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ABSTRACT The limitation of feature selection is the biggest challenge for machine learning classifiers in disease 
classification. This research proposes a novel feature extraction method to extract representative features from medical images, 
combining extracted features with original image pixel features. Additionally, we propose a new method that uses data values 
from Andrews's curve function to transform chest x-ray images into spectrograms. The spectrogram images are believed to aid 
in distinguishing near-similar medical images, such as COVID and pneumonia. The study aims to build an efficient machine 
learning system that applies the proposed feature extraction method and utilizes spectrogram images for distinguishing near-
similar medical images. For experimental analysis, we have used the award winning Kaggle Chest Radiography image dataset. 
The test results show that among all machine learning classifiers, the logistic regression classifier could correctly distinguish 
COVID and pneumonia images with a 97.18% test accuracy, a 98.34% detection rate, a 97.8% precision rate, and an AUC 
value of 0.99 on the test dataset. The machine learning model has learned to distinguish between medical images that appear 
similar using features found through the proposed feature extraction and spectrogram images. The results also proved that the 
proposed approach using XGBoost has outperformed state-of-the-art models in recent research studies when (i) binary 
classification is performed using COVID-19 and Normal Chest x-ray images and (ii) multiclass classification is performed 
using Normal, COVID and Pneumonia Chest x-ray images. 

INDEX TERMS Feature extraction, Linear transformation, Classification, Prediction, Balanced accuracy. 

I. INTRODUCTION 
Generally, a virus is a microscopic organism that relies on the 
host cell, be it human, animal, or another virus, for its 
development. It then uses the host's cell to produce new virus 
particles, thereby making the host sick. The SARS-CoV-2 
virus causes the serious infectious disease coronavirus, often 
referred to as COVID-19. Its impact ranges from a mild 
respiratory illness to organ failure and death. This virus 
emerged in Wuhan, China, in November 2019 and later spread 
all over the world. This outbreak resulted in around 34, 23,217 
confirmed cases in India alone, the second-highest number 

following the US until October 2021. Pneumonia, an 
infectious disease, affects one or both lungs. Generally, the 
lungs contain alveoli (small sac-like structures). When a 
normal person breathes in, they are full of air. However, when 
a person with pneumonia receives a diagnosis, their alveoli fill 
with fluid, leading to a restricted oxygen intake. It is a fact that 
pneumonia contributes to one-third of global deaths.  A 
comprehensive overview of the global burden of these 
diseases, including recent statistics and trends is presented 
below. 
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A. CONTEXTUALIZATION OF THE PROBLEM – GLOBAL 
BURDEN  
COVID-19 has disrupted healthcare systems globally, leading 
to delays in routine medical care and increased demand for 
healthcare resources. The high number of cases and fatalities 
indicates that COVID-19 has significantly impacted global 
health. Vaccination efforts have reduced the severity and 
mortality of the disease, but new variants and long COVID 
present ongoing challenges. Also, Pneumonia continues to be 
a major health issue, particularly affecting children under 5 
and vulnerable adults. Despite vaccination efforts, pneumonia 
remains a leading cause of morbidity and mortality globally. 
A detailed and comprehensive overview of the global burden 
of pneumonia and COVID-19, including the most recent 
statistics and trends is presented below. 
1. GLOBAL BURDEN OF PNEUMONIA 
The air sacs in one or both lungs can fill with fluid or pus in 
pneumonia. Each year, it impacts millions of people, making 
it a significant global health concern. According to the World 
Health Organization (WHO), in 2022, there were 
approximately 150 million new cases of pneumonia among 
children under 5 years old globally. Pneumonia was 
responsible for approximately 600,000 deaths among children 
under 5 years old in 2022. This makes it one of the leading 
causes of child mortality worldwide. In 2022, there were about 
1 million hospitalizations for pneumonia in the United States 
alone, among adults, as reported by the Centers for Disease 
Control and Prevention (CDC). In the United States, 
pneumonia caused around 50,000 deaths in adults in 2022. 
Pneumonia remains a critical global health issue, particularly 
for children under 5 and vulnerable adults. Despite progress 
through vaccination and improved treatments, pneumonia 
continues to be a leading cause of morbidity and mortality, 
especially in low-resource settings. 

 
2. GLOBAL BURDEN OF COVID-19 
The SARS-CoV-2 virus, which caused COVID-19, first 
appeared as a pandemic in early 2020 and has significantly 
impacted daily life, economies, and global health. As of 
August 2024, there have been over 700 million confirmed 
cases of COVID-19 globally, according to Johns Hopkins 
University. The first half of 2024 saw approximately 10 
million new cases reported worldwide. COVID-19 has 
resulted in over 6.9 million deaths globally as of August 2024. 
In the first half of 2024, there were about 200,000 deaths 
attributed to COVID-19, reflecting a reduced but ongoing 
impact compared to earlier in the pandemic.  

Both COVID-19 and Pneumonia have had a negative 
impact on people's lives and continue to pose significant 
challenges. In general, we diagnose these diseases using two 
methods: laboratory techniques and medical image analysis.  

Laboratory techniques entail the analysis of nasal swabs to 
detect the SARS-CoV-2 virus's genetic material (RNA). This 
is known as the RT-PCR test, often considered the golden 
standard for detecting COVID-19 at early stages. However, 
the test has a few drawbacks. Since it is a manual process, it is 

time-consuming, prone to human errors (technique variations 
and incorrect labeling) and may also be expensive for a few 
individuals. We perform blood tests to determine the presence 
of any infection in the body, specifically for pneumonia.  

The second method involves the analysis of medical 
images, especially chest X-rays and CT scan images. 
Although these are the best ways to detect respiratory diseases, 
there are a few drawbacks to completely relying on them. 
Skilled radiologists must analyze these X-rays and scan 
images, and it's possible that different radiologists may 
interpret the images differently, potentially leading to an 
inconsistent diagnosis. Moreover, expert radiologists may not 
be present in remote areas, which is a serious concern.  

To overcome RT-PCR's limitations in viral detection, 
machine learning with chest X-rays involves leveraging the 
strengths of each method to complement and enhance 
diagnostic capabilities. Here, we outline how this machine 
learning-based disease diagnosis could potentially address 
some of the limitations of RT-PCR.  

For example, by using large datasets consisting chest X-ray 
images and also having the respective RT-PCR results, we can 
train machine learning algorithms, enabling the development 
of models that integrate knowledge from both modalities. 
When we combine features from chest X-rays, such as viral 
pneumonia patterns, with RT-PCR results, we can improve the 
overall sensitivity and specificity of finding viral infections.  

Chest X-ray images can sometimes show characteristic 
signs of viral pneumonia before RT-PCR results become 
positive, especially in the early stages of lung infection. By 
utilizing machine learning models to identify changes in chest 
X-ray features over time and correlating these findings with 
RT-PCR results, we can detect viral infections earlier and 
respond to them more promptly.  

RT-PCR provides molecular confirmation of viral presence, 
while chest X-rays offer structural and morphological 
information about lung tissue. By combining these datasets 
through machine learning, clinicians can obtain a more 
comprehensive picture of the infection status and severity, 
aiding in clinical decision-making.  

We can train machine learning models to identify patterns 
in chest X-rays linked to various viral strains or mutations that 
could influence disease presentation. This could potentially 
provide insight into variant-specific lung pathology and help 
adapt treatment strategies accordingly.  While chest X-rays 
may not be as widely available or inexpensive as RT-PCR 
tests in all settings, advancements in portable X-ray 
technology and automated image analysis through machine 
learning could improve accessibility over time. 

Machine learning algorithms can measure small changes in 
chest X-rays over time, showing how the disease is getting 
worse and how well the treatment is working. This may add to 
the positive or negative results of RT-PCR by providing more 
clinical information.  Hence, by integrating machine learning-
enhanced chest X-ray analysis into existing clinical 
workflows, we can streamline diagnostic processes, 
potentially reducing turnaround times and enhancing overall 
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patient care. The challenges in using medical images for 
disease classification and pros of machine learning are 
outlined in subsections below. 

B. CHALLENGES IN USING MEDICAL IMAGES FOR 
DISEASE CLASSIFICATION 
Handling medical images for classification poses several 
challenges due to the complexity and unique characteristics of 
medical imaging data. Some of the key challenges are as 
follows (a) Medical imaging data evolves over time with 
advances in technology and changes in clinical practices. 
Machine learning models must therefore be adaptable and 
capable of continual learning in order to remain effective. (b) 
Medical images often require extensive preprocessing, such as 
image normalization, image enhancement, image noise 
reduction, and geometric transformations, to improve 
classification accuracy and standardize inputs to machine 
learning models. Some medical conditions may be rare, 
leading to imbalanced datasets where certain classes have 
fewer examples. For instance, the recent pandemic has 
resulted in a scarcity of data regarding COVID-19 images. 
This imbalance has the potential to bias the model training, 
which, in turn, can impact the overall classification 
performance. Handling medical data raises ethical concerns 
regarding patient privacy, patient consent, and patient data 
security. Compliance with regulatory standards adds 
complexity to data access and usage (d). Labeling medical 
images for supervised learning often requires expert 
knowledge and can be time-consuming and subjective. Inter-
observer variability among experts can also impact the quality 
and consistency of labels, which can affect the performance of 
machine learning classifiers. (e) Medical images are typically 
highly dimensional and large, leading to challenges in storage, 
processing, and transmission. This necessitates efficient data 
management strategies and computational resources. 

C. PROS OF USING MACHINE LEARNING FOR DISEASE 
CLASSIFICATION FROM MEDICAL IMAGES 
Machine learning (ML) offers several advantages for disease 
detection from medical images, leveraging its capabilities to 
analyze complex image patterns and make effective 
predictions. Some of the advantages of machine learning-
based disease diagnosis are: (a) The process of automating the 
analysis of medical images reduces the workload for 
radiologists and clinicians. The automation process speeds up 
diagnosis and treatment planning, leading to more efficient 
healthcare delivery (b) Machine learning models possess the 
capability to detect hidden patterns and salient features in 
medical images, which human eyes might find challenging to 
discern. This can lead to improved accuracy in disease 
detection and classification, potentially reducing false 
positives and false negatives (c) Machine learning techniques 
can effectively scale with large volumes of medical image 
data, enabling the analysis of diverse patient populations and 
rare conditions. This scalability is crucial for handling the 
growing volume and complexity of medical imaging data (d) 
ML models can identify early signs of disease or predict 
disease progression based on imaging biomarkers. This early 

detection enables timely intervention and improved patient 
outcomes. (e) Machine learning methods enable continuous 
learning by continuously training the machine learning 
models. ML models can continuously learn from new data and 
adapt over time, improving their performance and robustness. 
This capability supports the ongoing refinement and 
optimization of disease classification algorithms (f) though 
initial implementation and training of ML models may require 
investment, they can ultimately lead to cost savings by 
optimizing resource allocation, reducing unnecessary 
procedures, and improving patient outcomes. 

D. RESEARCH GAPS IDENTIFICATION 
The research gaps that motivated for the proposed feature 
extraction presented in this paper are:  
(i) Feature extraction methods such as principal component 
analysis (PCA) and linear discriminant analysis (LDA), which 
rely on linear correlations between features, may overlook 
intricate patterns in image data. For datasets with complex 
relationships, PCA may not be as effective since it is unable to 
capture complicated, non-linear dependencies (ii) Local 
Binary Patterns (LBP), a feature extraction method, captures 
local texture information by encoding pixel neighborhoods 
into binary patterns, but it is sensitive to changes in 
illumination and loses the spatial context. On the other hand, 
the Gray Level Co-occurrence Matrix (GLCM) analyzes the 
spatial relationships of image pixels for texture feature 
extraction, but it can be computationally intensive and 
sensitive to noise. Histogram of Oriented Gradients (HOG) 
focuses on the distribution of gradient orientations for object 
detection but is high-dimensional and sensitive to object 
orientation. All three methods are effective for texture 
analysis, each with specific strengths and limitations (iii) 
Standard feature extraction techniques like linear discriminant 
analysis (LDA) come with predefined assumptions and may 
not be easily adaptable to diverse datasets (iv) By comparing 
the image matrix structures, we can discover structural 
similarities that are not immediately apparent with 
conventional feature extraction methods. There is a scope to 
explore the potentiality of utilizing matrix structures in the 
context of COVID and pneumonia diagnosis. By analyzing the 
similarity between image matrices, we can capture intricate 
disease patterns and relationships between chest x-ray image 
features. This is particularly useful in scenarios where 
conventional methods might miss subtle correlations. There is 
a limited exploration of integrating matrix similarity methods 
with machine learning techniques, which could potentially 
enhance feature extraction capabilities (v) The research 
literature does not use spectrogram image representations of 
chest x-rays for COVID-19 and pneumonia diagnosis to the 
best of our knowledge.  

