. 

Angelico and colleagues [28] developed user-friendly 

software for Android smartphones that bypassed skin color 

and instead employed machine learning to assess the color of 

infant stool using a seven-level stool color chart as a reference. 

The application's performance was assessed on a dataset of 

165 images. The software uses the smartphone’s camera to 

capture images of the stool and classifies infants as either 

normal or jaundiced. achieving sensitivity = 100%, specificity  

= 99.0%, and accuracy = 99.4%. 

In a study published in 2023 [29], researchers developed a 

dataset comprising 411 images of both healthy and non-

healthy infants. They used MATLAB to implement a random 

forest algorithm aimed at detecting jaundiced babies, but the 

results did not surpass those of the methods they were 

compared against. 

The aim of this research is to develop a classification 

method for newborns with jaundice into several categories 

(three and four categories) using a mobile phone camera under 

normal lighting conditions, without the need for additional 

devices or modifications to the infant's body or the incubator. 

The objective is to achieve results that are comparable or 

competitive with those obtained through other methods.  

The contributions of this study include: 

1. Dataset Generation: Two datasets were created, 

consisting of jaundiced and healthy infants, including 

their ages, blood bilirubin levels, gender, and other 

relevant information. One dataset was collected without a 

color calibration card, while the other was collected using 

a color calibration card for comparison. 

2. Enhancing Quadruple Classification: Given the weakness 

of this classification in previous studies, our work focused 

on improving its accuracy. We achieved acceptable results 

in this regard. 

3. Achieving Competitive Accuracy: Competitive accuracy 

was obtained compared to previous studies, without the 

need for a color calibration card on the infant's body.  

This method offers a practical solution that can be used by 

anyone with a mobile camera and standard lighting conditions, 

making it highly accessible and effective for jaundice 

screening. 

 
II.  MATERAIL AND METHODS 

The objective of the study is to estimate the level of bilirubin 

in infants, classifying it into three or four categories based on 

the Bhutani chart shown in FIGURE 2.  

The graph, referred to as a "Nomogram for Assessing 

Hyperbilirubinemia Risk," is utilized to evaluate the 

likelihood of jaundice in newborns by analyzing their serum 

bilirubin concentrations relative to their age in hours after 

birth, ranging from 12 to 144 hours (up to 6 days). The 

graphical representation is segmented into four distinct zones: 

the  LRZ "Low Risk Zone" refers to the absence of jaundice 

and the minimal likelihood of its occurrence, the LIRZ "Low 

Intermediate Risk Zone" indicates the existence of mild 

jaundice, which may be managed through phototherapy, 

accompanied by periodic bilirubin assessments to ascertain the 

efficacy of the intervention, the HIRZ "High Intermediate Risk 

Zone" denotes a more pronounced manifestation of jaundice, 

necessitating rigorous phototherapy along with frequent 

reassessment and  the HRZ "High Risk Zone" embodies a 

severe and critically acute instance of jaundice, which requires 

 FIGURE 2. A Bhutani nomogram used to evaluate a newborn's risk by 
considering bilirubin levels and age, categorized into different risk 

zones [34]. 
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extensive phototherapy and, in numerous circumstances, an 

exchange transfusion to mitigate bilirubin concentrations and 

avert complications, including neurological damage and other 

grave medical conditions. In this specific zone, the 

concentrations of bilirubin are examined with increased 

regularity compared to other zones.  

The 95th percentile curve indicates that 95% of neonates 

exhibit bilirubin concentrations beneath this specific 

threshold, while those exceeding it are at an elevated risk for 

the onset of jaundice. This instrument assists healthcare 

practitioners in ascertaining whether a neonate necessitates 

additional surveillance or intervention, such as phototherapy, 

contingent upon their bilirubin levels in relation to their 

postnatal age.  

