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   ABSTRACT Mutation is a random biological event that may cause permanent (long term) change in living organism induced 
by several structural or composition alteration in the proteins. During mutation, genetic materials such as nucleotide bases in 
the codons are changed which potentially contributed to the alteration in the codons and consequently the amino acid that new 
codon encodes. In this study mutation at different nucleotide base positions within the codons is analyzed to understand the 
evolutionary importance of amino acids. By creating hypothetical mutations at the first, second and third positions of all 61 
codons (excluding stop codons) and using K-means clustering, we categorized the resulting amino acids. Our analysis reveals 
that mutations at the second base position generate the highest number of distinct amino acids, indicating greater evolutionary 
significance compared to first and third position mutations. We applied the proposed framework on COVID-2 SARS-CoV-
2(Homo sapiens) amino acid sequence and are able to deduce several significant findings about the mutation patterns. The 
clustering analysis revealed that amino acids such as Glycine (G), Alanine (A), Proline (P), Valine (V) and one polar amino 
acid are recurrent in the combined centroids of the clusters. These amino acids, predominantly hydrophobic, play a crucial role 
in stabilizing protein structures. This framework not only gives the insight understanding of mutation patterns and their 
biological significance but also underscores the importance of specific amino acids in the evolutionary process. 

INDEX TERMS Amino acid, Codons, Machine learning, K-means clustering, Mutation, COVID-2 SARS CoV-2. 
 
I.  INTRODUCTION 
Proteins are pivotal macromolecules in living organisms, 
virtually accountable for all biological activities. The genetic 
code of an organism, stored in DNA, is transcribed into 
messenger RNA (mRNA) during protein synthesis. mRNA 
codons guide the assembly of amino acids into polypeptides. 
Due to the immense biological significance of protein, a 
substantial amount of research is dedicated to understanding 
its behavior. In parallel with biological studies, artificial 
intelligence based algorithms such as deep learning (DL) and 
machine learning (ML) are widely employed in various 
aspects of protein research, such as Protein Structure 
Prediction, Protein-Protein Interaction (PPI) Prediction, 
Protein Function Annotation, Protein Folding, Proteomics, 
Protein design, Neurodegenerative Diseases study 
etc.,[1],[2],[3],[4],[5],[6],[7],[8]. 

State-of-the-art technologies such as machine learning (ML) 
and deep learning (DL) offer predictive and decision-making 
capabilities across various fields. Machine learning focuses 
on the development of algorithms and statistical models that 
can learn from the input data provided to the model and make 
predictions on unseen data. The performance of these models 
depends on the quality and quantity of the data they are 
trained on; the more diverse the input data, the more 
generalized the model will be. Machine learning models can 
be supervised or unsupervised based on the learning strategy. 
In supervised learning, both the data and the associated labels 
are provided during training, whereas unsupervised learning 
is trained on unlabeled datasets. As we are interested in 
exploratory analysis, we prefer an unsupervised learning 
approach for which we employed the K-Means Clustering 
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algorithm because of the evidence of its efficiency in several 
biological network-related applications [9],[10],[11],[12]. 
   In recent years there have been increasing interests in the 
use of machine learning to investigate complex biological 
systems. Mutation of Amino acids in the spike protein plays 
a vital role in SARS-CoV-2 evolution process. Mutations in 
Receptor Binding Domain, the spike protein have led to a 
change in spike-ACE2 recognition, have resulted in viral 
immune evasion and the inability of neutralizing antibodies 
[13],[14]. A new method, D614G mutation developed 
in which the replacement of amino acid G (Gly) for amino 
acid D (Asp), is common in the spike protein during the early 
stages of a pandemic and conservative across all major forms 
[15], [16]. In point base mutations in the spike protein, 
corona viruses frequently undergo viral genomic 
recombination, particularly in the late pandemic phase when 
several genotypes co-circulate[17]. The evolution of SARS-
CoV-2 follows the mutation-selection-adaptation theory of 
Darwinian within the population itself. The evolutionary 
trend leads to improve the transmissibility of variations 
while decreasing pathogenicity, which keeps the virus in 
human hosts for an extended period of time[18].The impact 
of mutation of amino acids may lead to changes in the 
folding and stability of the protein[19], [20]. Protein 
sequence mutations can change the native structure supplied 
by the sequence of wild-type[21], [22].There have been 
many research going on protein structure and its stability, 
proteins are unexpectedly robust to site mutations bearing 
significant numbers of substitutions with few alterations in 
structure, stability, or function[21].Mutation impact on 
protein stability which may cause different disorder or 
disease. For example, Sickle-Cell Anemia (SCA), is a group 
of genetically passed down blood disorders. When a single 
amino acid substitution occurs the glutamate (hydrophobic) 
presents in SCA is replaced by valine(hydrophilic). This 
phenomenon leads to sickle like shape which cause sickle 
cell anemia. Graph mining techniques are also used to 
analyse biological networks. In amino acid network based on 
property similarity analysed through centrality measures to 
find out the amino acids which play an evolutionary 
important role [42]. 
   In the following sections, we have discussed some 
theoretic concepts which are used in our research work. 

A. AMINO ACID AND CODONS 

Amino acids are the building blocks of proteins, consisting 
of a central carbon atom, a hydrogen atom, an amino group, 
a carboxyl group and a variable R group (side chain). A 
protein is formed when a chain of such amino acid folds 
together to give a specific three-dimensional structure. There 
are twenty amino acids in nature which are responsible to 

create any protein in living organisms. Each amino acid is 
encoded by 3 base long sequences called codon. These bases 
can be one of four types: Adenine (A), Cytosine (C), Guanine 
(G), and Uracil (U). In each position of codon i.e., at 1st base 
position,2nd base position and 3rd base position there are four 
possibilities of bases (A or U or G or C) which results in 64 
codons (4³ = 64).The three triplets UAA, UAG and UGA are 
known as stop codons or nonsense codons and their role is to 
stop the biosynthesis. The mapping between 61 codon and 
20 amino acids is many to one i.e., one amino acid can be 
encoded by multiple codons. 
 
