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ABSTRACT The Electrocardiogram (ECG) stands as a pivotal tool in cardiovascular disease diagnosis, widely embraced 
within clinical domains for its simplicity and effectiveness. This paper presents a novel method for classifying ECG signals by 
leveraging deep learning techniques, specifically Long Short-Term Memory (LSTM) networks enhanced with an attention 
mechanism. ECG signals encapsulate vital insights into cardiac activities and abnormalities, underscoring the importance of 
precise classification for diagnosing heart conditions. Commonly, there are five primary classes: Normal (N) representing 
normal sinus rhythm, Atrial Fibrillation (AFib) indicating irregular and often rapid heart rate, Ventricular Fibrillation (VFib) 
involving disorganized electrical activity causing the ventricles to quiver, Ventricular Tachycardia (VT) characterized by a fast 
heart rhythm originating from the ventricles, and Premature Ventricular Contractions (PVC) which are early heartbeats 
originating in the ventricles. Conventional methods often confront with the intricate variability of ECG signals, prompting the 
exploration of sophisticated machine learning models. Within this framework, an attention mechanism is seamlessly integrated 
into the LSTM architecture, dynamically assigning significance to different segments of the input sequence. This adaptive 
mechanism permits the model to focus on relevant features for classification, thereby bolstering interpretability and 
performance by highlighting crucial aspects within the ECG signals. Experiments conducted on the MIT/BIH dataset have 
yielded compelling findings, boasting an impressive overall classification accuracy of 98.9%. Precision stands at 0.993, recall 
at 0.992, and the F1 score at 0.99, underscoring the robustness of the results. These findings underscore the potential of the 
proposed methodology in significantly enhancing ECG signal analysis, thereby facilitating more accurate diagnosis and 
treatment decisions in the realm of cardiac healthcare.  

INDEX TERMS Electrocardiogram (ECG), Long Short-Term Memory (LSTM), Attention Mechanism, Deep learning, 
Accuracy. 

I. INTRODUCTION The electrocardiogram (ECG) stands as a cornerstone in the 
field of cardiology, offering vital diagnostic insights into the 
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heart's electrical activity. It serves as an essential tool for 
detecting and monitoring cardiovascular diseases, 
empowering clinicians to make informed decisions regarding 
patient care and treatment approaches [1]. Traditionally, the 
interpretation of ECG signals has relied on manual analysis 
by experienced cardiologists, a process prone to subjectivity 
and human error. With the advent of deep learning techniques, 
predominantly Long Short-Term Memory (LSTM) networks 
and attention mechanisms, there has been a paradigm shift in 
the automated analysis of ECG signals. These advanced 
machine learning methodologies offer the potential to 
overcome the challenges posed by the complexity and 
variability of ECG data, enabling more accurate and efficient 
classification of cardiac conditions [2, 3]. 

Cardiovascular disease stands as the leading cause of 
mortality worldwide typical classes include Normal (N), 
Atrial Fibrillation (AFib), Ventricular Fibrillation (VFib), 
Ventricular Tachycardia (VT), and Premature Ventricular 
Contractions (PVC), claiming the lives of approximately 17.9 
million individuals annually and constituting 31% of all 
global deaths [4]. This alarming statistic underscores the 
profound threat posed by cardiovascular ailments to human 
life and well-being. In response to this pressing public health 
challenge, the need for effective diagnostic tools and 
interventions has never been more urgent. Among the array of 
diagnostic modalities, the electrocardiogram (ECG) emerges 
as a cornerstone of noninvasive cardiac assessment [5]. By 
capturing the electrical changes occurring throughout the 
cardiac cycle, ECG signals offer invaluable insights into heart 
function and pathology. Recorded easily via surface 
electrodes, ECG analysis [6] empowers clinicians to swiftly 
detect and characterize heart abnormalities, thereby 
facilitating timely interventions that can prolong life and 
enhance quality of life over suitable treatment. In essence, the 
widespread adoption of ECG technology represents a crucial 
stride in the fight against cardiovascular disease. Its role in 
enabling early detection and intervention cannot be 
overstated, as it not only aids in saving lives but also serves as 
a pivotal instrument in improving overall patient outcomes 
and mitigating the burden of cardiovascular morbidity and 
mortality [7, 8]. FIGURE 1 shows the signal band of 
electrocardiogram. 

FIGURE 1. ECG signal band 
 
In recent times, a wide range of machine learning methods 

have been employed to analyze ECG signals, encompassing 

decision trees, support vector machines, and hidden Markov 
models. Key to the success of these techniques is the 
extraction of discriminative insights from raw ECG data, 
often termed as feature extraction [9]. These methods for 
feature extraction can be broadly divided into two categories: 
manual methods and automatic methods. Manual approaches 
heavily lean on the expertise of cardiologists and domain-
specific medical knowledge. These methods rely on the 
meticulous examination and interpretation of ECG signals by 
trained professionals, who identify and extract relevant 
features based on their clinical understanding of cardiac 
physiology and pathology [10, 11]. 