E. OBJECTIVES AND HYPOTHESES 
When investigating feature extraction using matrix conjugacy, 
testable hypotheses can guide the research and experiments. 
Here are two specific, testable hypotheses related to this 
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research. The hypotheses are: (i) Matrix similarity-based 
feature extraction improves the classification accuracy of 
disease diagnosis compared to traditional pixel-based features. 
(ii) Matrix similarity methods can effectively reduce the 
dimensionality of image features while retaining essential 
diagnostic information.  

The testable aspect w.r.t first hypothesis is to compare the 
performance of machine learning models trained on traditional 
pixel-based features with those trained on features extracted 
using the proposed matrix conjugacy method by using metrics 
such as accuracy, precision, recall, F1-score, and area under 
the ROC curve (AUC). In similar lines, the testable aspect 
w.r.t second hypothesis is to evaluate the impact of matrix 
similarity techniques on the number of features and assess 
whether the new feature set maintains diagnostic performance. 

F. STUDY DESIGN 
In this study, we have utilized the COVID-19 radiography 
dataset to classify disease. The dataset comprises three classes: 
normal, pneumonia, and COVID-19. We utilized the COVID-
19 radiography dataset [24] that includes chest X-ray images, 
which belong to three classes. (a) X-ray images showing no 
signs of disease; (b) X-ray images indicative of pneumonia, 
which may include various types of pneumonia unrelated to 
COVID-19; and (c) X-ray images exhibiting features specific 
to COVID-19 infection. We standardized the size and format 
of chest X-ray images for image classification. We perform 
three types of scaling: (i) min-max scaling, (ii) 
standardization, and (iii) quantile transformation on the data 
obtained after feature extraction. The performance of ML 
classifiers (a) logistic regression, (b) decision trees, (c) naive 
bayes,  (d) support vector machines (SVM), (e) linear 
discriminant analysis, (f) multilayer perceptron (MLP), (g) 
quadratic discriminant analysis, and (h) XGBoost models 
which are implemented using Python are assessed for 
classification and prediction. We have split the dataset into 
training and testing subsets with a 90%-10% split to evaluate 
the proposed method and have ensured that the chest x-ray 
images in the test dataset are not present in the training dataset. 
The performance of the learning models is evaluated using the 
metrics such as accuracy, precision, recall, F1-score, and ROC 
curves. 

G. DATASET DESCRIPTION 
For experimentation analysis in this research, we have used 
the COVID-19 Radiography dataset [24] which is available 
publicly at the Kaggle and can be accessed via 
https://www.kaggle.com/datasets/tawsifurrahman/covid19-
radiography-database. This dataset is the Winner of the 
COVID-19 Dataset Award by Kaggle Community.  
1. PURPOSE  
The database was created to support the development and 
evaluation of diagnostic algorithms, particularly those using 
machine learning or deep learning techniques, to identify 
COVID-19 from radiographic images. The aim is to enhance 
the accuracy and speed of diagnosis during the pandemic. The 

database typically includes thousands of chest X-ray images 
categorized into three main classes (a) Chest X-ray images of 
healthy lungs without any disease (b) Chest X-ray images 
showing signs of pneumonia, which may include various types 
not related to COVID-19 and (c) Chest X-ray images 
exhibiting characteristics specific to COVID-19 infections. 
 
2. DATA COLLECTION 
Images are collected from a variety of sources, including 
medical institutions, public health repositories, and research 
studies. The images are often accompanied by metadata that 
includes details about patient demographics and clinical 
findings.  
 
3. QUALITY ASSURANCE 
The images in the database are usually vetted for quality and 
relevance. Radiologists may review and annotate the images 
to ensure accurate labeling, which is crucial for training 
machine learning models. 
 
4. ETHICAL CONSIDERATIONS 
Efforts are made to anonymize patient information to protect 
privacy. Ethical guidelines and regulations regarding data use 
are followed to ensure compliance with legal standards in this 
dataset. 
 
5. DESCRIPTION 
Originally, the dataset comprised of 21,165 chest X-ray 
images which are distributed into four different classes: (i) 
COVID (3616 images), (ii) lung opacity (6012 images), (iii) 
viral pneumonia (1345 images), viral pneumonia (1345 
images), and normal (10192 images). Fig. 1  shows sample 
Chest X-ray images belonging to four classes from the 
COVID-19 Radiography dataset.  

                 (a) COVID-19     (b) Pneumonia      (c) Lung opacity     (d) Normal 

FIGURE 1. (A-D) Chest X-ray images collected from Kaggle dataset. 
Sample chest X-ray images of different classes in the dataset. The eyes 
of a non-expert human can hardly distinguish between the classes. 

In this study, we considered three classes namely (i) Covid (ii) 
Pneumonia and (iii) Normal. We discard the lung opacity class 
in this paper as our objective is to discriminate between 
COVID, Pneumonia and Normal Chest X-ray images. For 
experimental analysis, we have split the resulting 3-class 
dataset into two subset datasets train and test datasets. The 
details of train and test datasets are provided in the results 
section of this paper.  More details on training and testing 
subset datasets used for experimental analysis is described in 
experimental results section.  

H. OUR CONTRIBUTIONS  
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The research gaps mentioned in the previous subsection forms 
the motivation to propose a new feature extraction method for 
machine learning from medical images such as chest X-ray 
images and a method to generate spectrogram images from 
chest radiography images which can not only detect COVID-
19 with high detection rate but also differentiate between 
COVID-19 and Pneumonia with high detection rates. The 
contributions of this paper are as follows: 
(i) A new method is proposed for feature extraction from 

medical images which is based on equivalence relation 
on square matrices, indicating that they share all 
properties of their shared underlying operator with 
respect to different bases. This is based on the property, 
“Similarity is an equivalence relation on square 
matrices, indicating that similar matrices share all 
properties of their shared underlying operator with 
respect to different bases” which has strong 
mathematical basis. 

(ii) A method for generating spectrogram images from chest 
X-ray images is presented in this paper.  

(iii) We address the challenge in classifying COVID & 
Pneumonia by proposing an approach for generating 
spectrogram images from original chest Xray images 
based on Andrews function. The new image 
representation is then used to classify COVID and 
Pneumonia which have near similarity between them.   

(iv) We have shown that better prediction rate can be 
achieved by the use of spectrogram images obtained 
from chest X-ray images for binary class classification 
and multi-class classification.  

 
This paper is organized as follows: Section II describes the 

related works to the present research. Section III introduces 
the proposed methodology for spectrogram image generation 
from chest X-ray images. Section IV outlines the algorithm for 
spectrogram generation, feature extraction, and classification. 
Section V presents the proposed machine learning system for 
automated diagnosis; Section VI highlights the proposed 
method's performance results. Section VII highlights findings 
and insights derived from the experimental results along with 
a comparative study with state-of-the-art recent studies. 
Section VIII presents the future research directions and 
Section IX concludes the work carried in this research. 

 
II. RELATED WORKS 
In this section, we outline some of the state-of-the-art research 
contributions that forms the basis for the current research 
contribution. The study by Nikolaou et al. [1] employs a light 
convolution neural network to differentiate COVID-19 from 
other viral pneumonia and healthy lungs in chest X-ray 
images, making it the most efficient CNN for diagnosing 
COVID-19.  They developed a hybrid CNN that combines a 
pre-trained EfficientNetB0 network with a dense 32-neuron 
layer to distinguish between COVID-19 and normal lung X-
ray images. For experimental analysis, the test dataset 
consisted of 1020 normal and 362 COVID-19 chest X-ray 

images, each measuring 150x150. The model achieved 
91.53% accuracy after feature extraction and 94.93% accuracy 
after fine-tuning in two-class classification. The fine-tuned 
model effectively differentiated COVID-19 from normal 
lungs, with a positive predictive value of 91% and a specificity 
of 97%. Deep neural networks (DNN) have gained popularity 
for medical imaging, particularly in detecting COVID-19 
cases from chest CT images. However, DNN models struggle 
to explain the reasoning behind diagnosis, a challenge that 
clinicians need. The study by Kanika Goel et al. [2] evaluates 
the quality of explanations for a deep learning model, 
comparing ground truth and machine learning explanations. 
Results show that while explanations improve clinicians' trust 
in automated diagnosis, their reliance on the diagnosis 
decreases as they are less likely to rely on algorithms that are 
not human-like. Clinicians desire higher recall for better 
understanding of automated diagnosis systems. 

The research study carried out by Al-Zyoud et al. [4] aimed 
to develop an automatic diagnosis method for COVID-19 
using binary segmentation of chest X-ray  images. The 
research used frontal chest X-ray  images from 27 infected and 
19 uninfected individuals from the Kaggle COVID19 
Radiography Database. Results showed that COVID-19 
patients had higher attenuation in the lower lobes of the lungs 
compared to healthy individuals. The study supports the 
theory that COVID-19 primarily affects the lower and lateral 
fields of the lungs, with the virus accumulating mostly in the 
lower left quarter. In the research study by Abdullah et al. [5], 
a Hybrid Deep Learning CNN model is proposed for 
diagnosing COVID-19 using chest X-ray s. The model 
consists of a heading model and a base model, incorporating 
pre-trained deep learning structures and reducing feature 
dimensions. Experimental analyses were conducted to 
compare the model with existing transfer learning 
architectures. The model achieved an accuracy of 92%, 
helping radiologists and physicians avoid misdiagnosis rates 
and validate positive COVID-19 cases. Ismael et al. [6] used 
three deep CNN approaches for COVID-19 detection on chest 
X-ray images. Deep feature extraction, fine-tuning, and an 
end-to-end trained model were tested. The ResNet50 model 
and SVM classifier with linear kernel function achieved a 
94.7% accuracy score, with fine-tuned ResNet50 model 
achieving 92.6% and developed CNN model achieving 
91.6%. Results showed that deep learning approaches 
outperformed local descriptors, fine-tuning and end-to-end 
training took more time, and the Cubic kernel function 
outperformed other kernels in deep feature classification. In 
terms of accuracy scores, the suggested approach (ResNet 50 
Features + SVM) performed better than a newly released 
method by Togacar et al. [7]. Transfer learning offers a 
promising solution for medical diagnosis, transferring 
knowledge from generic object recognition tasks to domain-
specific tasks. Abbas et al. [8] presents a deep CNN called 
Decompose, Transfer, and Compose (DeTraC) for the 
classification of COVID-19 chest X-ray images. For this 
work, authors modified a deep CNN architecture called 
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DeTraC that uses a class decomposition method to classify 
COVID-19 images inside a large dataset of CXR images. 
DeTraC can handle irregularities in the dataset and achieves a 
high accuracy of 93.1% in detecting COVID-19 cases from a 
comprehensive image dataset collected from various hospitals 
worldwide. The COVID-19 outbreak has caused huge 
outbreaks all over the world, necessitating initial screening to 
control the spread. To reduce dependency on limited test kits, 
studies suggest using CT scans or chest X-ray s. Researchers 
[9], in their study used eight deep learning techniques 
(VGG16, InceptionResNetV2, ResNet50, DenseNet201, 
VGG19, MobilenetV2, NasNetMobile, and ResNet15V2) to 
detect COVID-19 symptoms using two datasets. Experiment 
results proved that NasNetMobile outperformed all models 
with an accuracy of 82.94% in CT scans and 93.94% in chest 
X-rays. The models can identify infectious regions and top 
features. 