A. DATASET 

Due to the varying nature and color of skin among different 

nationalities, this study was directed toward the residents of 

Mosul. The database used for this research was created at Ibn 

Al-Atheer Teaching Hospital, with parental consent obtained 

for all participants. The dataset consists of images covering 

386 cases of healthy and jaundiced newborns. Infants were 

photographed while lying on their backs inside the capsule at 

the neonatal intensive care unit (NICU) using a smartphone, 

specifically an iPhone 12 Pro Max with a 9 MP camera and an 

external ring light to ensure consistent lighting. The resolution 

of each image was 2268×4032 pixels, and the distance 

between the camera and the infant was approximately 30 cm, 

as shown in FIGURE 3.  

Multiple images were captured for each infant to ensure at 

least one clear and usable photo. Noisy or unclear images 

resulting from infant movement or photographer errors were 

discarded, and duplicate images were also removed. Photos 

were taken within 5 minutes before or after blood samples 

were drawn from the infant. The collected images were stored 

in individual folders, each corresponding to a specific infant, 

and labeled with the sample number. Additionally, an Excel 

spreadsheet was created to record essential sample-specific 

data, including sample number, gestational age of the mother, 

age of the infant, and serum bilirubin (TSB) levels. 

Ground truth data was meticulously collected alongside 

the images, incorporating key parameters such as gestational 

age, infant age, weight, gender, and transcutaneous bilirubin 

(TSB) levels. The age of the infants ranged from 1 to 22 days, 

with a focus on newborns aged 2 to 9 days, and infants 

weighing more than 2 kg. TABLE 1 provides further details 

regarding the infants' demographics, including their ages, 

genders, and weights. While the total number of images 

captured was 386, the number of infants ultimately included 

in the study was 344, comprising both healthy newborns and 

those diagnosed with jaundice. 

 
TABLE 1 

The additional details gathered from the infants. 

Age in day Total sample Gender 

Range of 

Weight 

kg. 

Bellow 1 15 Male:9 
2.4 

Female:6 

1 12 Male:5 
2.8 

Female:7 

2 20 Male: 8 
3.2 

Female: 12 

3 46 Male:24 
3 

Female:22 

4 71 Male:38 
3.1 

Fmale:33 

5 54 Male:27 
3.1 

Female:27 

Above 6 
168 Male:91 

3.2 
Female:77 

Skin samples were cropped from various regions of an infant's 

body in order to increase the sample size and guarantee data 

equilibrium. As a result, the total number of newborn skin 

image samples that were prepared for the triple classification 

experiment was 2,563 divided into three classes, among whom 

760 were diagnosed with severe jaundice, 803 with moderate 

jaundice, and 1,000 were deemed healthy. For the quadrable 

experiment, there were 2,558 newborns in entirety, with 760 

with severe jaundice, 500 with high jaundice, 500 with low 

jaundice, and 798 identified as in good health as shown in 

FIGURE 4.  

Images of infants were classified into three categories and 

four categories based on the Bhutan scheme. This chart 

includes three curves, depending on age and bilirubin level. 

The condition of the newborn baby under the first curve is a 

healthy state, while his condition between the first and second 

curve is a low jaundice. Between the second and third curves 

lies high jaundice, while surpassing the final curve leads to 

severe jaundice. 

It is important to note that the data set for the triple 

classification differs from that of the quadruple classification, 

as each classification has its own specific data set: 

1) TRIPLE CLASSIFICATION DATASET 

 Initially, a triple classification was used based on the Bhutani 

nomogram. As previously mentioned, the Bhutani nomogram 

Figure 3.Image acquisition using the mobile device camera and a 
supplementary lighting for an infant while he is inside the treatment 

incubator at the NICU. 
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consists of three curves that create four distinct zones. In this 

classification, the low-intermediate risk zone and the high-

intermediate risk zone were combined into a single zone 

named MRZ “Moderate Risk Zone,” resulting in a new model 

comprising two curves that form three zones. The zones were 

merged because jaundice severity in both intermediate zones 

is relatively similar, with phototherapy being the standard 

treatment in both cases, along with regular monitoring of 

blood bilirubin levels. The LRZ and HRZ remained 

unchanged. Although the four-zone classification is more 

efficient and accurate, the merging was performed due to the 

similarities between the two intermediate zones.  The regions 

for the triple classification were defined according to Eq. (1), 

Eq. (2) and Eq. (3), illustrated in FIGURE 5. 