B. MUTATION 
The process of mutation is one that causes a permanent 
change in DNA or RNA sequence. Mutations may happen 
for various reasons as the process is random. The changing 
from one amino acid to any other amino acids may cause 
alteration in corresponding gene sequence. In mutation the 
genetic code may be inherited and transferred to the next 
generation. Certain mutations have no impact on evolution 
since they cannot be transferred to descendants. The special 
mutations that matter to large-scale evolution are those 
which can be passed on to the offspring or descendants. 
There may be neutral mutation also where after change in the 
nucleotide in a codon, the new nucleotide also encode the 
original amino acid resulting in no change of amino acid 
sequence. Variations of mutations can arise in sequences of 
DNA or RNA. Following are the various kinds of mutations: 

C. SUBSTITUTION MUTATION 
A mutation that switches one base to another one is called 
substitution mutation. Additionally; there are two kinds of 
substitution mutations: transversion and transition. 
Mutations classified as transitions happen when pyrimidine 
bases (C ↔ T) are switched for purine bases (A ↔ G) or 
pyrimidine bases (C↔T) are switched for purine bases. The 
transversions mutation happen when pyrimidines or purines 
are switched around.  Silent mutation is the substitution of a 
codon with one that encodes the same amino acid without  
changing the protein that is produced. An example of this 
mutation is given below: 

 
D. INSERTION MUTATION 
Insertion mutation occurs when one or more additional bases 
are inserted into the DNA sequence. In this structure, the 
synthesized protein could not perform as desired. Genetic 
disorders can occur based on the part of the gene in which 
the insertion takes place. The following sequence shows the 
insertion phenomena. 

 
E. DELETIONS MUTATION 
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Deletion mutation may happen when a part of the sequence 
is lost, or deleted. Then the genetic material is lost through 
this removal. The deleted nucleotide may alter the purpose 
of the resulting protein or proteins. This leads to a various 
genetic disease. The following example shows the deletion 
phenomena. 

 
F. FRAMESHIFT MUTATION 
In this type of mutation, the entire codon may be changed 
due to insertion or deletion. This resulting a new sequence of 
codons, which may change the translated polypeptide chain. 
For example, consider the sequence, "FAT CAT SAT THE". 
Here, each word represents a particular codon.  If we 
eliminate the first letter and rewrite the sequence then it does 
not carry any sense or meaning. The following example 
shows the phenomena clearly. 

 
 
G. AMINO ACID NETWORK (AAN) 
Protein is one of the most important components of a 
biological being as it is directly or indirectly responsible for 
all cellular activity. Therefore, several researchers devised 
various stat of the art technique to study protein and its 
behaviors. An amino acid is the building block of protein i.e., 
a protein is a chain of amino acid. The interaction 
(biochemical or electrostatic) between the amino acids of a 
protein or between different proteins is called as amino acid 
network (AAN) also known as protein-protein interaction 
(PPI) network. These networks are essential for 
understanding the complex biological processes and 
functions of proteins.  
 
H. K-MEAN CLUSTERING  
K-means clustering is an effective unsupervised machine 
learning technique. This process allows training the model 
by using unlabeled, unclassified data and enables the 
algorithm to operate on that data without supervision. This 
technique is for partitioning the data into a certain number of 
clusters such that grouping is done based on underlying 
patterns or structures in the data. The K-means algorithm 
initiates with randomly chosen centroids which serve as the 
starting points for each cluster, to process the data set. It then 
carries out iterative (repetitive) calculations to optimize the 
centroids’ positions. The K centers change their locations 
until no more changes are done or in other words centers do 
not move any more. At last the algorithm minimize the 
objective function which is known as square error function 
given Eq. (1)  [23].  
 
𝐽(𝑉) = ∑ ∑ (||𝑥! − 𝑣"||)#

$!
"%&

$
!%&        (1) 

 

where, ||xi - vj|| is the Euclidean distance between xi and vj 

and C is the number of cluster centers where Ci is the number 
of data points in ith cluster in the equation (1)[23]. 
Despite the popularity of K-means clustering, it is difficult to 
choose number of clusters (or K) before the algorithm has 
been implemented. To address this issue, two quantitative 
methods are used- elbow plot and silhouette score. When 
implementing an elbow plot, look for the section of the line 
that looks similar to an elbow. The elbow is the point where 
the decrease begins to plateau. Here we will use elbow plot 
method to find out the optimal K value. 
   This method uses the concept of wcss means within cluster 
sum of squares that defines the total variations within a 
cluster. The Eq. (2)  to calculate the value of wcss for 3 
clusters[24].  
 

𝑤𝑐𝑠𝑠 = 	∑𝑝!	!(	$)*+,-.&	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(P/		𝐶&)# +
∑𝑝!	!(	$)*+,-.#	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(P/		𝐶#)# +

∑𝑝!	!(	$)*+,-.0	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(P/		𝐶0)# 
     (2) 

Here, ∑𝑝!	!(	$)*+,-.&	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(P/		𝐶&)#	is the sum of square 
of the distances between each data point and its centroid 
within a cluster 1 and same for cluster2 and cluster3 in the 
equation (2) [24]. 
   The uniqueness of the proposed framework lies in the 
application of K-means clustering to the mutated results of 
base positions within codons of amino acids. Traditionally, 
machine learning methods are often integrated with 
biological techniques to achieve meaningful insights, as seen 
in the work of Ali et al., who explored amino acid networks 
based on mutations from a graph-theoretic perspective. They 
developed a Distance Matrix for amino acid networks by 
analyzing transition and transversion mutations of 
codons[25]. Similarly, Lee et al. utilized point mutations as 
a data augmentation technique to enhance the performance 
of Deep Neural Networks (DNNs) in genomic data 
analysis[26]. 
   The remainder of this paper is structured as follows: 
Section II briefly discusses related works published in recent 
years. Section III covers the materials and methods used in 
this study. Section IV presents the results and findings, 
highlighting data generation through mutation and 
processing using the K-Means Clustering approach, along 
with the corresponding biological inferences. Section V is 
dedicated to the discussion, supported by bar graphs and heat 
maps. Finally, Section VI concludes the paper, summarizing 
the key findings and suggesting directions for future 
research.  

 
II. RELATED WORK 
The related works reviewed in this section attempt to 
highlight significant insights into various aspects of 
computational biology, particularly in the encoding of 
protein sequences, prediction models and the use of graph-
based techniques. Most machine learning techniques in 
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computational biology involve converting the symbolic data 
of protein sequences into numeric vector representations.  