In [10], authors investigate the use of chest X-ray images 
in diagnosing COVID-19 disease. Researchers obtained 135 
COVID-19 and 320 pneumonia cases and trained a pre-trained 
deep convolutional neural network, Resnet50, on 102 cases. 
The results showed an accuracy of 89.2% with a true positive 
rate of 0.8039 and an AUC of 0.95. An ensemble of CNN 
classifiers was applied to 33 unseen COVID-19 and 218 
pneumonia cases, achieving an accuracy of 91.24%. The study 
[11], evaluates ML-COVID-19 management applications, 
focusing on imaging methods, survival analysis, forecasting, 
economic and geographical issues, monitoring methods, drug 
development, and hybrid apps. Python contributes 74% of the 
effort, with 20.4 percent of applications categorizing imaging 
techniques. Monitoring earns 16%, and 14% support 
prediction and forecasting apps. The research aims to serve as 
a reference for future research on ML and medical 
applications, as ML is recognized as a tool for developing 
intelligent ways to combat the epidemic. Challenges 
encountered include the lack of non-English publications, 
large gaps in dataset explanations, and a lack of availability for 
certain publishers' papers. The COVID-19 pandemic has 
significantly impacted human life, leading to the use of 
machine learning (ML) in medical applications like detecting 
and monitoring patients. Medical imaging systems like CT 
and X-ray provide ML platforms for combating the pandemic. 
A systematic literature review [11] reveals that CNNs, 
LSTMs, RNNs, GANs, autoencoders, and random forest are 
commonly used. However, challenges such as safety and 
flexibility are often overlooked. Keras is the most frequently 
used library, and medical imaging systems are used for 
diagnostic purposes. 

The systematic review study [12] identifies artificial 
intelligence, machine learning methods and techniques for 
disease prediction, drug development, vaccines, existing 
models, and datasets for the COVID-19 pandemic. The most 
commonly used approaches for classification, prediction, and 
diagnosis are CNN, ResNet, SVM and Random forest. Other 
applications include risk assessment, workload reduction, 
social control, patient outcome prediction, and early warnings. 
The study found that the success of these methods varies 
widely, with 69% of studies measuring accuracy, sensitivity, 

and specificity. Since it offers a solid foundation for further 
research and thorough information on AI's possible role in 
battling the pandemic, the study [12] is important for novice 
practitioners and researchers who want to create AI/ML 
models or medications for COVID-19. 

The systematic literature study [13] reviewed 44 published 
research papers from 2013 to 2022 to understand the 
contributions and limitations of deep learning in pandemic 
control. The study aims to provide researchers with crucial 
research briefings to create more effective DL-based 
approaches for pandemic detection and prediction. When 
investigating the benefits of deep learning approaches in 
pandemic detection and prevention, issues such as feature 
selection, identification, optimization, and computing 
complexity are considered [13]. The intention is to provide 
recommendations for future lines of inquiry in this field. 

The COVID-19 pandemic is causing significant damage to 
lung cells and potentially leading to death if not diagnosed 
early. To address this, researchers are developing advanced 
deep learning techniques to accurately diagnose and predict 
the virus. The research study [14] reviews recent research on 
diagnosing and predicting COVID-19 using deep learning 
networks and medical imaging techniques, including 
attentions, transformers, fusion, graphs, classification, 
segmentation, and forecasting techniques. It also discusses the 
challenges and future directions in COVID-19 diagnosis and 
prediction, including distribution shifts, fairness, and data 
privacy. In 2019, 2.5 million deaths were caused by 
pneumonia, with 14% of these occurring in children aged 0-5. 
Diagnosing pneumonia is crucial to prevent body failure. Deep 
learning techniques, such as convolutional neural networks, 
pre-trained models, and ensemble models, are preferred due to 
better performance and automatic feature extraction. The 
systematic literature review [15] evaluates these models' 
effectiveness in various medical domain challenges, 
highlighting research gaps and potential solutions for 
pneumonia detection tasks. The study [16] explores the 
evolution of deep learning methods for identifying lung 
diseases using chest X-ray images, highlighting the challenges 
of interpreting radiographs and the need for skilled 
interpretation. It also discusses the future path of research in 
detecting these diseases using these images. Mallick et al. [17], 
reviews 48 studies from 2020-2023 using TL-based models 
for COVID-19 detection and diagnosis. Challenges include 
model training difficulties, precision issues for lung 
segmentation, and the lack of un-annotated X-rays. The study 
[18] explores the use of deep learning architectures in lung 
disease diagnosis using CXR images, analyzing 129 articles 
and finding pre-trained networks enhance sensitivity and 
accuracy, while also discussing limitations and future research 
opportunities.  Agrawal et al. [19] explores the use of deep 
learning in chest radiography for lung segmentation and 
detection using publicly available datasets, including 
Generative Adversarial Network models, to address medical 
data scarcity. Airway disease is a major healthcare issue 
causing 3 million fatalities annually and is expected to become 

https://jeeemi.org/index.php/jeeemi/index


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 7, No. 1, January 2025, pp: 56-79;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                                 62               

one of the leading causes of death globally by 2030. Advances 
in artificial intelligence algorithms are being used to detect 
airway disorders, but challenges remain. The systematic 
literature review [20] examines 150 articles on various airway 
diseases and their predictive capabilities. The study [21] 
explores the use of machine learning methods for automatic 
diagnosis of COVID-19 using X-ray images. Two commonly 
used classifiers, logistic regression and convolutional neural 
networks, were used. A dimensionality reduction approach 
was also explored. To increase training samples, generative 
adversarial network (GAN) was employed. The study found 
that both CNN and LR models showed high accuracy, with LR 
and CNN showing 95.2% and 97.6% with PCA for positive 
cases identification. 

   Pneumonia is the leading cause of mortality globally, 
causing 3.2 million deaths in 2015. Between 2000 and 2015, 
child pneumonia hospital admissions increased 2.9 times, with 
a more rapid increase in South East Asia. Early diagnosis and 
treatment are crucial for preventing lung damage and 
functional deficiencies. The scoping review [26] explores 
diagnostic techniques for community-acquired pneumonia, a 
lethal infectious disease. The review categorized techniques 
into lab-based methods, imaging-based techniques, acoustic-
based techniques, and physiological-measurement-based 
techniques. The review found that imaging-based techniques 
are the most common, but there's a need for safer, non-
invasive, and faster methods. The COVID-19 pandemic has 
led to the development of a new diagnostic method using 
artificial intelligence (AI). The study [27] proposes a deep 
learning AI-based system for automatic multiclass detection 
and classification of pneumonia from chest X-ray images. The 
system uses seven pre-trained convolutional neural networks, 
with the best results achieved using DenseNet201, VGG16, 
and VGG16. For the five-class model, the system outperforms 
existing methods by 1.2%. The advantage of the system is that 
it quickly detects COVID-19, providing results in seconds. It's 
cost-effective, requiring only a patient's chest X-ray scan. 
They have conducted six classification experiments with 
consistent accuracy, demonstrating its robustness for practical 
applications. The system's ability to detect infection severity 
is limited by collimator noise. We can use denoising methods 
for pre-processing and predict severity to aid in treatment 
selection and patient recovery. The system has not undergone 
k-fold cross-validation because of a large database of CXR 
images. Further advancements include heatmap images, 
extreme learning machines, pruning methods, and advanced 
image analysis solutions like stochastic imaging. 

Deep learning algorithms for diagnosing pneumonia from 
chest X-rays require large, sparse training datasets, which can 
overfit. The work [28] proposes a domain adaptation and 
classification technique using a private-small dataset and a 
public-large labeled dataset. This involves data selection, 
image translation, and convolutional neural network 
exploration. Fine-tuning specific layers with selected-adapted 
images improves sorting accuracy and reduces trainable 
parameters, achieving a classification accuracy of up to 

97.78%. The CX-DaGAN algorithm improves the 
classification accuracy of a small X-ray dataset by using 
information from a large public dataset. The algorithm selects 
images based on intra-class similarity and interclass 
dissimilarity and generates new images through a GAN 
network. The algorithm is a complete domain adaptation 
workflow consisting of three stages: selecting images, training 
the GAN-based image-to-image translation network, and fine-
tuning the pretrained CNN classification network. The results 
show an overall accuracy of 88.36% without the domain 
adaptation workflow.  

Chest radiography is a crucial diagnostic tool for detecting 
chest diseases [29]. Advancements in deep learning 
techniques have led to the development of automated systems 
for detecting pneumonia from chest X-rays. However, a 
comprehensive literature review is lacking, highlighting the 
need for more efficient methods. This study aims to help 
medical practitioners select the most effective methods, 
analyze available datasets, and understand the results. It also 
discusses the usability, goodness factors, and computational 
complexities of the algorithms used for intelligent pneumonia 
identification. The study reveals that most applied datasets are 
unbalanced and limited, making them unsuitable for large-
scale use. Deep learning-based algorithms have been found to 
achieve the best results for pneumonia classification, with an 
accuracy of 98.7%, a sensitivity of 0.99, and a specificity of 
0.98. The COVID-19 pandemic has prompted the 
development of advanced diagnostic and monitoring devices, 
including automated detection using chest X-ray (CXR) 
images. However, diagnosing pneumonia is challenging due 
to imaging similarities. A new classification model, PDMLP-
Bi-LSTM [30], uses multi-source generated data to 
discriminate Normal, COVID-19, and Other pneumonia cases. 
The model uses parallel deformable multi-layer perceptron 
and Bi-directional Long Short-Term Memory modules to 
extract   abstract features and analyze correlations. Extensive 
simulations on 4099 CXR images validated the method's       
performance, showing excellent accuracy, specificity, 
precision, recall, and F1-score of approximately 98% or 
above. The ultimate goal is to integrate this functionality into 
portable X-ray equipment and computer platforms. Generally, 
researchers focused on utilizing various approaches and 
classifiers to construct a more accurate model without 
considering the implementation of security measures to 
protect patient medical data. Consequently, our study aimed to 
fill this research gap by converting the input chest X-rays into 
spectrograms. This conversion transforms the images into a 
2D heatmap-like representation, concealing the chest X-ray 
details and rendering them incomprehensible to an individual. 
Spectrograms are visual representations of the frequency 
components of an image. We ensure patient data privacy and 
improve model prediction accuracy by converting the chest X-
ray images into spectrograms in our proposed work. 

III. PROPOSED METHOD FOR SPECTROGRAM IMAGE 
GENERATION  
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This section outlines the suggested process for creating 
spectrogram images from X-ray images of the chest. These 
spectrogram images which are obtained from chest X-ray 
images are then used to extract new features which are better 
representatives of respective images by applying the proposed 
feature extraction method. The idea is to use the input images 
represented in terms of new image features for classification 
and prediction. For extracting features from chest xray images, 
in the present work, we apply the proposed feature extraction 
method presented at Section IV.   

A. RESIZING CHEST XRAY IMAGES 
Image preprocessing is a crucial step when handling of image 
data for classification, particularly in case of medical image 
data like chest X-rays. This is because chest X-rays are 
complex images that come in different sizes and formats and 
contain potential anomalies. To address the problem of varied 
image sizes, we first perform resizing of chest X-ray images 
to bring all the chest X-ray images into common size. We have 
performed experiments comparing model performance on 
32x32 images versus larger sizes (like 64x64 or 128x128). We 
observed that the performance is acceptable and meets our 
application’s requirements that supports our choice. Also, 
smaller images require less computational power and memory, 
making training faster and allowing for larger batch sizes. This 
is especially important as we are working with limited 
computational resources. 

 

        (a) Unsegmented image         (b) Mask image             (c) Segmented image 

FIGURE 2. Figure (a-c) demonstrating unsegmented image, respective 
mask image and segmented chest x-ray image 

B. LUNG SEGMENTATION 
During the lung segmentation phase, we apply the bitwise 
AND function between each chest X-ray image and its 
corresponding mask images from the dataset. This operation 
compares each pixel in the chest X-ray image to its 
corresponding pixel in the mask image. Mask images are 
generally templates for highlighting the lung area. If both the 
original image and the mask image had a non-zero value, then 
the resulting pixel of the segmented image retained that value. 
If not, we set the pixel to zero, thereby eliminating it from the 
analysis. This process helps us obtain the lung part that is 
believed to be valuable for further analysis. Fig. 2 displays the 
process of segmenting the required part of the lung from the 
chest X-ray. We apply the bitwise AND operation between the 
raw chest X-ray image (Fig. 2a) and its corresponding mask 
image (Fig. 2.b) to obtain the segmented lung, as illustrated in 
Fig. 2c. 