 

LRZ3Class= LRZ4Class                                        (1) 

                                                              

HRZ3Class=HRZ4Class                                        (2) 

MRZ3Class=LIRZ4Class+ HIRZ4Class                  (3) 

2) QUADRUPLE CLASSIFICATION DATASET 

We employed a comprehensive chart that stratifies case in to 

four unique areas LRZ (Low Risk Zone), LIRZ (Low 

Intermediate Risk Zone), HIRZ (High Intermediate Risk 

Zone), and HRZ (High Risk Zone) for the purposes of 

quadruple classification. 

This chart organizes case findings to classify cases by 

different levels of jaundice severity, stratified by bilirubin 

level and other factors. However, each zone correlates to risk 

level, which helps in directing clinical decisions (as previously 

explained). Such a classification not just increases the quality 

of assigning severity to jaundiced infants but also guides in 

providing appropriate interventions based on the classified 

grade. 

B. INFANT SKIN DATAEST GENERATION 

Specific ROI (region of interest) zones on the child's physique 

were discerned. Several experiments were conducted, 

including only the chest area, only the abdominal area, 

including the forehead, and including the chest and abdomen 

together. It was noted that the chest and abdominal areas 

together gave a better result, so they were relied upon, as 

shown in FIGURE 6. 

These images were created using the photo editor 

application, and the size of the images for all children was 224  

×  224. The code also resizes the images to ensure the size is 

224 × 224. Several samples were taken from the same infant 

and given the same label  as shown in FIGURE 7. 

 

 

 

 

 

FIGURE 4.Flow diagram of the study population. 

Figure 5.The Bhutani scheme is used to assess the risk of 
newborns by looking at bilirubin levels and age and classifying 

them into three different risk zones. 

FIGURE 6.Skin ROI Selection examples. 
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C. METHODS 

FIGURE 8  illustrates the process of classifying neonatal skin 

images into four classes: normal, low jaundice, high jaundice, 

and severe jaundice. A data set is established, with a division 

of 70% for training and 30% for testing. Deep transfer learning 

(DTL) using VGG16 or ResNet50 as a feature extractor with 

data augmentation is followed to enhance the training data 

further. These features are then input into a (FFNN) that is 

capable of performing quadratic classification. This 

architecture has several layers, including global mean pooling, 

dense layers with dropout for better generalization and the 

final classification of jaundice severity.  

FIGURE 9.  demonstrates the process of classifying newborn 

skin images into three categories: Healthy, (Low and 

Moderate) Jaundice, and Severe Jaundice. As in the quadratic 

classification method, it will start by creating the dataset, then 

splitting it so that 70% are training images and 30% are testing 

images. Then the data is augmented to get the best results in 

training and then features are extracted using the deep learning 

method (DTL) we used VGG16 or ResNet50, . These features 

are fed to a three-class forward neural network (FFNN). It 

consists of layers such as normalization or global mean 

pooling, augmenting the dense layer with dropout to improve 

generalization and then classifying the images into the 

jaundice class. 

1) DATA PREPARTION FOR TRAINING 

The data was randomly split using Python, with 70% of the 

dataset allocated to the training phase and 30% to the testing 

phase. The next phase was then implemented using Python 

programming via the Google Colabe environment. Due to the 

scarcity of data, data augmentation was used, where seven 

categories of data augmentation were performed on the 

training data set, which included comprised rotation, 

width_shift, height_shift, shear, zoom, horizontal, and 

fill_mode. 

 

FIGURE 7.Multiple collapsed skin sampling. 

FIGURE 8.Workup block diagram for quadruple classifications. 

FIGURE 9.Workup block diagram for triple classifications. 
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2) FEATURE EXTRACTION 

Deep transfer learning models, namely VGG16 and ResNet50, 

were employed to extract features from infant skin images. 