Graphs are frequently used in biology to represent 
chemical compounds and protein sequences [27]. Numerous 
research teams have used methods from computational 
geometry and computer vision to tackle the challenge of 
identifying spatial themes. The difficulty of finding spatial 
motifs for pairs of molecules can be treated as the Largest 
Common Point set (LCP) problem when a protein is 
represented as a set of points in R3. This problem involves 
determining the greatest common subset between two sets of 
points. 

Zamani and Kremer[28] investigate the efficiency of 
various encoding techniques by using substitution scoring 
matrices and artificial neural networks. To evaluate the 
effectiveness of an amino acid encoding scheme by 
comparing it to the actual biological roles played by the 
amino acids. Their proposed encoding scheme was based on 
the genetic codon, reflecting the coding process during 
protein synthesis.  

Azadani et al. [29] proposed an innovative graph-based 
summarization approach that makes use of domain-specific 
knowledge and an efficient data mining method named 
frequent item-set mining. They construct a concept-based 
model of the source and mapping documents that discovers 
correlations to find a similarity function to represent the 
graph. The summarizer then uses a clustering approach based 
on minimum-spanning trees to identify the document’s 
numerous sub-themes. The results of the experiment show 
how a summarization system performs on various baselines 
and benchmark approaches. The evaluation of the results 
shows that the given approach can significantly improve the 
performance in the biomedical domain of the summarization 
systems.  

In the year 2022, Hou et al.[30] proposed a model based 
on machine learning, Fourier-transform infrared 
spectroscopy (FTIR) raw spectra and first derivative data to 
predict the amino acids content. Techniques such as Partial 
Least square regression, decision trees, and radial basis 
artificial neural networks were used in the prediction. 
Compared to using raw spectra, model performances were 
enhanced for a few amino acids when utilizing the first 
derivative.  

Rafieezade and Fazeli[31] estimated the acid dissociation 
constant (pKa) of the amino group associated with 52 amino 
acids using the quantitative structure-property relationship 
(QSPR) method. Four distinct regression models are used in 
this study: Decision Tree (DT), PSO-SVM (Particle Swarm 
Optimization), FFNN (Feedforward Neural Network) and 
Genetic Algorithm-Multiple Linear Regression (GA-MLR).  
Recently, Yuan et al.[32] proposed a deep graph-based 
network for protein-protein interacting site prediction by 
converting the prediction problem into a graph classification 
task solved using deep learning techniques such as initial 
residual and identity mapping techniques, which 

demonstrated performance enhancement compared to 
structure-based methods.  

Thangavel et al. [33] explore the importance of Network 
Analysis and Graph Theory, looking at their historical 
evolution, key ideas, and applications in a range of fields. 
They examine the applications of the mathematical 
framework to real-world issues, ranging from computer 
networks to social networks and beyond. The crucial role that 
Network Analysis and Graph Theory play in the current era 
of computer science and offer insights into its possible 
[34]formulate a novel model for the Corona virus (COVID-
19), which may classify the different Corona virus types and 
identify SARS-CoV-2 from other Corona viruses, reducing 
the number of features to enhance the performance of the 
model. For evaluating the model, they used machine learning 
techniques for checking the accuracy, precision, sensitivity 
and specificity. 
 
III. MATERIALS AND METHODS 

The proposed framework aims to predict the evolutionary 
importance of amino acids. In Phase I, mutations of 61 
different codons are generated by systematically altering the 
base positions within each codon. This work focuses on 
mutations at the 1st, 2nd, and 3rd positions of the codon 
because these positions play distinct roles in determining the 
impact of mutations. The decision to focus on these specific 
positions is grounded in their biological relevance and the 
differential impact they have on protein structure and 
function. Several researchers have studied the positional 
importance of bases in codons, noting that the frequency of 
errors in codons decreases from the third base, followed by 
the first base, with the second base exhibiting the least error 
frequency[35]. Furthermore, the polarity property of amino 
acids reveals that the second base position of a codon is 
associated with the hydrophobicity of the resulting amino 
acids. Amino acids with a U at the second position of their 
corresponding codons are hydrophobic and have low 
polarities according to the Grantham polarity scale. Those 
with an A at the second position are hydrophilic (polar amino 
acids). Amino acids with a C at the second position of their 
codons have intermediate polarities, while those with a G in 
the second position do not follow any regular pattern in their 
polarities[36].  
   In phase II K-means clustering technique is applied to 
group the derived amino acids based on mutation data. The 
elbow method was used to determine the optimal number of 
clusters. This method involves plotting the Sum of Squared 
Errors (SSE) against the number of clusters and selecting the 
point where the reduction in SSE starts to plateau (the elbow 
point). This approach ensures that the number of clusters 
selected provides a balance between capturing the data’s 
variance and avoiding overfitting. For this analysis, the 
optimal number of clusters was found to be three (K=3) for 
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each mutation case (1st, 2nd and 3rd base mutations). The 
consistency in the number of clusters across different 
mutation positions adds robustness to the results. In phase 
III, the proposed framework is validated on some well known 
sequence and the biological significance is analyzed. 
FIGURE 1 illustrates the methodology adopted in the study. 

 
 
FIGURE 1. Methodology of the study 

The study utilized Python programming in a Google Colab 
environment to implement the K-means clustering 
algorithm. Libraries such as scikit-learn were used for 
clustering, and matplotlib was employed for visualizing the 
clustering results. These tools were chosen based on their 
widespread use and reliability in bioinformatics research. 
The framework was validated by applying it to the SARS-
CoV-2 spike glycoprotein sequence. The results from this 
real-world dataset were consistent with theoretical 
expectations, particularly highlighting the significant impact 
of second base mutations. There are two quantitative 
methods commonly used to determine the optimal number of 
clusters: the elbow plot and the silhouette score. Many 
researchers recommend the elbow method due to its 
compatibility with a wide range of situations and large-scale 
data. In our framework, the elbow plot method was used to 
determine the optimal number of clusters, or the "k" value. 
The elbow method involves calculating the Sum of Squared 
Errors (SSE) and inertia to visualize the data in a plot. The 
number of clusters is displayed on the x-axis, with SSE on 
the y-axis. SSE refers to the tendency, or inertia, of data 
points to cluster around their nearest cluster center (i.e., the 
centroid). As the k value increases, inertia gradually 
decreases. When interpreting the elbow plot, the "elbow" 
point is identified as the point where the line begins to flatten, 
indicating the optimal number of clusters. 