Mathematical Modeling for Lung segmentation 

This mathematical modeling outlines the process of lung 
segmentation using an image and a mask. Here, we give a 
general method of how to create the mask based on a threshold 
[38], apply the bitwise AND operation to obtain the segmented 
image.  Let I be the original chest X-ray image. M be the mask 
image.  
 
Original Image, I 
Let I be the original image represented as a matrix RHxW, 
where each element of I (x, y) represents the pixel intensity at 
the coordinate (x, y).  In our case as the chest x-rays are grey 
scale images and hence the pixel values may range from 0 to 
255.  
 
Mask Image, M 

Let M be the Mask image represented as a matrix RHxW, 
where M(x, y) =1, if the pixel belongs to the lung region and 
M(x, y) =0, if the pixel does not belong to the lung region. 
 
Creating the Mask 

To create a binary mask from the original image, we may 
apply a threshold ‘T’ [38] to distinguish between lung and 
non-lung areas. This can be represented using Eq. (1) [38], 
 

𝑀(𝑥) = & 1, 𝐼(𝑥, 𝑦) > 𝑇
0,								𝑒𝑙𝑠𝑒																																				(1) 

Where T is a predefined threshold value between 0 and 255. 
 
Bitwise AND operation 
The segmentation process uses a bitwise AND operation to 
isolate the lung region from the original image. The 
mathematical representation of this operation can be expressed 
using Eq. (2) [39], 

		𝑆(𝑥, 𝑦) = 			𝐼(𝑥, 𝑦).𝑀(𝑥, 𝑦). 255                  (2) 
where S is the segmented image, representing lung regions, 
the multiplication by 255 converts the binary mask back to a 
format compatible with the original image’s pixel values. 
 
Resulting Segmented Image 
The resulting segmented image is given by Eq. (3) [39], 

𝑆(𝑥, 𝑦) = & 	𝐼(𝑥, 𝑦),			𝑀(𝑥, 𝑦) = 1				
			𝐼(𝑥, 𝑦),				𝑀(𝑥, 𝑦) = 	0						               (3) 

 
If the mask indicates a lung pixel, i.e., 𝑀(𝑥,	𝑦) = 1, the pixel 
value in 𝑆	is the same as in I. If the mask indicates a non-lung 
pixel, 𝑀(𝑥, 𝑦) = 0, the pixel value in 𝑆	is set to 0. 

C. ANDREW CURVES  
Andrew's curves allow for the representation of high-
dimensional features extracted from chest X-rays in a two-
dimensional format, simplifying the analysis and 
interpretation. By transforming X-ray data into curves, it 
becomes easier to identify patterns, anomalies, and 
relationships within the data, aiding in the detection of 
conditions like pneumonia or COVID-19. The transformed 
data can be fed into machine learning models, improving 
classification performance by providing a more compact 
representation of the relevant features from the original 
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images. Fig. 3 depicts Andrew curves generated for COVID 
and Normal classes. In Fig.3, the x-axis (t) represents a 
cyclical or angular variable ranging from -π (negative pi) to π 
(pi), and the y-axis (f(t)) represents the transformed data 
points.  

 
FIGURE 3. Andrew plot depicting Covid class against normal class 

D. MUTUAL INFORMATION 
In our work, we have used mutual information to extract 
higher-order features from existing data. Eq. (4), gives the 
mathematical expression for mutual information between two 
random states, X and Y. For the random states X and Y, I(X,Y) 
represents mutual information as given by Eq. (4) [37], 

I(X; Y) = 	))P(x, y) ∗ log
𝑃(𝑥, 𝑦)

𝑃(𝑥) ∗ 𝑃(𝑦)										(4)
!"#$"%

 

where p(x,y) represents the joint probability of these variables 
X and Y, which gives the probability of the event, which is 
defined as X = x, and Y = y. and p(x) and p(y) give the 
marginal probability mass (also called density) functions of 
the variables X and Y, respectively. A non-negative 
expression, I(X,Y)>=0, provides mutual information, and its 
value drops to zero when X and Y are independent. When we 
get higher values for mutual information, it shows a stronger 
relationship or dependence between the variables. In practical 
implementation, mutual information measures information 
gain and understands the relationships between variables in 
different applications, which include machine learning and 
data analysis. 

We store the image pixel values in the CSV format, and 
then we apply the Andrew curve function defined by T(n). We 
use T(n), which ranges from 0 to 360 degrees with a 0.1 step 
increment, to upscale an image from any size to 60x60, 
resulting in 3600 features. We then store these computed 
values in a variable named 'andrew_csv' using Eq. (5) [36], 

𝑇(𝑛) = 	
𝑥&
√2
	+	𝑥' ∗ 	𝑠𝑖𝑛(𝑛) + 𝑥( ∗ 	𝑐𝑜𝑠(𝑛) +	𝑥) ∗ 	𝑠𝑖𝑛(2𝑛)

+	𝑥* ∗ 𝑐𝑜𝑠(2𝑛) +	…																																	(5) 

where xi represents the ith pixel value. 

E. PERFORMING NORMALIZATION 
These Andrew_Csv Values may contain negative values as 
well, So, we need to normalize them to remove these negative 
values, as pixel values should not be negative. We ensure that 

all these values are within the range of 0 And 1. For this, we 
apply Min-Max scaling. The formula for Min-Max scaling is 
given by Eq. (6) where X is the original feature value, 𝑋!"# is 
the minimum value of the feature, 𝑋!$% is the maximum value 
of the feature, and 𝑋&'$()* is the scaled feature value which 
lies between 0 and 1. 

 
𝑋&'$()* =	

+,+!"#
+!$%,+!"#

																																											(6) 

F. SPECTROGRAM GENERATION 
A spectrogram is a 2D representation that displays the 
intensity of different frequencies in a signal over time. Signal 
processing and audio analysis commonly use them. We 
converted chest X-ray images into spectrogram images 
because abnormalities in lung sounds, such as wheezing, may 
produce different frequency patterns. The respiratory system 
produces sounds at various frequencies during normal and 
abnormal conditions. Fig. 4(a) represents chest Xray image 
and Fig. 4(b) represents the spectrogram image generated 
from chest Xray image in 4(a). 
 

 
 

                       (a) Chest Xray                     (b) Spectrogram 

FIGURE 4. Chest Xray and Spectrogram image generated from Chest 
XRay  

 
In this work, we have used the scipy.spectrogram() function in 
python to generate spectrograms. 

scipy.signal.spectrogram(x, fs=1.0, window='tukey', 0.25
), nperseg=None, noverlap=None, nfft=None, detrend='cons
tant', return_onesided=True, scaling='density', axis=-
1, mode='psd')  

 
where x = input array of time-domain signals, window = 
Window function that is applied on each segment, nperseg= 
Number of samples per segment, nooverlap = Number of 
overlapping samples between segments. 

IV. ALGORITHM FOR IMAGE FEATURE EXTRACTION 
AND DISEASE DETECTION 
The algorithm outlines a comprehensive approach for 
processing chest X-ray images, extracting relevant features, 
and preparing data for machine learning. It combines several 
key tasks—image resizing, data normalization, feature 
extraction and classification into a streamlined workflow 
suitable for diagnostic applications. 
 
Algorithm Feature_extraction (image, size) 
{ 
image := GrayScaleMatrix(image) 
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resized_image := Resize(image, (size, size)) 
r := FindRank(resized_image) 
d := FindDet(resized_image) 
EV [ ] := FindDet(resized_image) 
flatten_image:= Flatten (resized_image) 
features := Append(flatten_image, r, d, EV[]) 
x, y:= Split(features) 
return x, y {x, y represent features and output label}  
} 
 
Algorithm SpectrogramImageGeneration (image_path, 
outputcsv_path, size, step_size , range) 
{ 
  function_values = [] 
  image :=  GrayScaleMatrix(image_path) 
  resized_image:= Resize (image, (size, size)) 
  nr: = (resized_image – mean (resized_image) 
  standardize_image: = nr/ standardDeviation(resized_image) 
  flatten_image = Flatten(standardized_image) 
  num_pixels = len(flatten_image) 
  t_values = [] 
  t :=0 
  i :=0 
  while (t<=range) do  
  { 
       t_values[i] = t 
       t := t + step_size 
       i := i+1 
    } 
   t_size := length(t_values) 
   for i :=0 to t_size do 
   { 
      f_t :=0 
      for j: =0 to num_pixels do 
     { 
         if (t_values[i] == 0) then f_t: = f_t + flatten_image [j] 
     else  
        { 
             factor: = sin (j π t_values[i]) / sqrt (pow (2, j)) 
             value: = flatten_image[j] x factor 
             f_t: = f_t+value 
         } 
      } 
             append f_t to function_values  
  } 
append label to function_values 
store function_values to csv 
function_values := Read function_values from csv 
label: = function_values [: -1] 
spectrogram: = Reshape (function_values, size) 
normalized_spectrogram: = Normalize (spectrogram) 

spectrogram_unit8: = unit8(normalized_spectrogram) 
color_spectrogram: = ColorMap(spectrogram_unit8) 
store color_spectrogram as image in output_path 
} 
 
Algorithm Classifiers(train_data_set, test_data_set) 
{ 
       for i: =0 to size(train_data_set) do  
       { 
         x_train, y_train := Feature_extraction (train_data_set[i]) 
        } 
        for i: =0 to size(test_data_set) do 
        { 
         x_test, y_test := Feature_extraction (test_data_set[i]) 
        } 
         Normalization(x_train, y_train, x_test, y_test) 
         Classifier(x_train, y_train, x_test, y_test) 
} 
 
The proposed image feature extraction method to extract 
features from chest x-ray images is based on the linear 
transformation representation. The image feature extraction 
process starts by converting all chest x-ray images in the input 
dataset to equivalent greyscale chest x-ray images if they are 
already not in the greyscale form. Then, these greyscale chest 
x-ray images are resized to a predefined image size, say nxn 
for consistency among all medical images in the dataset. This 
step is carried to make sure that all images in the dataset are of 
one standard size so that the features extracted from these 
images shall have same feature dimensionality in the derived 
feature vector. We then consider each grey scale image from 
the dataset and represent (or view) every image as a square 
matrix M of size nxn. Each element of the matrix, M(i,j) thus 
represents the intensity of the pixel (i,j) in the image, I. For 
each image matrix, we obtain the structural properties of the 
matrix. They are (i) rank of matrix denoted as rank(M), (ii) 
determinant of matrix denoted as det(M), (iii)  trace of matrix 
which can be computed as  𝑡𝑟𝑎𝑐𝑒(𝑀) = ∑ 𝑀""

"-#
"-.  and (iv) 

eigen values for M, eig(M) → [λ1, λ2,…,λn].  Then, we flatten 
the image, i.e. Convert the image matrix I into a vector V by 
flattening the matrix (V=flatten(I)) and then Combine original 
image pixels and structural features obtained. Thus, we create 
a new feature vector F that adds the derived structural features 
to the original pixel vector V, the feature vector can be 
represented as F = V + [rank(M), det(M), trace(M), eig(M)]. 
When forming feature vector, we ensure that the dimensions 
match when combining, possibly repeating the structural 
features to fit the pixel vector length. The final augmented 
feature vector F can be used for classification tasks, input into 
machine learning models, or further analysis. 
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Figure 5.   Proposed System for disease diagnosis using chest radiography images 

V. PROPOSED MACHINE LEARNING SYSTEM FOR 
DISEASE DIAGNOSIS 
FIGURE 5 represents the proposed system architecture for 
disease diagnosis using chest radiography images. The first 
step (is an optional step) which involves the segmentation of 
the lungs from these chest X-rays to obtain only the necessary 
lung section having important details about the abnormalities. 
The dataset we considered includes the corresponding mask 
images for each chest X-ray. To obtain the segmented lung 
image, we apply the bitwise AND operation between the two 
mask images and the raw chest X-rays.  