Each model was independently utilized for both triple and 

quadruple classification tasks. The pre-trained weights and 

parameters of the models were retained, except for the fully 

connected layer, where a custom classifier was designed for 

both triple and quadruple classifications. The models were 

trained with an initial learning rate of 0.001, which was 

dynamically adjusted during training through an optimization 

strategy to achieve the best learning rate. The number of 

epochs varied depending on the experiment, with 150 epochs 

used in most cases and 300 epochs for more complex training. 

Dropout layers were applied to enhance model generalization 

and reduce overfitting. 

3) CLASSIFICATION 

The fully connected layers were replaced by designing a 

SoftMax feed-forward neural network classifier having three 

outputs for the three categories of experiments and four 

outputs for the four categories of experiments for each pre-

trained model (VGG16 and ResNet50). Images of infants were 

classified using the two algorithms into three categories and 

four categories. The parameters of the deep transfer learning 

DTL models were not changed, and the change was limited to 

the parameters of the classifiers. To evaluate model efficacy, 

metrics such as accuracy as shown in Eq. (4), precision as 

shown in Eq. (5), recall as shown in Eq. (6), F1-score as shown 

in Eq. (7), and support as shown in Eq. (8) were employed. 

 

Accuracy=
True Positives  + True Negatives

Total Number of Instances
                              (4)  

 

precision=
True Positives

True Positives + False Positives
                             (5)                

 

Recall=
True Positives

True Positives +False Negatives
                                    (6) 

                      

 F1-score = 2  × 
Precision × Recall

Precision+ Recall
                                       (7) 

 

Support=Number of true instances for each class.               (8) 

 

III. RESULTS  
A. TRIPLE CLASSIFICATION 

1) VGG16 

The graph of training and validation accuracy over 300 epochs 

demonstrates an initial rapid improvement, with the training 

accuracy consistently slightly higher than the validation 

accuracy, as expected. As training progresses, both accuracies 

stabilize close to 0.90, with the validation accuracy reaching 

approximately 91.71%. This pattern indicates effective 

learning without significant signs of overfitting, as shown in 

FIGURE 10. The close alignment between training and 

validation accuracy suggests that the model generalizes well 

to new data, achieving reliable performance. This stable 

accuracy over many epochs highlights the model’s robustness 

and its capacity to accurately classify data across different sets. 

 
FIGURE 11 illustrates the reduction in loss across each epoch 

during the training process of the VGG16 model, showcasing 

both the training and validation datasets. 

Looking at the plot, the training loss is decreasing 

consistently with epochs meaning that the model can learn 

from train data well. Initially, validation loss (orange line) also 

decreases indicating the model generalizes well. But after 

some point, the validation loss saturates and rises slightly 

which could be an indication of a little overfitting. VGG16 

appears to successfully balance between training loss 

minimization and generalization, as evidence of this trend. 

 

The classification report, presented in TABLE 2  ,indicates 

strong performance of the VGG16 model across all classes in 

the triple classification task. There is a good balance between 

precision (0.94) and recall (0.95) for the Low Risk Zone 

(LRZ) class, resulting in the highest F1-score of 0.95, 

indicating highly accurate predictions with minimal false 

negatives. The Moderate Risk Zone (MRZ) class achieved an 

F1-score of 0.87 with precision at 0.91 and recall at 0.83, 

showing slightly lower recall in this category. For the High 

Risk Zone (HRZ) class, an F1-score of 0.92 was achieved, 

with balanced precision (0.89) and recall (0.96). These metrics 

confirm that the model is effectively predicting risk levels 

accurately.  
TABLE 2 

Precision, Recall, and F1-score for VGG16 in the Triple classification. 

 Precision Recall F1-Score Support 

MRZ 

 

0.91 0.83 0.87 242 

FIGURE 10.Accuracy curves of the VGG16 case in the triple 
classification. 

FIGURE 11.Loss curves of the VGG16 case in the triple 
classification. 
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LRZ 

 

0.94 0.95 0.95 301 

HRZ 0.89 0.96 0.92 229 

The confusion matrix (FIGURE 12) demonstrates that the 

model accurately classified the MRZ, LRZ and HRZ with 

accuracies of 83.4%, 95.3%, and 95.0%, respectively. 