In recent years, Ali et al. [25] developed a distance matrix 
of amino acids based on mutation and base position, using a 
graph-theoretic approach with various centrality measures to 
illustrate the flow of evolutionary messages in amino acid 
networks. They used mutations as a relationship between 
different amino acids. Akhtar & T. Ali [37]constructed 
hydrophobic and hydrophilic networks based on the 
mutation of codons within amino acids. They discussed the 
degree of distribution and skewness within the network to 
investigate the importance of amino acids. The findings of 
this research works are expected to contribute in the 
following ways: 

a. Helps to understand the effect of mutations at 
different base positions within a codon. 

b. The application of K-means clustering on mutation 
data is expected to unveil underlying biochemical and 
evolutionary principles, such as hydrophobic vs. 
hydrophilic characteristics and structural constraints 
on protein folding. 

c. The application of the framework to the SARS-CoV-
2 spike glycoprotein sequence to check whether the 
proposed framework align with known biological 
patterns, particularly highlighting the critical role of 
second base mutations in influencing protein 
function.  
 

IV. RESULT  
The genetic code is a series of codons that specify which 
amino acids are required to make up specific proteins. The 
sequence of amino acid is very specific and crucial for the 
synthesis of a particular type of protein, so much that even a 
single change in a codon may result in a completely different 
protein. The proposed framework progresses in three phases: 

PHASE I: GENERATION OF MUTATION FOR ALL OF THE 
61 CODONS 

Tough in reality the mutation is a random process however, 
for this work we are considering a hypothetical situation of 
controlled mutation where we are focusing on position-wise 
single substitution mutation in a codon. A single nucleotide 
change in any codon in the amino acid chain can result in 
change of the entire property of the protein. As a codon is 
three nucleotides long (triplet), considering the possibility of 
mutation at the 1st, 2nd and 3rd positions, a maximum of 9 
different codons may be generated. However, mutations do 
not always cause a change in the original amino acid. 
Sometimes the mutated codon may encode the same amino 
acid as before (neutral mutation) so the number of newly 
derived amino acid after mutation may be between zero to 
nine. 

Initially, we generate all possible changes in codons due 
to mutations at the first position or the leftmost nucleotide of 
the codon (Case I). In the second case, we induced mutations 
in the second position of the codon (Case II). Finally, we 
consider the changes due to mutations in the rightmost base 
i.e., the third position of the codon (Case III). By examining 
these position-specific mutations, we aim to understand their 
impact on the properties and behavior of the amino acid and 
consequently, the protein. The pseudocode representation of 
the generation of mutation for 1st,2nd and 3rd base of codon is 
shown below: 
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Mutating Codons to Identify Distinct Amino Acids 

 
GeneticCodeTable: This dictionary maps each codon (a 
sequence of three nucleotides) to its corresponding amino 
acid. It is initialized with predefined codon-to-amino-acid 
mappings. 
Nucleotides: A list of the four possible nucleotides ('A', 'U', 
'C', 'G') that can make up a codon. 
CodonList: A list that contains all possible combinations of 
three nucleotides. It is generated using the 
generate_all_codons() function. 
Function mutate_codon(codon, pos):This function 
generates all possible single-point mutations of a given 
codon at a specified position. 

Function translate(codon):This function translates a codon 
into its corresponding amino acid using the 
GeneticCodeTable. 
For better understanding each of the case of mutations are 
explained in details: 

CASE-I: MUTATION AT THE 1ST POSITION 
In this case it is assumed that the 1st position of the codon is 
changed to three other nucleotides due to mutation. We 
checked the 1st position mutation of all 61codons. Sometime 
newly generated codons are again mapped to same amino 
acids. For example: the amino acid ‘M’ represent by the 
codon AUG, base ‘A’is  changed to U, G, C which represent 
the codons UUG, GUG, CUG and their corresponding amino 
acids are L, V, L respectively i.e., we can deduce that 1st 
position mutation of AUG results in two distinct amino 
acids.  In the following figure (FIGURE 2), we have shown 
a tree diagram for the 1st base mutation of amino acid M.   

 
 

FIGURE 2.First position Mutation of AUG 
 
TABLE I records the details of 1st base mutation for 61 
codons with special emphasison the amino acid derived 
during the mutation. 

CASE-II: MUTATION AT THE 2ND POSITION 
Same process is repeated while generating mutation at 2nd 
position of codons. For example: AUG, in the 2nd base 
mutation U can be changed to A, G or C which represent the 
codons AAG, ACG, AGG and their corresponding amino 
acids are K, T, R respectively. In the following figure 
(FIGURE 3), we have shown a tree diagram for the mutation 
of amino acid M based on 2nd base mutation.   

 
 

 
FIGURE 3. Second position Mutation of AUG 

 
TABLE1 records the details of 2nd base mutation for 61 
codons with special emphasis on the number of new amino 
acid derived during the mutation.  

CASE-III: MUTATION AT THE 3RD POSITION 
The 3rd base mutations of all cordons are generated following 
the same strategy as earlier. For example: AUG, in the 3rd 
base mutation G can be changed to A, U or C which represent 
the codons AUA, AUC, AUU and their corresponding amino 

Initialize: 
GeneticCodeTable = {codon:  
amino_acid} 
Nucleotides = ['A', 'U', 'C', 'G'] 
CodonList = generate_all_codons() 

Function mutate_codon(codon, pos): 
Mutated = [] 

For n in Nucleotides: 
If n ≠ codon[pos]: 
Mutated.append(codon[:pos] + n + 
codon[pos+1:]) 
Return Mutated 

Function translate (codon): 
Return GeneticCodeTable[codon] 

Analyze Mutations: 
Results = [] 
For codon in CodonList: 

Mutations = [] 
For pos in [0, 1, 2]: 
For mutant in mutate_codon(codon, pos): 
Mutations.append((mutant, 
translate(mutant))) 

Results.append((codon, 
Mutations)) 

Compile Results: 
For (codon, Mutations) in Results: 

orig_amino = translate(codon) 
Neutral, NonNeutral, Unique = 0, 0, 
set() 
For (mutant, amino) in Mutations: 
If amino == orig_amino: Neutral += 1 
Else: NonNeutral += 1; 
Unique.add(amino) 
Results.append((codon, Neutral, 
NonNeutral, list(Unique))) 

Output Results: 
Print Results 
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acid is I. In the following figure (FIGURE 4), we have shown 
a tree diagram for the 3rd base mutation of amino acid M. 
 