Secondly, we resize the images to a common size, for 
example 32x32 image size using the cv2.resize() function. 
Further, we convert these resized images into CSV files for 
easier access and structured organization of the pixel values. 
Next, we create Andrew curves by mapping each observation 
onto a function, a common method for visualizing multivariate 
data. We use Andrew curves to identify similarities or 
differences between classes by analyzing the shape of the 
obtained curves. In our case, the curves overlap for multiple 
classes, indicating the presence of similar characteristics that 
could potentially lead to inaccurate predictions. We then apply 
the Andrew function, which allows for image upscaling or 
downscaling. After applying the Andrew function, we store 
the output values as andrew_csv.  

We perform min-max normalization on this CSV file to 
eliminate any negative values, then scale the values from 0 to 
1, storing them as normalized_csv. The spectrogram function 
receives this normalized_csv for each image as input to 
produce the corresponding spectrogram. Spectrograms are a 
visual representation of the frequency content of an image. 
The intensity, or color, at each point in the spectrogram 
represents the power of the frequency component in the image. 
Internally, the spectrogram function applies first windowing, 
which divides the large signal (in a spectrogram, the array 
values are considered signals) into smaller signals for easier 
calculations.  

After forming the windows, the first step involves applying the 
Fast Fourier Transform function to compute the discrete 
Fourier transform value of each window's component. The 
next step uses the power spectral density to determine the 
distribution of a signal's strength across different frequencies. 
These values later form the spectrogram matrix, which in turn 
generates the required spectrogram. From the spectrogram 
images, we extract the matrix properties such as rank, trace, 
determinant, and Eigen values and store them as a vector, 
which will help to find the similarity degree between any two 
images. We compare the accuracies obtained by ML models 
by considering features with and without incorporating the 
above-mentioned matrix properties, and we aim to find the 
optimal configuration that gives us the best accuracy.  

The entire process for disease diagnosis using proposed 
method is depicted in the FIGURE 5. Initially, we segment the 
lungs from the X-ray images if this step desired. Otherwise, 
we can use the chest xray images directly. Both the segmented 
and unsegmented images then undergo resizing to a standard 
size (say, 32x32, 64x64, 128x128, 224x224 etc.). We convert 
resized images into the CSV file format.  

Subsequently, we explore two different methods to 
observe which one yields better accuracy and predictions. The 
first approach involves selecting higher-order features and 
utilizing mutual information gain to measure each pixel’s 
value for classification. This helps us choose the most 
important features for model prediction. The second approach 
selects same pixel ordering and applies Andrew function for 
images from various classes. In our case, we have overlapping 
Andrew curves, which creates a problem for model prediction. 
Next, we input the entire image (segmented or unsegmented 
chest X-ray images) to the Andrew function and normalize the 
resulting values using min-max scaling. The spectrogram 
function then uses these normalized values as input, 
generating individual spectrogram images for each chest X-
ray image.  

Spectrograms provide a comprehensive view of the 
underlying patterns within the chest X-rays. Furthermore, we 
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feed these spectrogram images generated using chest X-ray 
images to various machine learning models. For feature 
extraction, in this work, we have applied the proposed feature 
extraction method outlined in section IV. We study the 
performance of various ML classifiers by considering two 
cases (i) by applying proposed feature extraction on chest x-
ray images (ii) by applying proposed feature extraction on 
spectrogram images generated from chest xray images. We 
run the machine learning models on the same data distribution 
for all classifiers and obtain the classifier metrics of ML 
classifiers to compare their relative performance on the test 
dataset.  

VI. EXPERIMENTAL RESULTS  
This section outlines the data preparation which is essentially 
important in any machine learning task. Subsection A 
describes the dataset used in the study and the data 
preparation for experimental study. Subsection B presents a 
comprehensive overview of the sample size justification, 
Subsection C mentions the experimental setup details and 
Subsection D outlines the classification performance results 
for Binary and Multiclass classification. 

A. DATA PREPARATION 
Data preparation is a crucial step in any classification task. For 
experimental analysis in this paper, we have used the publicly 
available benchmark dataset, i.e. COVID-19 Radiography 
dataset [24]. We choose this dataset as this is the most widely 
used dataset in many state-of-the-art research studies.  

1. COVID-19 Radiography Dataset Description and Division 
of the Dataset 

COVID-19 Radiography dataset is the Winner of the COVID-
19 Dataset award by Kaggle Community, is publicly available 
at Kaggle. This dataset and can be accessed at 
https://www.kaggle.com/datasets/tawsifurrahman/covid19-
radiography-database. Originally, the dataset comprised of 
21,165 chest X-ray images which are distributed into four 
different classes: (i) COVID (3616 images), (ii) lung opacity 
(6012 images), (iii) viral pneumonia (1345 images), viral 
pneumonia (1345 images), and normal (10192 images). We 
discarded lung opacity for multiclass classification as this 
study focused on detection of COVID-19 and Pneumonia 
classes. For experimental analysis, the dataset is divided into 
train and test datasets.  

 
TABLE 1 

Statistics of number of CXR images used from COVID-19 radiography 
dataset to obtain training and testing datasets for multiclass 
classification 
 

Class Training dataset  Testing dataset Total  
Normal 9172 1020 10192 
Pneumonia 1210 135 1345 
COVID-19 3254 362 3616 
Total 13636 1517 15153 

 
Thus, we form a three-class dataset using Normal, Covid and 
Pneumonia Chestxray images. For experimental analysis, we 
split the dataset into train dataset and test dataset. The train and 
test dataset details are depicted using the Table. I below which 

are obtained by performing 90%-10% split using original 
dataset. 

B. SAMPLE SIZE JUSTIFICATION 
To ensure that the training dataset sample size is adequately 
powered to detect significant differences in classification 
accuracy among the three groups, thereby providing a strong 
statistical basis for the research conclusions, we have 
considered GPower statistical software tool. GPower is a 
widely used statistical software tool designed to perform 
power analysis for a variety of statistical tests. Power 
analysis helps researchers determine the minimum sample 
size required to detect an effect of a given size with a 
specified degree of confidence.  

To determine the appropriate sample size for the 
multiclass classification task with the given dataset of 
Normal, COVID, and Pneumonia images, we perform a 
power analysis using the dataset available to assess if it's 
sufficient based on statistical power considerations.  

Originally, the dataset has chest x-ray images distributed 
among three classes as Normal - 10192 images, COVID - 
3616 images and Pneumonia - 1345 images. Since, we are 
looking to assess if this dataset is statistically sufficient, we 
consider the following settings for power analysis: The effect 
size is set as f=0.25 (medium effect size), the value of Alpha 
(α) is set at 0.05 (commonly used significance level), the 
power value denoted by (1 - β) is set for 0.80 (80% chance 
of detecting a true effect), number of groups is set to 3 since 
we have three classes (COVID, normal, pneumonia) in the 
dataset.  

Using G*Power analysis, we obtained total sample size as 
159 and sample size per group as 53. This means that each 
class in the training dataset should contain at least 53 images. 
We performed training dataset analysis by comparing the 
number of images in three classes with the sample size given 
by power analysis. As per power analysis test, we need a 
sample size consisting at least 53 images representing each 
class in the dataset. In our case, we have 9172 Normal chest 
x-ray images, 1210 pneumonia chest x-ray images and 3254 
covid chest x-ray images. Hence, as per power analysis test, 
the number of images w.r.t each class in the training dataset 
are sufficient. Similarly, in the testing dataset we have we have 
1020 Normal chest x-ray images, 135 pneumonia chest x-ray 
images and 362 covid chest x-ray images. As per power 
analysis test, we need a sample size consisting at least 53 
images representing each class in the testing dataset. Hence, 
as per power analysis test, the number of images w.r.t each 
class in the testing dataset are sufficient. Thus, the calculated 
sample size ensures that our study is adequately powered to 
detect significant differences in classification accuracy among 
the three groups, thereby providing a strong statistical basis for 
the research conclusions. 
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FIGURE 6.   Input and Output parameters of power analysis test using to 
determine appropriate sample size for multi-class classification 
 
FIGURE 6 depicts the screenshot representing input 
parameters and output parameters of power analysis carried to 
determine appropriate sample size for multiclass 
classification. 

C. EXPERIMENTAL SETUP 
To implement the proposed feature extraction method and 
perform machine learning, we have used Python programming 
language, Scikit-learn (sklearn) and OpenCV which are two 
widely used libraries in the field of machine learning and 
computer vision. All experiments are run on the system having 
following specifications. Intel(R) Core(TM) i5-7200U CPU 
@ 2.50GHz   2.70 GHz with 16.0 GB RAM. 

D. CLASSIFICATION PERFORMANCE ANALYSIS 
We assessed the proposed system for binary classification and 
multiclass classification. Two scenarios are considered for 
experimental study. In the first scenario, the chest x-ray 
images are converted into respective spectrogram images. 
These spectrogram images are then used to study the 
performance of classifiers when the proposed feature 
extraction method is applied. In the second case, we used the 
chest x-rays images without converting them to spectrogram 
images. For experimental study and analysis, we have split the 
original dataset into two subsets (i) training dataset and (ii) 
testing. For all experiments, the split ratio is 90%-10% w.r.t 
train and test datasets respectively. The images in the test 
dataset are unseen by the training model. We trained the 
machine learning classifiers on the training dataset and then 
tested them on the test dataset. Before feeding the classifier 
with data, we apply the proposed feature extraction method. 
SCENARIO-1: BINARY CLASSIFICATION WITH 
PROPOSED FEATURE EXTRACTION USING 
SPECTROGRAM IMAGES GENERATED FROM CHEST 
XRAY IMAGES 

In the first scenario, we consider the chest X-ray images in 
the dataset and convert them to their respective spectrogram 

images. The spectrogram images are obtained by using the 
procedure outlined in Section III. We use these spectrogram 
images for feature extraction and machine learning. We 
evaluate the performance of state-of-the-art ML classifiers by 
applying proposed feature extraction and considering 
spectrogram images as input. We consider two use cases. The 
first use case involves binary classification, which uses 
spectrogram images to distinguish between COVID and 
Pneumonia. The second use case involves binary 
classification, which uses spectrogram images to distinguish 
between COVID and Normal.  
 
Use Case 1: Binary Classification Using COVID and 
Pneumonia Spectrogram Images 
We perform the first experiment to evaluate the detection 
performance of state-of-the-art ML classifiers using the 
proposed feature extraction method. We conduct this 
experiment to investigate how well ML classifiers distinguish 
between PNEUMONIA and COVID disease classes, using 
spectrogram images from chest X-ray images as input for 
machine learning classifiers. We obtained the training and 
testing datasets by carrying out a 90%-10% split from the 
original dataset. Table 2 mentions the class distribution of the 
training and testing datasets. 

 
TABLE  2 

Statistics of number of CXR images used from covid-19 radiography 
dataset to obtain training and testing datasets for binary classification of 
covid and pneumonia  

 
Class Training dataset  Testing dataset Total  
PNEUMONIA 1210 135 1345 
COVID-19 3254 362 3616 
Total 4464 497 4961 

 
The dataset consisted of 1345 pneumonia and 3616 COVID 
chest X-ray images. For the experimental study, we have used 
the training dataset, which included 1210 pneumonia and 3254 
COVID chest X-ray images, and the testing dataset, which 
comprised 135 pneumonia and 362 COVID chest X-ray 
images. The images from both the train and test datasets 
undergo feature extraction. We extract 35 new features for 
each image using the proposed feature extraction method. We 
augment these 35 extracted features with the original image 
pixel values to generate a new feature vector for each image. 
This process applies to every image in the training dataset, 
generating a new training dataset that expresses each image as 
a feature vector with 1059 features. We train state-of-the-art 
machine learning classifiers on the train dataset to build 
machine learning models, which we store as pickle files to 
prevent repeated training. We evaluate the performance of 
machine learning classifiers using the test dataset, which 
contains test images that the training model hasn't seen before. 
The machine learning classifiers considered for the evaluation 
are (i) logistic regression, (ii) decision trees, (iii) Naive Bayes, 
(iv) support vector machines (SVM), and (v). Linear 
Discriminant Analysis (vi) Multilayer Perceptron (MLP); (vii) 
Quadratic Discriminant Analysis; (viii) XGBoost.  