Misclassifications were minimal across categories, with the 

highest being 10.0% of MRZ instances incorrectly classified 

as HRZ. 

 

 

2) RESNET50 

The accuracy graph over 150 epochs shows a rapid increase in 

both training and validation accuracy. In a well-trained model, 

training accuracy should generally remain slightly higher than 

validation accuracy throughout the training process. Here, the 

validation accuracy stabilizes at a value close to 95.98%, 

indicating that the model is generalizing effectively without 

clear signs of overfitting, as shown in  FIGURE 13. The stable 

accuracy suggests that the model successfully captures the key 

characteristics of the data, performing well on both the training 

and validation datasets. 

The loss decrease trend per epoch when training ResNet50 on 

the training and validation datasets is shown in FIGURE 14.  

The graph reveals a sharp initial decline in loss, with both 

training and validation losses converging towards lower 

values as the number of epochs increases. This steady decrease 

indicates that the model is effectively learning patterns in the 

data, resulting in low loss by the end of training. The close 

alignment between the training and validation loss curves 

suggests that the model generalizes well, with minimal risk of 

significant overfitting. Illustrates the reduction in loss 

(diminution curve) at each epoch during the training of the 

ResNet50 model on both the training and validation datasets. 

The classification report, depicted in TABLE 3 , illustrates an 

exceptional efficacy across all categories within the model's 

predictive framework. The Low-Risk Zone (LRZ) category 

attained the pinnacle F1-score of 0.97, signifying remarkably 

precise predictions accompanied by a balanced precision 

(0.97) and recall (0.96). The Moderate Risk Zone (MRZ) 

category achieved an F1-score of 0.94, with both precision and 

recall metrics registered at 0.94, demonstrating robust 

performance within this classification as well. The High-Risk 

Zone (HRZ) category similarly recorded an F1-score of 0.97, 

with precision measured at 0.96 and recall at 0.98, reflecting 

proficient identification of high-risk instances. These 

performance metrics substantiate the model’s credibility in 

differentiating various levels of risk. 

 
TABLE 3 

Precision, Recall, and F1-score for ResNet50 in the triple classification. 

 Precision Recall F1-Score Support 

MRZ 

 

0.94 0.94 0.94 242 

LRZ 
 

0.97 0.96 0.97 301 

HRZ 0.96 0.98 0.97 229 

The confusion matrix (FIGURE 15) shows accurate 

categorization for the MRZ, LRZ, and HRZ with accuracies 

of 94.2%, 96.0%, and 97.8%, respectively. Misclassifications 

were minimal, with the highest being 3.3% of MRZ instances 

incorrectly classified as LRZ. 

 

 

 

 

FIGURE 12.Confusion matrix of the validation samples for VGG16 
in the triple classification. 

FIGURE 13.Accuracy curves of the ResNet50 in the triple 
classification. 

FIGURE 14.Loss curves of theResNet50 case in the triple classification. 
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B. QUADRUPLE CLASSIFICATION 

1) VGG16 

The graph of training and validation accuracy over 150 epochs 

shows a rapid initial increase, with training accuracy slightly 

higher than validation, as expected during early learning. Both 

accuracies stabilize, with validation accuracy reaching around 

94.92%, indicating effective learning without overfitting. 

Minor fluctuations occur later, but both metrics remain closely 

aligned, reflecting stable performance throughout the training 

process, as shown in FIGURE 16. 

 FIGURE 17  delineates the decrement in loss over the course 

of each epoch during the training regimen of the VGG16 

architecture on both the training and validation datasets. The 

graphical representation exhibits a pronounced reduction in 

training loss at the outset, which progressively stabilizes as the 

epochs advance. The validation loss initially follows a similar 

trend but exhibits some fluctuations, suggesting variations in 

generalization as training continues. Overall, the loss 

diminution curve highlights the model's ability to learn 

effectively from the training data while attempting to maintain 

accuracy on the validation set. 