 
FIGURE4.Third position Mutation of AUG 

 
Similarly, we have calculated 3rd base mutation for other 61 
codons of different amino acids. In TABLE 1the number of 
amino acids derived due to mutated codons at 3rd base 
position is illustrated. 
 

TABLE 1 
Mutation record of 1st , 2nd and 3rd base 

Amino Acids 

 

Original 

Codons  

 

Derived Distinct Amino 
acid after mutation 

1st 
base 

2nd 
base 

3rdbas
e 

Glycine(G) GGU, 

GGC,  

GGA, GGG 

S,W, 

R,C 

D,A, 

V,E 

0 

Alanine(A) GCU,GCC,  

GCA, GCG 

T,P,S D,G, 

V,E 

0 

Valine(V) GUU,GUC,  

GUA, GUG 

I,L, 

M,F 

D,A, 

G,E 

0 

Leucine(L) UUA,UUG,  

CUU, CUC,  

CUA, CUG 

I,L,F, 

V,M 

S,W, 

H,P, 

R,Q 

F 

Isoleucine(I) AUU, AUC,  

AUA 

L,V,F N,T,S,K,
R 

M 

Methionine(M) AUG L,V K,T,R I 

Phenylalanine(
F) 

UUU, UUC I,L,V Y,S,C L 

Tryptophan(W) UGG R,G S,L C 

Proline(P) CCU, CCC, 

 CCA, CCG 

T,A,S H,R,L,Q 0 

Tyrosine(Y) UAU, UAC N,H,T S,C,F 0 

Serine(S) AGU, AGC,  

UCU, UCC,  

UCA, UCG 

R,G,C,
T,P,A 

N,T,I,Y,
C,F,L,W 

R 

Threonine(T) ACU, ACC, 

 ACA, ACG 

P,A,S N,S,I,K,
R,M 

0 

Glutamicacid 

(E) 

GAG, GAA K,Q A,G,V D 

Cysteine(C) UGU, UGC S,R,G Y,S,F W 

Asparagine(N) AAU, AAC H,D,Y T,S,I K 

Glutamine(Q) CAA, CAG K,E P,R,L H 

Aspartic 
acid(D) 

GAU, GAC N,H,Y A,G,N,V E 

Lysine(K) AAA, AAG Q,E T,R,I,M N 

Arginine(R) AGG, AGA,  

CGU, CGC,  

CGA, CGG 

R,G,W
,S,C 

K,T,M,I,
H,P,L,Q 

S 

Histidine(H) CAU, CAC N,D,Y P,R,L Q 

PHASE II: K MEAN CLUSTERING 
We employed the elbow method to find the optimal value of 
‘K’ for K-means clustering based on the provided dataset. In 
our problem, we input the ‘Number of codons’ and ‘Number 
of derived amino acids’ from TABLE 1 (1st position, 2nd 
position and 3rd position mutation). The method involves 
plotting the explained variance as a function of the number 
of clusters and selecting the elbow point of the curve as the 
optimal number of clusters. 
The explained variance is measured using the Sum of Square 
Error (SSE). FIGURE 5(a) demonstrates the graph of SSE 
against the number of clusters. The point where the graph 
starts to decrease more slowly is considered the elbow point. 
For the 1st, 2ndand 3rd position mutations, the elbow point is 
found to be at K=3. 
 

For the 1st, 2ndand 3rd position mutations, the elbow point 
is found to be at K=3. Therefore, the optimal ‘K’ value for 
K-means clustering is set to 3. Next K-mean clustering is 
applied on the dataset derived from TABLE 1. For 1st 
position mutation, the derived unique amino acids are 
grouped into 3 clusters namely C0, C1and C2 as shown in 
FIGURE 5(b). 

Each of the three group contains exclusive sets of amino 
acids : C, D, Q, E, F, K, N, M, H, Y and W lies into cluster 
C0, whereas  amino acids S, R, L and T, A, P, V, G, I lies in 
cluster C1 and cluster C2 respectively.  Also, the centroid of 
C0, C1 and C2 are [1.8, 2.5], [6.0, 4.6] and  [3.8, 3.3] 
respectively. Further, we have calculated the combine 
centroid of the clusters C0, C1 and C2 which is [3.8, 3.4].An 
observation is made regarding the combined centroid is that 
it is equivalent to centroid of the cluster C2 indicating its 
dominance over other clusters. 
Following the similar strategy, K-mean clustering is applied 
on 2nd base mutation derived amino acids. FIGURE 5(c) 
represents the clusters of derived amino acids. 
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The amino acids T, A, P, V, G, I lies into the cluster C0, 
whereas the  amino acids C, D, Q, E, F, K, N, M, H, Y,W  
and S, R, L lies into cluster C1 and cluster C2 with centroids 
[3.8, 4.5], [1.8, 3.0] and [6.0, 7.3] respectively. Next, we 
have calculated the combine centroid of the clusters C0, C1 
and C2 which is [3.8, 4.9]. From here we observed that the 
combine centroid of the clusters C0, C1 and C2 is equivalent 
to centroid of the cluster C0indicating its dominance. 

FIGURE 5(d) demonstrated the clusters obtained by 
applying K-mean clustering on 3rd base mutation data 
(obtained from TABLE 1.).The amino acids S, R, L lies into 
the cluster C0, where as the  amino acids C, D, Q, E, F, K, 
N, M, H, Y, I ,W and T, V, G, A, P lies into cluster C1 and 
cluster C2 respectively with centroids: [6.0, 1.0], [1.9, 9.1] 
and [4.0, -1.1].Next, we have calculated the combine 
centroid of the clusters C0, C1 and C2 which is found to be 
[3.9, 3]. From here we observed that the combine centroid of 
the clusters C0, C1 and C2 is equivalent to centroid of the 
cluster C2. 