Table 3 depicts ML classifiers performance using the 
proposed feature extraction method with three evaluation 
metrics: (i) accuracy, (ii) precision, and (iii) recall. We 
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observed that for the logistic regression model, the detection 
rate for the COVID class is 98.34%, and the overall accuracy 
is 97.18% . In this case, the detection rate for the Normal class 
is 94.07%, resulting in a balanced accuracy of 96.21%. 

 
TABLE 3 

Performance metrics of machine learning classifiers on the test dataset 
consisting of covid and pneumonia spectrogram images using the 
proposed feature extraction 

  

FIGURE 7. Confusion matrix representing binary classification results of 
logistic regression model for covid and pneumonia classes 

 
FIGURE 7 depicts the confusion matrix obtained for the 
logistic regression model for the test dataset consisting of 
covid and pneumonia classes.  FIGURE 8 presents the 
obtained ROC curve for the logistic regression model when 
test dataset is used for prediction. We obtained an AUC area 
of 0.99 for the covid and pneumonia classes, respectively for 
logistic regression model. This shows that the logistic 
regression model is performing equally well with both covid 
and pneumonia classes. Following the logistic regression 
model, we observed that MLP classifier has achieved a disease 
detection rate of 98.61% for the covid class, with a balanced 
accuracy of 91.85%.  

FIGURE 8. ROC plot representing binary classification results of logistic 
regression model for covid and pneumonia classes 

 

FIGURE 9. Confusion matrix representing binary classification results of 
MLP model for covid and pneumonia classes 

 
FIGURE 9 depicts the confusion matrix for MLP classifier 

model for the test dataset. The MLP classifier has achieved a 
balanced accuracy of 95.23%. In terms of accuracy, although 
XGBoost has attained 96.78% accuracy, which is the same as 
MLP, its balanced accuracy is 94.77%, which is less than 
MLP. Overall, the logistic regression model outperforms all 
other classifier models, achieving 97.18% accuracy, 97.8% 
precision, 98.34% sensitivity, and 94.07% specificity. 

 
Use Case 2: Binary Classification Using Normal and 
Pneumonia Spectrogram Images 
We performed the second experiment to evaluate the detection 
performance of state-of-the-art ML classifiers using the 
proposed feature extraction method to investigate how well 
ML classifiers distinguish between pneumonia and normal 
classes, using spectrogram images from chest X-ray images as 
input for machine learning classifiers. We obtained the 
training and testing datasets by carrying out a 90%-10% split 
from the original dataset. Table 4 mentions the class 
distribution of the training and testing datasets.  
 
 

S.No ML Models Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

1 Logistic Regression 97.18   97.8 98.34 

2 Decision Tree 91.15   94.41 93.37 

3 Naive Bayes 72.84   72.83 100 

4 Support Vector 
Machine  

96.58   96.49 98.89 

5 Linear Discriminant 
Analaysis 

93.96   92.78 99.44 

6 Multilayer perceptron 96.78   97.01 98.61 

7 Quadratic Discriminant 
Analysis 

72.84   72.83 100 

8 XG Boost 96.78   96.51 99.17 
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TABLE  4 
Statistics of number of CXR images used from COVID-19 radiography 
dataset to obtain training and testing datasets for binary classification of 
normal and pneumonia  
 

Class Training dataset  Testing dataset Total  
Normal 9172 1020 10192 

Pneumonia 1210 135  1345 
Total 10382 1155 11537 

 
The dataset consisted of 1345 Pneumonia and 10192 

Normal chest X-ray images. For the experimental study, we 
have used the training dataset, which included 1210 
Pneumonia and 9172 Normal chest X-ray images, and the 
testing dataset, which comprised 135 Pneumonia and 1020 
Normal chest X-ray images. The images from both the train 
and test datasets undergo feature extraction. We extract 35 
new features for each image using the proposed feature 
extraction method. We augment these 35 extracted features 
with the original image pixel values to generate a new feature 
vector for each image. This process applies to every image in 
the training dataset, generating a new training dataset that 
expresses each image as a feature vector with 1059 features. 
We evaluated the performance of machine learning classifiers 
using the test dataset, which contains test images that the 
training model hasn't seen before. The machine learning 
classifiers considered for the evaluation are (i) logistic 
regression, (ii) decision trees, (iii) Naive Bayes, (iv) support 
vector machines (SVM), and (v). Linear Discriminant 
Analysis (vi) Multilayer Perceptron (MLP); (vii) Quadratic 
Discriminant Analysis; (viii) XGBoost. 

Table 5 depicts ML classifiers performance using the 
proposed feature extraction method with three evaluation 
metrics: (i) accuracy, (ii) precision, and (iii) recall.  

 
TABLE 5 

Performance metrics of machine learning classifiers on the test dataset 
consisting of normal and pneumonia spectrogram images using the 
proposed feature extraction 

 
The experimental results show that the MLP classifier 

model has achieved 96.62% accuracy, followed by SVM with 
96.54% accuracy. When we consider the accuracy metric, 
MLP achieves the highest accuracy. The accuracy metric does 
not consider the imbalance effect. Therefore, we have also 
analyzed the balanced accuracy of classifiers to determine 
which classifier outperforms the others. We observe that the 
balanced accuracy of SVM, MLP, and logistic regression 
models is 91.29%, 90.69%, and 88.13%, respectively. Among 
all classifier models, SVM proved to be the best classifier, 

which can effectively discriminate between pneumonia and 
normal classes in terms of balanced accuracy. 

 

Figure 10. Confusion matrix representing binary classification results of 
SVM model for normal and pneumonia classes on the test dataset 

Figure 11. ROC plot representing binary classification results of SVM 
model for normal and pneumonia classes on the test dataset 

Figure 12. ROC plot representing binary classification results of MLP 
model for normal and pneumonia classes on the test dataset 
 

S.No ML Models Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

1 Logistic Regression 95.50   82.17   78.52   

2 Decision Tree 91.77   63.89   68.15   

3 Naive Bayes 85.80   44.40   85.19   

4 Support Vector Machine  96.54   85.71   84.44   

5 Linear Discriminant 
Analaysis 

92.47   62.12   91.11   

6 Multilayer perceptron 96.62   87.50   82.96   

7 Quadratic Discriminant 
Analysis 

88.31   NAN 0.00   

8 XG Boost 96.02   83.46   82.22   
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FIGURE 10 displays the confusion matrix the SVM classifier 
produced when performing disease prediction using the test 
dataset containing the Normal and Pneumonia classes. Figure 
11 depicts the ROC curve plot of the SVM classifier model 
obtained for the test dataset. The ROC curves for the SVM 
classifier show that the area under curve (AUC) values for the 
normal and pneumonia classes are 0.99 and 0.99 for the testing 
dataset respectively. We compared AUC values obtained for 
test dataset to train dataset and observed that the model is not 
overfitting.  

Figure 12 depicts the ROC plot for the MLP classifier 
model for normal and pneumonia classes on the test dataset. 
The MLP classifier attained AUC values of 0.99 and 0.99 for 
the normal and pneumonia classes, respectively. We also 
observe that for the train dataset, the MLP classifier attained 
AUC values of 0.99 and 0.99 for the normal and pneumonia 
classes, respectively. The AUC values obtained for the train 
and test datasets in relation to the normal and pneumonia 
classes demonstrate that the model is not overfitting. 

 

SCENARIO-2: BINARY AND MULTI-CLASS 
CLASSIFICATION WITH PROPOSED FEATURE 
EXTRACTION USING CHEST XRAY IMAGES FROM 
COVID-19 CHEST RADIOGRAPHY DATASET 

In the second scenario, we considered the chest X-ray 
images present in the COVID-19 radiography dataset. We 
evaluate the performance of state-of-the-art ML classifiers by 
applying the proposed feature extraction. We consider two use 
cases. The first use case involves binary classification, which 
uses chest X-rays to distinguish between COVID and Normal 
classes. The second use case involves multiclass classification 
to distinguish between Normal, COVID, and Pneumonia 
classes.  

The machine learning classifiers that are considered for 
performance evaluation are (i) decision tree, (ii) naive bayes, 
(iv) support vector machine (SVM), (v) linear discriminant 
analysis, and (vi) multilayer perceptron (MLP). (vii) Quadratic 
discriminant analysis; (viii) XGBoost. We present the results 
of binary classification and multi-class classification for the 
COVID-19 chest radiography dataset in the below mentioned 
use cases. 
USE CASE 1: BINARY CLASSIFICATION USING NORMAL 
AND COVID CHEST X-RAY (CXR) IMAGES  

For this experiment, we have separated Normal and 
COVID CXR images from the original dataset and formed the 
training and testing datasets. The training dataset used for 
experimental study consisted of 9172 normal and 3254 
COVID CXR images, while the testing dataset consisted of 
1020 normal and 362 COVID chest X-ray images, as shown 
in Table 6.  

TABLE 6 
Statistics of number of CXR images used from COVID-19 radiography 
dataset to obtain training and testing datasets for binary classification of 
normal and covid CXR images 

 
 
 
 
 

We have carried power analysis for deciding the sample 
size of the dataset using G*power tool. Since, we are looking 
to assess if this dataset is statistically sufficient, we consider 
the following settings for power analysis: The effect size is 
set as f=0.25 (medium effect size), the value of Alpha (α) is 
set at 0.05 (commonly used significance level), the power 
value denoted by Power (1 - β) is set for 0.80 (80% chance 
of detecting a true effect), number of groups is set to 3 since 
we have two classes (COVID and Normal) in the dataset. 

Using G*Power analysis, we obtained total sample size as 
128 and sample size per group as 64. This means that each 
class in the training and testing datasets should contain at least 
64 images. We performed training dataset analysis by 
comparing the number of images in three classes with the 
sample size given by power analysis. As per power analysis 
test, we need a sample size consisting at least 64 images 
representing each class in the dataset. In our case, we have 
9172 Normal chest x-ray images and 3254 covid chest x-ray 
images. Hence, as per power analysis test, the number of 
images w.r.t each class in the training dataset are sufficient. 
Similarly, in the testing dataset we have we have 1020 Normal 
chest x-ray images and 362 covid chest x-ray images. Hence, 
as per power analysis test, the number of images w.r.t each 
class in the testing dataset are sufficient. Thus, the calculated 
sample size ensures that our study is adequately powered to 
detect significant differences in classification accuracy among 
the three groups, thereby providing a strong statistical basis for 
the research conclusions. 

Table 7 depicts machine learning classifier model’s 
performance using the proposed feature extraction method 
with three evaluation metrics: (i) Accuracy, (ii) Precision, and 
(iii) Area under curve (AUC). The experimental results reveal 
that the XGBoost model achieves 95.37% accuracy, while the 
MLP and SVM classifier models follow with 93.42% and 
93.13% accuracy, respectively. The AUC values for 
XGBoost, SVM, and MLP classifier models are obtained as 
0.99, 0.98, and 0.97, respectively, for the testing dataset.  

Figure 13 shows the confusion matrix that XGBoost 
generates when it performs binary classification using the 
covid and normal CXR images from the test dataset. Figure 14 
displays the ROC plot for the XGBoost classifier model. The 
XGBoost model yields AUC values of 0.99 and 0.99 for 
normal and COVID, respectively, highlighting the importance 
of the proposed feature extraction.  

After XGBoost, the MLP classifier model achieved 
93.42% accuracy. This is followed by SVM model with 
93.13% accuracy. We have also compared the ROC plot for 
Normal and Covid classes obtained using SVM for train and 
test datasets. The ROC plots clearly indicated that the SVM 
model does not exhibit overfitting, as the marginal difference 
between the AUC values for the training and testing datasets 
is only 0.01. This is also true for MLP and XGBoost 
classifiers.  

So, to discriminate between Normal and Covid classes, we 
can use SVM, MLP, and XGBoost models. But, the best 
choice is XGBoost model. 