 

The classification report, detailed in TABLE 4. , demonstrates 

robust performance across all four classes. The Low 

Intermediate Risk Zone (LIRZ) achieved an F1-score of 0.97, 

indicating high precision and recall. The Low Risk Zone 

(LRZ) scored 0.92, reflecting strong predictive accuracy. The 

High Risk Zone (HRZ) reached an F1-score of 0.96, 

showcasing effective identification of high-risk cases. The 

High Intermediate Risk Zone (HIRZ) obtained an F1-score of 

0.93, underscoring reliable performance in this category. 

These metrics confirm the model's capability to accurately 

classify cases across varying risk levels. 

 
TABLE 4 

Precision, Recall, and F1-score for VGG16 in the quadruple classification. 

 Precision Recall 
F1-

Score 
Support 

LIRZ 

 
0.89 0.95 0.92 150 

LRZ 
 

0.97 0.97 0.97 240 

HRZ 

 
0.98 0.95 0.96 228 

HIRZ 0.94 0.92 0.93 150 

The confusion matrix (FIGURE 18) demonstrates that the 

model accurately categorized the LIRZ, LRZ, HRZ, and HIRZ 

with accuracies of 95.4%, 96.7%, 94.7%, and 97.8%, 

respectively. The highest misclassification rate was 4%, where 

HIRZ instances were incorrectly classified as LRZ. 

 

FIGURE 15.Confusion matrix of the validation samples for 
ResNet50 in the triple classification. 

FIGURE 18.Confusion matrix of the validation samples for VGG16 in 
the quadruple classification. 

FIGURE 16.Accuracy curves of the VGG16 case in the quadruple 
classification. 

FIGURE 17.Loss curves of the VGG16 case in the quadruple 
classification. 
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2) RESNET50 

The graph over 150 epochs shows a rapid initial increase in 

both training and validation accuracy, with training accuracy 

slightly higher. As training progresses, training accuracy 

approaches perfect levels, while validation accuracy stabilizes 

around 94.66%, indicating effective learning without 

overfitting. Towards the end, both accuracies remain steady, 

reflecting consistent model performance, as shown in 

FIGURE 19.  

 

FIGURE 20 illustrates the reduction in loss across each epoch 

during the training of the ResNet50 architecture on both the 

training and validation datasets. The graph shows an initial 

sharp decline in training loss, with the loss values gradually 

stabilizing as the epochs progress. The validation loss follows 

a similar trend, although it remains slightly higher than the 

training loss, indicating good generalization without 

significant overfitting. This steady decrease in loss 

demonstrates the model’s ability to learn effectively from the 

data, optimizing its parameters over time for improved 

performance on both training and validation datasets. 

As is evident from the classification report (Shown in TABLE 

5). ResNet50 model performed well across all classes for four 

fold classification. Among all LRZ class unsurprisingly scored 

highest F1-score = 0.98, which means that this predicted label 

is very precise and has a high recall. F1-score of 0.97 came 

closely behind for the High Risk Zone (HRZ). For the LIRZ, 

the F1-score is 0.91, and for HIRZ its value attained by the 

classifier system was 0.89. These metrics confirm the model 

is effective in matching risk levels with a degree of jaundice 

severity. 

 
TABLE 5 

Precision, Recall, and F1-score for ResNet50 in the quadruple 
classification. 

 Precision Recall F1-Score Support 

LIRZ 
 

0.87 0.95 0.91 150 

LRZ 

 
0.98 0.98 0.98 240 

HRZ 

 
0.98 0.96 0.97 228 

HIRZ 0.92 0.87 0.89 150      

The confusion matrix (FIGURE 21) demonstrates that the 

model accurately classified the LIRZ, LRZ, HRZ, and HIRZ 

with accuracies of 94.6%, 97.9%, 96.5%, and 86.7%, 

respectively. The most significant error was the 

misclassification of 8.6% of HIRZ cases as LIRZ. 