 We observed that mutations in the 2nd base position of 
61 codons result in the maximum number of distinct amino 
acids compared to the 1st and 3rd base positions. Therefore, 
mutations in the 2nd base position are more significant than 
those in the 1st and 3rd positions, as they potentially may 
change both the genotype and phenotype of protein 
structures. On applying K-means clustering to the cases, we 

found that the combined centroids of clusters in case I is 
equivalent to C2, in case II is equivalent to C0 and caseIIIis 
equivalent to C2. Surprisingly, amino acids in these 
centroids are the same: Alanine (A), Proline (P), Valine (V), 
Glycine (G), Isoleucine (I), and Threonine (T). All these 
amino acids are hydrophobic in nature except Threonine (T). 
Hydrophobic amino acids play a crucial role in protein 
stability[38]. Therefore, we may conclude that the amino 
acids in the centroids of the clusters are important for 
stabilizing protein structures, with the hydrophilic amino 
acid being polar. 

From the above study, we may also conclude that these 
amino acids (A, P, V, G, I, T) are more important in the 
evolutionary process of amino acids [39].The study also 
indicates that the amino acids A, P, G, and V have four 
codons each, whereas Threonine (T) has three codons. This 
suggests that amino acids with three or four codons may play 
an important role in the mutation process, impacting the 
evolution of amino acids. 

PHASE III: APPLICATION OF THE PROPOSED 
FRAMEWORK ON COVID- SARS-COV-2 SPIKE 
GLYCOPROTEIN SEQUENCE 

The proposed framework is evaluated using the amino acid 
or nucleotide sequence in FASTA format available in 

 
 

(a) (b) 

  
(c) (d) 

 
FIGURE 5. Cluster of amino acid (a) K-means cluster technique (elbow plot method), (b) Cluster of 1st position mutation, (c) Cluster of 2nd position 
mutation (d)Cluster of 3rd position mutation. 
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National Centre for Biotechnology Information (NCBI) 
repository. The amino acids or nucleotides in sequences are 
represented by codons, which are sets of three nucleotides. 
The FASTA file provides the protein sequences along with 
their accession numbers and virus types. There are numerous 
coronavirus sample datasets available such as Alpha 
coronaviruses, Bat coronaviruses, MERS-CoV, SARS-CoV 
and SARS-CoV-2 etc. For this study, we randomly selected 
the viral protein COVID-19 SARS-CoV-2 (Homo sapiens) 
Dissociated S1 domain of SARS-CoV-2 Spike bound to 
ACE2 (Non-Uniform Refinement). This dataset was 
published in NCBI on 1 December 2020. The Covid-19 
dataset have protein sequence where minimum and 
maximum lengths of protein sequence are 21 and 7097 
amino acids respectively. 

TABLE 2 
Number of derived amino acid after mutation 

Amino 
acid 

Frequency 
Of amino 
acid in the 
sequence 

Original 
codon 

1st  Base 
Mutation 

2nd Base 
Mutation 

3rd  Base 
Mutation 

G 49 196 196 196 0 
A 37 148 111 148 0 
V 59 236 236 236 0 
L 62 372 310 372 372 
I 33 99 99 165 99 

M 6 6 12 18 6 
F 49 98 147 147 98 
W 7 7 14 14 7 
P 40 160 120 160 0 
Y 35 70 105 105 0 
S 56 336 336 448 336 
T 58 232 174 348 0 
E 24 48 48 72 48 
C 21 42 63 63 42 
N 54 108 162 162 108 
Q 27 54 54 81 54 
D 31 62 93 93 62 
K 30 60 60 120 60 
R 29 174 145 232 174 
H 9 18 27 27 18 

Total 716 2526 2512 3207 1484 
 

For further analysis, we developed a table based on the 
provided sequence using our proposed framework and the 
data from TABLE 1. To determine the “Original Codons” for 
TABLE 2, we multiplied the number of codons for each 
amino acid (from the amino acid codon chart) by its 
frequency of appearance in the sequence. For example, 
Glycine (G) has 4 codons and appears 49 times in the 
sequence, resulting in 196 original codons (4 × 49 = 
196).Similarly, to calculate the number of derived amino 
acids in the sequence for 1st, 2nd and 3rd base mutations, we 
multiplied the frequency of each amino acid by the number 
of distinct amino acids resulting from mutations at that base 
position (as indicated in 1st,2nd and 3rdbase mutation 
TABLE1). For instance, Glycine (G) has a frequency of 49, 
and the number of derived amino acids for 1st, 2nd and 3rd 
base mutations is 4, 4, and 0, respectively. Therefore, the 

number of derived amino acids for Glycine is 196 (4 × 49 = 
196) for both 1st and 2nd base mutations, and 0 (0 × 49 = 0) 
for the 3rd base mutation. We calculated the number of 
derived amino acids after mutations for all amino acids in the 
COVID-19 sequence, as summarized in TABLE 2.   

From the above table (TABLE 2) we have observed that 
the total derived amino acids is 2512(1st base mutation), 
3207(2nd base mutation) and 1484(3rd base mutation) 
respectively. The biologically most significant base i.e., the 
second base mutation induces the highest number of derived 
amino acid whereas the least biological significant base i.e., 
the third base induces least number of derived amino acid 
after mutation. As mention above the second base mutation 
has the highest changes or probability of affecting the protein 
and thus the phenotype. Therefore, we may successfully 
validate that the second base position is biologically most 
significant using this COVID-19 sequence. In the next step 
we have used machine learning technique: K-means 
clustering to cluster the amino acids of the sequence. The 
cloud environment of Google Colab is used to execute the 
python programme for k-mean clustering. To cluster the 
dataset, the number of original codons considers in X-axis 
and number of drive amino acids consider in Y-axis. This 
clustering was designed to elucidate patterns of mutational 
stability and evolutionary significance among the amino 
acids (shown in FIGURE 6-8.). As visible from the FIGURE 
6, three clusters are formed to group the derived amino acids 
with centroids [46.6,57.5],[169, 161.37] 
and[354,323]respectively. Cluster 0 contains: 
M,W,H,C,E,Q,K,D,Y,I; Cluster 1 contains: F,N,A,P, 
R,G,J,V and Cluster 2 contains S,L. The average or combined 
coordinate of the centroids is [189.86, 180.62] which falls in 
cluster 1 indicating importance of amino acids in that cluster. 