 
 

 

Class Training dataset Testing dataset Total 
NORMAL 9172 1020 10192 

COVID 3254 362 3616 
Total 12426 1382 13808 
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TABLE 7  
Performance metrics of machine learning classifiers on test dataset 
consisting normal and covid classes using the proposed feature 
extraction method  

 
 
 
 

Figure 13. Confusion matrix representing the binary classification results 
of XGBoost model for Normal and COVID classes on the testing dataset 
 

Figure 14. Confusion matrix representing the binary classification results 
of XGBoost model for Normal and COVID classes on the testing dataset 

 
Table 8 illustrates how MLP, SVM, and XGBoost models 

perform when trained with features obtained using various 
feature extraction methods. Our study looks at how the new 
feature extraction method stacks up against four popular ones: 

(i) Grey Level Cooccurrence Matrix (GLCM), (ii) Histogram 
of Oriented Gradients (HOG), (iii) Local Binary Pattern 
(LBP), and (iv) Principal Component Analysis (PCA). We 
evaluate the performance of three classifiers, MLP, SVM, and 
XGBoost, using the features extracted from both the proposed 
and conventional feature extraction methods. The results 
presented in Table 8 clearly demonstrate that the performance 
of all three ML classifiers, MLP, SVM, and XGBoost, when 
using the proposed feature extraction outperforms the 
traditional feature extraction methods. The results demonstrate 
the importance of the proposed method for feature extraction 
in COVID diagnosis, particularly when using normal and 
Covid CXR images for disease detection.  

 
TABLE 8  

Performance comparison of proposed feature extraction method to state-
of-the-art feature extraction methods using MLP, SVM, XGBoost 
classifiers 

 
Figure 15 depicts the ROC plot obtained for MLP 

classifier when the model is trained by using the features 
extracted using GLCM feature extraction method. The AUC 
values for COVID and Normal classes are obtained as 0.82 
and 0.82 respectively.  

. 

 
Figure 15. ROC plot obtained for MLP classifier using GLCM feature 
extraction for COVID detection w.r.t test dataset 

 
Figure 16 depicts the ROC plot obtained for MLP 

classifier when the model is trained by using the features 
extracted using HOG feature extraction method. The AUC 
values for COVID and Normal classes are obtained as 0.93 
and 0.93 respectively. Figure 17 depicts the ROC plot obtained 
for MLP classifier when the model is trained by using the 
features extracted using LBP feature extraction method. The 

S.No ML Models Accuracy 
(%) 

Precision 
(%) 

AUC 

1 Logistic Regression 85.89 76.34 0.92 

2 Decision Tree 85.89 72.51 0.82 

3 Naive Bayes 70.98 46.52 0.74 

4 Support Vector Machine 93.13 89.61 0.98 

5 Linear Discriminant 
Analaysis 

84.88 73.39 0.90 

6 Multilayer perceptron 93.42 85.56 0.97 

7 Quadratic Discriminant 
Analysis 

78.29 63.60 0.70 

8 XG Boost 95.37 93.57 0.99 

S.No Feature 
Extraction/ 
Feature Selection 

MLP 
Accuracy 

(%) 

SVM 
Accuracy 

(%) 

XGBoost 
Accuracy 

(%) 
1 GLCM 77.42 78.73 80.25 

2 HOG 88.35 90.44 87.91 

3 LBP 79.23 78.72 79.37 

4 PCA 89.65 89.50 89.87 

5 Proposed Feature 
Extraction Method 

93.42 93.13 95.37 
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AUC values for COVID and Normal classes are obtained as 
0.84 and 0.84 respectively.  

 
Figure 16. ROC plot obtained for MLP classifier using HOG feature 
extraction for COVID detection w.r.t test dataset 

 

 
Figure 17. ROC plot obtained for MLP classifier using LBP feature 
extraction for COVID detection w.r.t test dataset 

 

 
Figure 18. ROC plot obtained for MLP classifier using PCA feature 
extraction for COVID detection w.r.t test dataset 

 
Figure 18 depicts the ROC plot obtained for MLP 

classifier when the model is trained by using the features 
extracted using PCA. In case of PCA, AUC values are 
obtained as 0.95 and 0.95 for COVID and Normal classes.  

Figure 19 depicts the ROC plot obtained for MLP classifier 
when the model is trained by using the features extracted with 
proposed feature extraction method. The AUC values for 
COVID and Normal classes are obtained as 0.98 and 0.98 
respectively. All these ROC results show that the performance 
of the MLP classifier is better when the model is trained and 
tested using the features extracted with proposed feature 
extraction when compared to the features extracted using the 
existing state-of-the-art feature extraction methods 
This is also the case for SVM and XGBoost models. We now 
present the multi-class classification performance of the 
classifiers when the proposed feature extraction method is 
employed for discriminating between normal, covid and 
pneumonia classes. 
 

 
Figure 19. ROC plot obtained for MLP classifier using proposed feature 
extraction for COVID detection w.r.t test dataset 

 
USE CASE 2: MULTICLASS CLASSIFICATION USING 
NORMAL AND COVID CHEST X-RAY (CXR) IMAGES  

We now present the results of multiclass classification 
obtained when the classifiers are trained using the features 
extracted with the proposed feature extraction method and 
some of the widely used feature extraction and feature 
selection methods in the literature. For experimental analysis, 
the original dataset is split into two subsets of training and test 
datasets by making a 90%-10% split. So, 90% of the dataset is 
used for training the classifiers, and 10% of the dataset is used 
for testing the performance of classifiers trained using features 
extracted with and without the proposed feature extraction 
method. We have ensured that the images present in the test 
dataset are unseen CXR images during training. The details of 
training and testing datasets are already described in Table 1.  

Table 9 depicts ML classifiers performance using the 
proposed feature extraction method for multiclass 
classification with three evaluation metrics: (i) accuracy, (ii) 
macro precision, and (iii) macro f-score. All ML classifiers are 
trained using the features obtained by applying the proposed 
feature extraction method and then the learned models are 
used to test the performance of these classifier models on the 
test dataset.  
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TABLE 9  

Performance metrics of machine learning classifiers on test dataset 
consisting normal, pneumonia and covid classes using the proposed 
feature extraction method  

 
From the experimental study, as depicted using Table 9, it 

is observed that the XGBoost model achieved 94.07% 
accuracy which is the highest among all classifiers. This is 
followed by MLP classifier having 92.49% and SVM 
classifier with 92.09% accuracy.  

Figure 20. Confusion matrix obtained for XGBoost model for multiclass 
classification  

 
Figure 20 and Figure 21 depicts the respective confusion 

matrix and ROC plot for XGBoost model. ROC analysis is 
less sensitive to class imbalances compared to accuracy. This 
makes it a reliable metric when evaluating models on datasets 
where some classes are significantly underrepresented. From 
the ROC plot depicted for test dataset in the Figure 21, it can 
be observed that the AUC values for Normal, Covid and 
Pneumonia classes are 0.99, 0.99 and 1.00 respectively. These 
AUC values and the curves for respective class approaching 
the top-left corner indicates better performance in 
distinguishing that class.  

 

  
Figure 21. ROC plot obtained for XGBoost classifier using proposed 
feature extraction for multiclass classification w.r.t test dataset 

 
The significance of the proposed feature extraction 

method is compared by considering four widely applied 
feature extraction methods: (i) Grey Level Cooccurrence 
Matrix (GLCM), (ii) histogram of oriented gradients (HOG), 
(iii) Local Binary Pattern (LBP), Linear Discriminant 
Analysis, principal component analysis (PCA), and three 
feature selection techniques (i) Information Gain (IG), (ii) 
Chi-Square (CHI-SQ), and (iii) Correlation Coefficient 
(Corr.Coeff).  Table 10 depicts the performance of MLP, 
SVM, and XGBoost classifiers using the proposed feature 
extraction method and some of the widely used state-of-the-
art feature extraction and feature selection methods in the 
literature. 

TABLE 10  
Multiclass classification performance comparison of proposed feature 
extraction method to state-of-the-art feature selection and feature 
extraction methods considering MLP, SVM, XGBoost classifiers 

 
The accuracies achieved by MLP, SVM and XGBoost 

classifiers with the proposed feature extraction 92.55%, 
92.09% and 94.07% respectively. It is evident from the results 
that the performance of all three ML classifiers (SVM, MLP, 
and XGBoost) using the proposed feature extraction is better 
when compared to the traditional feature extraction and feature 
selection methods. Figure 22 presents the comparison of 
accuracy values obtained for the MLP classifier using various 
feature extraction and selection methods. The results prove the 

S.No ML Models Accuracy 
(%) 

Macro 
Precision 

(%) 

Macro 
F-Score 

1 Logistic 
Regression 

84.4 82.78 0.8135 

2 Decision 
Tree 

82.86 77.42 0.7772 

3 Naive Bayes 65.13 59.72 0.6577 

4 Support 
Vector 

Machine 

92.09 92.18 0.904 

5 Linear 
Discriminant 

Analaysis 

83.52 80.44 0.7947 

6 Multilayer 
perceptron 

92.49 91.46 0.9028 

7 Quadratic 
Discriminant 

Analysis 

71.19 NAN NAN 

8 XG Boost 94.07 93.05 0.9247 

S.No Feature 
Extraction/ 

Feature Selection 

MLP 
Accuracy 

(%) 

SVM 
Accuracy 

(%) 

XGBoost 
Accuracy 

(%) 
1 GLCM 72.45 72.25 72.91 

2 HOG 89.65 87.61 87.54 

3 LBP 74.42 75.48 74.49 

4 PCA 88.60 87.15 89.06 

5 LDA 81.74 81.34 81.67 

6 IG 92.09 90.18 93.34 

7 CHI-SQ 88.86 87.87 91.69 

8 CORR. COEFF 91.89 92.22 93.67 

9 Proposed Method 92.55 92.09 94.07 
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significance of the proposed method for feature extraction 
even when multiclass classification is considered. 

 

Figure 22. Performance comparison of MLP classifier for various feature 
extraction methods  

VII. DISCUSSIONS  
From the experimental analysis and study presented in 
section VII, the following insights are obtained. We present 
the findings and insights in detail for each use case in both 
scenarios considered.  

When we have to discriminate between COVID and 
Pneumonia chest x-ray images for disease detection, logistic 
regression is the best model considering a balance of 
accuracy (97.18%), precision (97.80%), and good recall 
(98.34%). Other high-performing models: Multilayer 
Perceptron and XGBoost (96.78%). XGBoost and 
Multilayer Perceptron also perform well, making them 
suitable alternatives depending on the specific needs of the 
application (e.g., complexity vs. interpretability). 

When we have to discriminate between Normal and 
Pneumonia chest x-ray for disease detection, the Multilayer 
Perceptron (96.62%) has the highest accuracy, closely 
followed by Support Vector Machine (96.54%) and 
XGBoost (96.02%). Multilayer Perceptron (87.50%) leads in 
precision, suggesting it has a high rate of true positives 
among the predicted positives. Also, Multilayer Perceptron 
has the best accuracy and precision, making it a robust option 
for tasks where both true positive identification and correct 
classification of positives matter. 

When we have carried experimental analysis to 
discriminate between Normal and COVID chest x-ray for 
disease detection, XGBoost (95.37%) demonstrates the 
highest accuracy, indicating it effectively classifies most 
instances correctly. Multilayer Perceptron (93.42%) and 
Support Vector Machine (93.13%) also show strong 
accuracy. XGBoost (93.57%) leads in precision, suggesting 
it has a high rate of true positives among its positive 
predictions. In conclusion, XGBoost is the most effective 
model among those evaluated, exhibiting strong 
performance in accuracy, precision, and AUC. Support 
Vector Machine and Multilayer Perceptron provide solid 
alternatives. 

The findings of comparative analysis of state-of-the-art and 
proposed feature extraction methods for discriminating 

between Normal and COVID CXR images using MLP, SVM 
and XGBoost Models are as follows : The Proposed Feature 
Extraction Method stands out significantly, outperforming 
all other methods in all three models, with XGBoost 
achieving an accuracy of 95.37%. PCA and HOG also show 
robust performance, especially with SVM, but do not match 
the effectiveness of the proposed method. GLCM and LBP 
provide the least accuracy, suggesting that these methods 
may not be the best for this particular classification task. We 
recommend to utilize the proposed feature extraction method 
for maximum accuracy across all machine learning models. 
The analysis shows that the proposed feature extraction 
method significantly enhances model accuracy, particularly 
with XGBoost. HOG and PCA also provide strong 
performance and can be useful in various contexts, while 
GLCM and LBP are less effective for the given classification 
tasks. 