V. DISCUSSION 
A. TRIPLE CLASSIFICATION 

The results indicate that the VGG16 model provides strong 

classification performance, particularly in the LRZ and HRZ, 

where the model achieved accuracies exceeding 95%. This 

suggests that the model is highly reliable in identifying cases 

requiring immediate attention (high risk) and those that can be 

safely monitored (low risk). However, there is room for 

improvement in the MRZ, where 10% of cases were 

misclassified as "high risk." This indicates that the features 

distinguishing these two zones are less distinct, and improving 

the model through additional feature extraction or using larger 

datasets could enhance performance. The stability of training 

and validation accuracies, as shown in Figure 9, suggests that 

the model did not suffer from overfitting, which is a positive 

outcome. However, minor fluctuations at the end of training 

FIGURE 21.Confusion matrix of the validation samples for ResNet50 in 
the quadruple classification. 

FIGURE 20.Loss curves of theResNet50 case in the quadruple 
classification. 

FIGURE 19.Accuracy curves of the ResNet50 in the quadruple 
classification. 

https://jeeemi.org/index.php/jeeemi/index


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 7, No. 1, January 2025, pp: 382-396;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                              392               

could be addressed by incorporating techniques like early 

stopping or further hyperparameter tuning. 

The ResNet50 model demonstrated exceptional accuracy 

and reliability, particularly in classifying LRZ and HRZ, with 

accuracies of 96.0% and 97.8%, respectively. This indicates 

the model’s strong ability to distinguish between risk levels, 

supporting its use in clinical applications. The model's 

performance in the MRZ was slightly lower, with 3.3% of 

cases misclassified as "low risk," possibly due to overlapping 

features between the two zones. Refining feature extraction or 

increasing the dataset size could reduce these errors and 

improve overall performance in this zone. The high accuracy 

across all zones confirms the model's potential for effective 

jaundice classification in neonates, making it a valuable tool 

for clinical settings. 

TABLE 6 shows a comparison with the most relevant 

previous studies that investigated triple classifications of 

jaundice. Our results outperform those presented in reference 

[26], which used the VGG16 and ResNet50 algorithms to 

extract skin features, yielding an accuracy rate of 84.09%. The 

remaining works listed in the table are all for triple 

classification, and while some methods outperformed our 

results, they were more complex than those presented in this 

work. This highlights the effectiveness and simplicity of the 

models proposed in this study, providing an efficient and 

accessible approach for jaundice classification. 

Nevertheless, particular constraints may influence the 

applicability of these results across broader contexts. For 

instance, the magnitude and breadth of the dataset, especially 

given its concentration on a singular geographic locale 

(Mosul), may constrain the efficacy of the model in alternative 

demographic or geographic settings. Subsequent 

investigations ought to prioritize the acquisition of more 

heterogeneous data from varied populations to mitigate this 

constraint and enhance the model's applicability. 

 
TABLE 6 

Comparison with the most related works for triple classification. 

Ref. 
Data

sets 
Body Part Technique Accuracy 

E. P. Rahayu 
et al 

 

30 Full body KNN 
 

90 

S. 
Dissaneevat

e et al 

 

178 Abdomen 
skin 

DT,KNN,and 
CNN. 

 

96.88 

M. S. Jarjees 

et al 

145 Forehead 

and 

Abdo-

men skin 

VGG16, VGG19 

,ResNet50, 

EfficientNet B0 

and B7). 

DL with fine-

tuning. 
 

84.09 

Ours 2,563 Skin 

Region 

VGG16, Resnet50 VGG16=91.

71 
ResNet50=9

5.98 

B. QUADRUPLE CLASSIFICATION  

The results from the VGG16 model indicate excellent 

performance, particularly in the LIRZ and HIRZ, where the 

F1-scores were 0.97 and 0.93, respectively. The confusion 

matrix further supports these findings, as the misclassification 

rates across all zones were minimal, with the highest being 

only 4% in the HIRZ, misclassified as LRZ.  These results 

suggest that the VGG16 model can effectively differentiate 

between various risk zones, though there may be room for 

improvement in further reducing misclassification between 

similar zones, such as the HIRZ and LRZ. The minor 

fluctuations in accuracy during the later epochs indicate 

stability, and the close alignment between training and 

validation metrics suggests that the model successfully 

avoided overfitting.Further improvements could be achieved 

by refining the feature extraction process or increasing the 

dataset size to provide even greater accuracy and robustness in 

distinguishing between risk zones. 