Similarly centroids obtained on applying K-means 
clustering on 2nd base mutation are [40.77, 65.88], [313.33, 
389.33] and [152.37, 180.75] (shown in Fig 10).  Cluster 0 
contains amino acids: W,H,M,E,C,Q,D,Y,K; Cluster 1 contains: 
I,F,N,A,P,R,G,V and Cluster 2 contains: J,S,L. The combine 
centroid of the clusters is [168.82, 211.98] which falls in 
cluster 2.  The 3rd base mutation, centroids are [56, 50.16], 
[354, 354] and [191,29] respectively. The combined 
(Average) centroid is[200,144] which fall in the cluster 2.In 
case of 1stbase mutation cluster 1 is the combined cluster 
where as in 2nd base mutation and 3rd base mutation 
combined centroid falls in cluster 2. The cluster 1 in 1st base 
mutation contains the amino acids F, N, G, V, T, R, A, P. In 
2nd and 3rd base mutation C2 cluster contains amino acids 
I, N, F, R, G, A, P, V and A, P, G, V, R, T respectively. We 
observed that the amino acids Glycine (G), Alanine (A), 
Proline (P), Valine (V) and Arginine (R) are common in all 
groups. All these amino acids are hydrophobic in nature 
except Arginine (R). So it may conclude that the amino acids 
in the centroids of the combined clusters are important for 
stabilizing protein structures as these are hydrophobic in 
nature and with the hydrophilic amino acid which is polar. 
The amino acids A, P, G, and V have four codons each and 
they are non-polar in physico-chemical nature, whereas 
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Arginine (R) has six codons. These amino acids with four or 
six codons may play an important role in the mutation 
process in this sequence[39].Thus, the results of the COVID-
19 sequence validate our proposed assumption. 

 
V. DISCUSSION 
On applying the proposed framework on COVID19 spike 
protein sequence we recorded the results in TABLE 2. To 
understand the trend of distinct amino acids derived after 
mutation in all the possible cases i.e., 1st base, 2nd base and 
3rd base is represented in the form of bar graph for better 
visualization and understanding (FIGURE 9). It can be 
observed Glycine (G) and Valine (V) maintain their codon 
count after mutations at the 1st and 2nd base positions. 
However, mutations at the 3rd base position result in no valid 
codon leading to a count of 0. In total six (6) amino acids 
namely G,A,V,P,Y and T are found to be resilient to 3rd base 
mutation. This stability can be attributed to the redundancy 
of the genetic code, where different codons often encode the 
same amino acid due to wobble pairing. This redundancy 
ensures that proteins remain functionally stable despite 
genetic variations at the third base position. However in case 
of 1st and 2nd base mutation no such resilience or neutral 
mutation is observed. Majority of amino acids demonstrated 
a substantial increase in count of distinct codons after 2nd 

base mutataion compared to 1st or 3rd base mutation 
indicating that changes here are more likely to alter the 
protein's structure and function. This highlights the 
evolutionary importance of the second base in codon 
sequences. The first base mutations show an intermediate 
effect between the second and third base mutations. While 
they lead to significant variability in derived amino acids, the 
impact is not as pronounced as with second base mutations. 
This suggests that first base mutations can cause changes in 
protein structure, but their effects are less extensive 
compared to second base mutations. Methionine (M) shows 
an increase in derived amino acids when mutations occur at 
the first and second base positions, but it remains stable with 
third base mutations. This indicates a moderate sensitivity to 
mutations, which could lead to functional changes in proteins 
but within a constrained range. Phenylalanine (F) exhibits 
significant variability, particularly with first and second base 
mutations, suggesting a higher sensitivity to mutations that 
could impact protein function more dramatically. The graph 
also shows that hydrophobic amino acids such Glycine (G), 
Alanine (A), Proline (P), and Valine (V) are highly stable in 
response to third base mutations, with no derived amino 
acids resulting from such mutations.  
 
 

  
FIGURE 6.K-Means clustering of 1st base mutation FIGURE 7. K Mean clustering of 2nd base mutation 

  
FIGURE 8. K Mean clustering of 3rd base mutation FIGURE 9. Newly derived unique amino acids vs. original codon 

count 
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FIGURE 10. Heat map amino acid counts for different Amino acids 

 
This stability likely plays a key role in maintaining protein 
structure, as these amino acids are critical for forming the 
hydrophobic cores that stabilize protein folding. For better 
visualization we are reprinting the heatmap of amino acids 
counts for different type of mutations (in FIGURE 10). For 
most amino acids, the counts remain relatively stable across 
the Original Codon, 1st Base Mutation and 2nd Base 
Mutation. This stability is evident in amino acids such as 
Glycine (G), Valine (V), Serine (S), where the color intensity 
remains similar across these categories. This suggests that 
mutations at the first and second bases often preserve the 
amino acid or have a limited impact on its overall 
occurrence.  The 3rd Base Mutation column shows 
significantly lower counts (often zero) for many amino acids. 
This is particularly noticeable in Glycine (G), Alanine (A), 
Valine (V), Proline (P), Tyrosine (Y), Threonine (T), and 
Cysteine (C), where the count drops to zero.This drop 
indicates that third-base mutations are often synonymous, 
meaning they do not change the amino acid. The genetic 
code’s redundancy allows for variations at the third base 
without altering the encoded amino acid, which explains the 
low or zero counts.  Amino acids like Leucine (L) and Serine 
(S) exhibit significant changes in counts when mutations 
occur at the first and second bases. The color intensity is 
much higher in these categories compared to others, 
indicating that these amino acids are more susceptible to 
changes in these positions. Methionine (M) and Tryptophan 
(W) show unique patterns where their counts increase in the 
1st and 2nd base mutations compared to the original codon. 
This might indicate that mutations in these positions lead to 
increased occurrences of these amino acids, suggesting a 
higher tolerance or adaptability to such mutations.  
   Our study aimed to predict the biological significance of 
amino acids in protein structures through mutation analysis, 
focusing on how mutations at different base positions impact 
protein structure and function. The results reveal that 