The findings of the experimental study carried to 
discriminate between Normal, Pneumonia and COVID chest 
x-ray images for multiclass classification are as follows: 
XGBoost (94.07%) shows the highest accuracy, indicating 
that it correctly classifies the majority of instances. 
Multilayer Perceptron (92.49%) and Support Vector 
Machine (92.09%) also perform strongly. XGBoost 
(93.05%) leads in macro precision, indicating a high rate of 
true positives across classes. Support Vector Machine 
(92.18%) and Multilayer Perceptron (91.46%) also 
demonstrate robust precision. XGBoost (0.9247) excels in 
macro F-score, which balances precision and recall, making 
it a strong model for multi-class classification. The other 
notable models Support Vector Machine (0.904) and 
Multilayer Perceptron (0.9028) also achieve high F-scores. 
XGBoost stands out as the best model, excelling in all 
metrics (accuracy, macro precision, and macro F-score). In 
conclusion, XGBoost is the most effective model among 
those evaluated, demonstrating superior performance in 
accuracy, macro precision, and macro F-score. Support 
Vector Machine and Multilayer Perceptron also provide 
solid alternatives. Naive Bayes should be approached with 
caution, and further analysis is needed for Quadratic 
Discriminant Analysis. 

The findings of the experimental study carried for 
comparative analysis of state-of-the-art and proposed feature 
extraction methods for discriminating normal, pneumonia 
and COVID CXR images using MLP, SVM and XGBoost 
Models are as follows: The proposed method stands out as 
the best feature extraction technique, achieving the highest 
accuracy in all models, particularly with XGBoost (94.07%). 
IG, CORR. COEFF, and CHI-SQ also provide high 
accuracy, making them effective choices for feature 
selection. PCA and HOG demonstrate robust performance 
but do not reach the highest levels of GLCM and LBP show 
the least effectiveness, suggesting they may not be suitable 
for this classification task. Optimal Choice is to use the 
proposed method for the best accuracy and performance 
across all models. In conclusion, the proposed feature 
extraction method significantly enhances model accuracy, 
especially with XGBoost. Information Gain, Chi-Squared, 
and Correlation Coefficient also provide strong performance. 
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In contrast, GLCM and LBP are less effective for the given 
classification tasks. 

Now, we present a detailed comparison with some of the 
most recent research studies in the literature. The Table 11 
presents a comparative study which considers the 
performance of the proposed method with state-of-the-art 
machine learning and deep learning studies that are carried 
on binary classification using COVID-19 and normal chest 
x-ray images. The attributes considered for comparative 
analysis are (i) ML/DL model (ii) Accuracy (iii) Precision 
(iii) Recall (iv) Specificity and (v) Balanced accuracy.   
Table 12 presents the performance comparison done by 
considering various studies w.r.t. pneumonia detection when 

binary classification is performed using COVID-19 and 
pneumonia images. The comparison is done by comparing 
the accuracy values obtained in the respective research 
studies. From these studies, it is evident that proposed feature 
extraction method aided ML classifier to achieve better 
accuracy when compared to state-of-the-art research studies. 
In case of binary classification with COVID and Normal 
CXR images, XGBoost achieved 95.37% accuracy using the 
proposed feature extraction method. In case of binary 
classification w.r.t Pneumonia and Covid CXR images, 
logistic regression model attained 97.18% accuracy. 

 

  

The practical applications of the proposed method in 
clinical settings and how these methods could be 
implemented in practice are presented below. 

The proposed matrix conjugacy technique can extract 
features from chest X-rays for disease diagnosis. The method 
could enhance the detection of pneumonia by identifying 

TABLE 11 
Performance comparison with various state-of-the-art ML/DL models in the literature for 

discriminating between covid-19 and normal chest radiography images 
S.No Literature Year ML/DL model Accuracy Precision Sensitivity Specificity Bal. Acc 

1 Nikolaou et al. [1] 2021 Model with feature extraction 91.53% 81.81 87 93.13 90.06 

2 Nikolaou et al [1]  2021 Model with Fine tuning - 
EfficientNetB0 (hybrid CNN pre-
trained EfficientNetB0 network 

with a dense layer (32 neurons) ) 

94.93% 91.01 89.5 96.86 93.18 

3 Panwar et al. [3] 2020 CNN with nCovnet 88.10% 82% 97.62% 78.57% 88.09 

4 Abdullah et al. [5] 2024 Hybrid deep learning 
model(average pooling layer)-
SVM (linear) - 4096 features 

92% 93% 89.55% 96.29% 92.92 

5 Abdullah et al. [5] 2024 Hybrid deep learning model 
(average pooling layer)-NN with 

4096 feature size 

92% 93% 98.68% 77.77% 88.22 

6 Ismael et al. [6] 2020 ResNet50 Features + SVM 94.70% N/A N/A N/A N/A 

7 Manjurul Ahsan et al. [9] 2020 NasNetMobile 93.94%% N/A N/A N/A N/A 

8 Lawrence et al. [10] 2020 VGG16 + Resnet50 + custom 
CNN 

89.20% N/A N/A N/A N/A 

9 Jawad Rasheed et al. [21] 2021 LR model at variance of 1 95.2% 1 90.47% 1 95.23 

10 Chow LS et al. [22] 2023 VGG-16 94.3% 93.3% 95.2% - - 

11 El Houby et al. [23] 2024 VGG-19 95% - 96% 94% 95 

12 Our Method 2024 XGBoost using proposed feature 
extraction 

95.37% 93.57% 88.39% 97.84% 93.39 

 
TABLE 12  

Performance comparison with various state-of-the-art ML/DL models in the literature  
for discriminating between COVID-19 and pneumonia   

S.No Literature Method Accuracy 

1 Oh et al.  [31] Patch based CNN 97.4% 

2 Ronneberger  et 
al. [32] [31] 

U-Net 85.9% 

3 S. Jegou   et al. 
[33] [31] 

FC-DenseNet67 81.8% 

4 Lobo Torres et al 
[34] [31] 

FC-DenseNet 013 88.9% 

 
 
 

5 

 
 
 

Our Method 

Logistic Regression with 
spectrograms using proposed feature 
extraction (Also, (MLP or XGBoost) 

97.18% 

MLP and XGBoost with spectrogram 
images and proposed feature 

extraction  

96.78% 

SVM with spectrogram images and 
proposed feature extraction 

96.58% 

 

https://jeeemi.org/index.php/jeeemi/index


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 7, No. 1, January 2025, pp: 56-79;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                                 77               

subtle patterns in lung images that traditional methods might 
miss. Advanced features could improve differentiation 
between COVID-19 pneumonia and other types of 
pneumonia. Thus, the proposed feature extraction method in 
clinical settings can improve diagnostic accuracy, improve 
workflow efficiency, and support research. By addressing 
challenges and utilizing advanced techniques, these methods 
contribute to better patient care, optimized clinical practices, 
and medical technology advancements. 

Another application could be automated screening and 
workflow integration by developing automated diagnostic 
systems through integrating new features into automated 
diagnostic tools. The diagnostic tools can automatically 
screen large volumes of X-ray images to identify potential 
cases of pneumonia or COVID-19. Also, features can be 
used in decision support systems that provide radiologists 
with recommendations based on the analysis. 

Feature extraction is essential for improving the 
efficiency of machine learning models in the field of image 
classification, especially in medical diagnostics like COVID-
19 identification from chest X-ray images. A foundational 
aspect of this study is grounded in the principles of matrix 
conjugacy, which serves as a theoretical framework for 
understanding the behavior of images as mathematical 
entities. 

Matrix conjugacy refers to the relationship between 
matrices that can be transformed into each other through a 
similarity transformation. This concept is pivotal in linear 
algebra, where it illustrates how different representations of 
data can yield equivalent properties while providing insights 
into underlying structures. In the context of image 
processing, matrices represent pixel values, and their 
properties such as rank, determinant, trace, and eigenvalues 
can significantly influence the interpretability and 
performance of feature extraction methods. By employing 
matrix conjugacy in our proposed feature extraction 
methods, we can harness the inherent relationships between 
different features derived from chest X-ray images. This 
approach allows for a more nuanced understanding of the 
image data, enabling the identification of crucial patterns that 
contribute to distinguishing between classes such as normal, 
pneumonia, and COVID-19. The anticipated impact of 
incorporating matrix conjugacy into feature extraction is 
twofold: first, it enhances the robustness of the extracted 
features by ensuring that they capture essential variations in 
the data. Second, it facilitates a deeper comprehension of the 
mathematical properties that govern the data, ultimately 
leading to improved diagnostic accuracy. 

By grounding our study in this theoretical framework, we 
provide a solid foundation for understanding the significance 
of our proposed methods and their potential to enhance 
machine learning performance in medical imaging. 

Potential class imbalance and the need for additional 
validation in diverse populations limit this study, even 
though it offers significant insights. Our feature extraction 
method is limited to extraction of (n+3) properties from an 
image matrix. There is a scope to extract some more 
representative image features which could aid in improving 
detection performance. Because of the limitations in 

capturing nonlinear interactions, it is necessary to create 
more advanced algorithms, including machine learning 
techniques that can better simulate the complexity inherent 
in medical imaging. 

VIII. FUTURE RESEARCH DIRECTIONS 
The future of research in medical imaging, particularly with 
the use of advanced machine learning (ML) and feature 
extraction techniques, holds immense promise. Here are 
some key areas where future research could have a 
significant impact. One of the key research areas which the 
researchers could focus is on the development of advanced 
feature extraction techniques. Improved feature extraction 
methods can lead to more accurate and early detection of 
diseases. Better features can help tailor treatments based on 
individual patient profiles. The future research directions are 
as follows: (i) There is a possibility for exploring new 
methods to extract high-dimensional and more abstract 
features from medical images that can capture subtle patterns 
and important variations which are not visible in 
conventional analysis. (ii) New ways for investigating the 
application of advanced matrix similarity and conjugacy 
concepts to derive novel features that can improve diagnostic 
accuracy can be proposed.  

Building explainable AI models could be another 
research focus. Better interpretability will make ML models 
more acceptable in clinical settings. Clinicians will be able 
to understand the basis for model predictions, leading to 
better decision-making. Future Research Directions could be 
developing methods to make complex ML models more 
interpretable and understandable for clinicians, helping them 
trust and validate model predictions.  

IX. CONCLUSIONS 
This study aimed to explore the effectiveness of using matrix 
similarity properties for feature extraction in the binary 
classification and multiclass classification of chest X-ray 
images, specifically distinguishing between normal, 
COVID-19, and pneumonia cases. The results indicated that 
the application of matrix similarity properties significantly 
enhanced classification performance, achieving an overall 
accuracy of 95.37% when binary class classification is 
performed using XGBoost to discriminate between COVID 
and Normal chest xray images. XGBoost model also 
performed better in multiclass classification achieving an 
accuracy of 94.07% with a 93.05% macro precision. The 
model demonstrated strong precision, f-score highlighting its 
robustness in distinguishing between the different 
conditions. Logistic regression model achieved 97.18% 
accuracy, a precision of 97.8% and a 98.34% recall in 
discriminating between COVID and Pneumonia chest xray 
images. These findings suggest that incorporating matrix 
similarity techniques into diagnostic frameworks can 
improve the accuracy and efficiency of respiratory disease 
detection. This advancement could assist healthcare 
practitioners in making timely and informed decisions, 
particularly in critical situations such as the COVID-19 
pandemic. Given the model's promising results, there is a 
strong case for healthcare policymakers to consider 
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integrating such analytical methods into routine diagnostic 
protocols. This could optimize resource utilization and 
enhance patient outcomes during respiratory disease 
outbreaks. While this study provides significant insights, it 
is limited by potential class imbalance and the need for 
further validation in diverse populations. Future research 
should focus on expanding the dataset size and exploring 
additional features to refine the classification model further. 
In conclusion, this study underscores the potential of matrix 
similarity properties as a powerful tool for feature extraction 
in multiclass classification tasks, ultimately contributing to 
improved diagnostic accuracy and more effective healthcare 
delivery in response to ongoing public health challenges. In 
future, we wish to extend the present work to carry multiclass 
classification and propose new feature extraction and 
selection algorithms as a future study. 
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