The ResNet50 model demonstrated robust performance 

across most classes, particularly in the LRZ and HRZ. where 

the F1-scores were 0.98 and 0.97, respectively. These high 

scores indicate the model's reliability in correctly classifying 

cases that require attention or those that are less concerning.  

However, the HIRZ presented some challenges, with the F1-

score dropping to 0.89 and an 8.6% misclassification rate into 

the LIRZ. This suggests that the features distinguishing 

between these two zones are less clear, potentially leading to 

confusion. Addressing this issue could involve refining the 

feature extraction process or increasing the size of the dataset 

for these specific categories.  The steady performance 

observed in both training and validation accuracies, along with 

the minimal fluctuations towards the end of the training, 

highlights the model's stability and resistance to overfitting. 

The overall accuracy across all zones reflects the model's 

capacity for clinical applications in neonatal jaundice 

classification, though further improvements in intermediate 

zones could enhance its precision. 

Compared to the results reported by the BiliCam study 

[33], which achieved a 67% match rate with the Bhutani 

nomogram, our model demonstrates significantly higher 

accuracy. Specifically, the VGG16 and ResNet50 models 

developed in this study attained accuracy rates of 94.92% and 

94.66%, respectively, signifying a considerable enhancement 

in the ability to categorize cases accurately. Additionally, 

while the BiliCam study reported 19% false negatives and 

14% false positives, our model reduced both false negative 

and false positive rates to 5.08%. This substantial reduction in 

classification errors underscores the enhanced precision of our 

approach, making it more reliable for clinical use. 

The utilization of these models within clinical 

environments significantly improves the early identification of 

neonatal jaundice, thereby facilitating timely interventions and 

reducing the likelihood of misdiagnosis or unwarranted 

treatments. The high accuracy achieved in both triple and 

quadruple classifications provides flexibility in assessing 

varying degrees of jaundice severity, accommodating different 

clinical needs. This approach ensures that cases are treated 

according to their specific risk level, optimizing decision-

making in neonatal care and improving patient outcomes. By 

integrating these models into neonatal care units, healthcare 

professionals can provide immediate assessments, improving 

response times and facilitating more precise interventions. 
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However, it is crucial to safeguard data privacy, especially for 

sensitive newborn information. Additionally, to avoid 

algorithmic bias, it is essential to train the models on diverse 

datasets representing various demographic groups. 

Continuous monitoring of model performance ensures 

sustained accuracy and effectiveness in medical diagnostics. 

VI. CONCLUSION 

The primary objective of this study is to explore non-invasive 

methodologies for accurately classifying the severity of 

jaundice in neonates, using skin images as the basis for 

classification. The research focused on triple and quadruple 

classifications to assess jaundice severity and guide 

appropriate treatment strategies. This study contributes to 

filling a gap in the literature, as research on quadruple 

classification of jaundice is very limited, making it an 

important addition to the field. The results demonstrated good 

classification accuracy, with the VGG16 model achieving 

91.71% accuracy in the triple classification and 95.98% using 

ResNet50. In the quadruple classification, the models 

achieved 94.92% and 94.66%, respectively. 

This study provides a non-invasive and reliable tool for 

jaundice screening, enhancing early detection and reducing 

complications, especially in resource-limited environments 

where healthcare systems face significant challenges. 

Implementing this method using smartphones or cameras in 

neonatal care units allows for real-time jaundice assessments 

and reduces the need for repeated blood tests, with potential 

adaptation for home care settings. 

Future research should aim to expand the dataset by 

including images from diverse populations, explore alternative 

deep learning models, and develop a fully automated 

classification system by integrating cameras into infant 

incubators to facilitate continuous jaundice monitoring. 
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