mutations at the 2nd base position are the most biologically 
significant, as they produce the highest number of distinct 
amino acids, which may affect protein stability and function. 
This aligns with the evolutionary importance of the 2nd base, 
where nucleotide substitutions are more likely to lead to 
structural changes in proteins. In contrast, mutations at the 
3rd base position showed minimal impact, often resulting in 
synonymous mutations due to the redundancy of the genetic 
code. This provides stability in protein structures, as the 
amino acid sequence remains unchanged despite these 
mutations. The clustering analysis of the mutated amino 
acids shows that hydrophobic amino acids, such as Glycine 
(G), Alanine (A), Proline (P), and Valine (V), consistently 
cluster together. This suggests that hydrophobic amino acids 
play a critical role in maintaining protein structure, as they 
form the hydrophobic core essential for protein stability. The 
analysis further demonstrates that these hydrophobic amino 
acids are resilient to mutations at the 3rd base, reinforcing 
their stabilizing role in protein folding.  
  Our findings regarding the impact of 2nd base mutations 
are consistent with studies like Ali et al. [39] who analyzed 
amino acid networks based on mutations and found that 2nd 
base mutations have significant implications on protein 
behavior, particularly in hydrophobic interactions. 
Additionally, research by Zamani and Kremer [28] using 
artificial neural networks and substitution scoring matrices 
showed that mutations at the 2nd base have a more 
pronounced effect on protein function than 1st and 3rd base 
mutations. However, in contrast to our findings, Yewdell 
[17] emphasized that both 1st and 2nd base mutations in viral 
proteins can result in significant structural alterations, 
especially in immune-evading mutations. This contrast 
suggests that the significance of base position mutations may 
vary depending on the protein and biological system under 
study. Another related study by Nagar et al. [40]developed a 
model to predict site-specific amino acid substitutions and 
identified that 1st base mutations, while less frequent, can 
still impact protein function in certain contexts, particularly 
in pathogenic settings. This aligns with our observation that 
1st base mutations cause intermediate variability in derived 
amino acids but less than 2nd base mutations. 
   While our framework provides valuable insights into the 
impact of base-specific mutations on amino acids, there are 
several limitations. First, the study is based on a controlled, 
hypothetical mutation model, which may not fully capture 
the complexity and randomness of natural mutations. Real-
world mutations often involve interactions with other 
biological factors, such as environmental influences or the 
presence of epistatic interactions, which are not considered 
in our model. 
   Second, the study focuses solely on single-point mutations 
within codons and does not account for other types of 
mutations, such as insertions, deletions, or frame-shift 
mutations, which could have significant biological impacts. 
Moreover, the study's reliance on K-means clustering, while 
effective, may not capture the full range of relationships 
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between mutated amino acids, as it simplifies the underlying 
biological complexity into distinct clusters.      Despite these 
limitations, the findings have important implications for 
evolutionary biology, protein structure research, and 
practical applications in fields like drug discovery and 
disease prediction. The identification of 2nd base mutations 
as biologically significant suggests potential target sites for 
drug design, especially in cases where structural changes in 
proteins are critical for disease progression. Understanding 
the role of hydrophobic amino acids in maintaining protein 
stability can also aid in the design of more resilient protein-
based therapeutics. 
   Additionally, the study demonstrates the potential of 
machine learning techniques, such as K-means clustering, to 
reveal underlying patterns in mutational data. Future 
research could expand this approach to incorporate more 
advanced machine learning models and larger, more diverse 
datasets to further validate the framework’s findings. From 
the literature review, there are some similar works mentioned 
in Table 3 to compare with our work. There are different 
machine learning techniques used from various perspective 
to study the amino acids mutation.  
 
VI. CONCLUSION 
Our research aims to predict the biological significance of 
amino acids in protein structures through mutation analysis 
and machine learning. In this interdisciplinary field, machine 
learning offers new opportunities to uncover insights from 
complex biological networks. Specifically, we applied K-
means clustering to amino acids to derive informative 
patterns from position-based mutation clusters. In this study, 
we developed a novel framework to predict the evolutionary 
importance of amino acids through controlled mutation 
analysis and machine learning. By generating mutations for 

all 61 codons of essential amino acids, we used K-means 
clustering to group the resulting amino acids into three 
clusters. Our results show that mutations at the 2nd base 
position have the greatest biological significance, as 
indicated by the higher number of derived amino acids after 
mutation. This suggests that when a sequence experiences 
frequent 2nd base mutations, there is a high probability of 
significant impact on protein structure and function. 
Clustering analysis revealed that amino acids such as 
Glycine (G), Alanine (A), Proline (P), Valine (V), and one 
polar amino acid frequently appear in the centroids of the 
clusters. These amino acids, mainly hydrophobic, play a 
crucial role in stabilizing protein structures. Our framework 
was validated on the COVID-19 SARS-CoV-2 sequence, 
further supporting our findings and demonstrating the 
method’s potential in understanding protein behavior and 
evolutionary dynamics. While the framework successfully 
identifies mutational impact patterns, it is essential to 
acknowledge its limitations. The study uses a controlled, 
hypothetical mutation model, which may not fully capture 
the complexity of natural mutations, limiting the ability to 
reveal more intricate patterns. Future research could build on 
this work by exploring additional machine learning models 
and incorporating larger, more diverse datasets to further 
validate and refine the framework. Practical applications, 
such as drug discovery and disease prediction, could benefit 
from this approach. Furthermore, the use of alternative 
machine learning techniques to analyze gene sequences in 
gene banks could significantly enhance the framework's 
broader utility. 
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TABLE 3 
COMPARISON WITH OTHER WORK 

Author Mutation type Used 
Machine 
learning 

Discussion/Result 

J. W. Yewdell 
[17] 

Point base 
mutation 

Yes Antigenic drift understanding Covid 19 evolutionary accumulation of 
amino acid mutation in viral proteins. 

Nagar et al. 
[40] 

Substitution 
mutation 

Yes EvoRator2 model design to predict per-site sets of tolerated amino acids 
and diverse applications in biomedicine such as identification of 
pathogenic missense mutations, Drug design etc. 

Zamani et 
al.[28] 

Substitution 
mutation 

Yes Investigate the efficiency of number of common amino acid used in 
encoding by using artificial neural networks and substitution scoring 
matrices. 

Ali et al. 
[39] 

Transition and 
transversion 
mutations 

No Construct amino acid networks based on mutations from a graph-theoretic 
perspective. They developed a Distance Matrix for amino acid networks 
by analyzing transition and transversion mutations of codons. 

Chen et al. 
[41] 

Deletion Mutation No Role of KLF6 in prostate cancers, particularly who have high grade, they 
examined KLF6 for deletion, mutation, and  
loss of expression in 96 prostate cancer samples including 21 
xenografts/cell lines. 

Proposed 
Framework 

Base position 
mutation 

Yes Mutation of codons of amino acid to extract new patterns of amino acids 
in clusters using k-means clustering technique such as elbow plot. 
Conclude with the biological significance using this pattern prediction.  
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