This study presents an innovative approach to classify ECG 
signals using deep learning, employing LSTM networks 
bolstered by an attention mechanism. By integrating an 
attention mechanism, the model gains the ability to emphasize 
significant features, thereby enhancing both interpretability 
and performance. Meanwhile, the inclusion of LSTM 
networks facilitates the capture of extensive dependencies 
inherent in sequential ECG data [12]. 

LSTM networks, a subset of recurrent neural networks 
(RNNs), are adept at capturing intricate dependencies over 
long sequences of data. They tackle the challenges of 
vanishing and exploding gradients, enabling effective 
modeling of long-term relationships in sequential data [8]. 
Initially proposed by Hochreiter & Schmidhuber, subsequent 
research has refined LSTM models, making them prevalent 
across various machine learning applications [13]. LSTMs 
feature specialized gates (forget, input, output) in each cell, 
regulating information flow for effective memory retention. 
These gating mechanisms enhance LSTM's ability to capture 
and leverage essential temporal dependencies, making them 
pivotal in scientific and machine learning tasks. Their 
adaptability and memorization capabilities have positioned 
LSTMs as a cornerstone technology in the field [14]. FIGURE 
2 represents the schematic of a basic LSTM cell. 
 

  

FIGURE 2. Schematic of a basic LSTM cell 
 
The attention mechanism represents a significant 

breakthrough in the area of deep learning, initially devised to 
refine the functionality of encoder-decoder models primarily 
in the context of machine translation [15]. Its core principle 
involves selectively prioritizing and focusing on the most 
pertinent elements within an input sequence, akin to how 
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humans filter out background noise to concentrate on a 
specific conversation amidst a crowded room [16]. This 
mechanism draws a conceptual parallel to the brain's 
neurological system, which naturally prioritizes relevant 
stimuli while disregarding distractions. The attention 
mechanism in neural networks enables the selective 
prioritization of different parts of the input sequence, allowing 
for adaptive focus on specific segments based on their 
relevance. This adaptive allocation of attention significantly 
amplifies the model's capability to capture essential 
information, a crucial aspect across a spectrum of 
applications. In natural language processing (NLP), for 
instance, attention proves indispensable in aligning pertinent 
portions of a source sentence during translation or question-
answering tasks, thereby enhancing the overall accuracy and 
fluency of the output [17]. 

Beyond NLP, attention mechanisms yield substantial 
benefits in computer vision as well. A prominent example is 
Google Streetview's precise identification of house numbers, 
where attention mechanisms play a pivotal role in accurately 
recognizing and interpreting relevant visual features. This 
underscores the versatility of attention mechanisms across 
diverse domains, transcending linguistic and visual modalities 
to drive significant advancements in model performance and 
interpretability [18]. The significance of understanding the 
attention mechanism lies in its widespread applicability and 
transformative potential across various deep learning 
architectures [19].  

By delving into its types, applications, and advantages, 
practitioners can harness its capabilities to enhance the 
performance of models in a multitude of tasks. Moreover, 
practical implementation of attention mechanisms in 
frameworks like TensorFlow offers a hands-on approach to 
leverage this powerful tool effectively. The attention 
mechanism continues to be a fundamental component in 
advancing the performance and interpretability of models, 
whether they are deployed in sequence-to-sequence 
architectures like recurrent neural networks (RNNs), Long 
Short-Term Memory (LSTM) networks, or Transformer 
models [20]. Its adaptability to different domains, including 
computer vision, biomedical signal processing and natural 
language processing, underscores its status as a pivotal tool in 
the arsenal of deep learning practitioners, promising 
continued innovation and refinement in the field. The 
following are the major contributions, 
1. Our proposed project utilizes a deep learning RNN-

LSTM classification algorithm to accurately predict 
outcomes. 

2. A sophisticated signal decomposition technique 
employing advanced wavelet transform and a newly 
developed multi-resolution wavelet analysis to achieve 
improved signal decomposition. 

3. The proposed method involves extracting initial baseline 
by calculating the mean value of the ECG signal. This 
mean value serves as a reference point for detecting 
deviations that correspond to the P-QRS-T peaks. 

 
II.    PROPOSED MODEL 
A.  MATERIALS & METHODS 
The dataset (https://physionet.org/content/afdb/1.0.0/).  
indicates that Normal is the predominant category, with 
90,589 instances. Following that, there are 8,039 instances of 
Fusion of paced and normal, 7,236 instances of Premature 
ventricular contraction, and 2,779 instances of Atrial 
Premature. Additionally, there are 803 instances of Fusion of 
ventricular and normal. These findings are invaluable for 
enhancing the accuracy of cardiovascular diagnoses. The 
diagrammatic representation of the proposed model is shown 
in FIGURE 3 and FIGURE 4. 

B. PRE-PROCESSING OF SIGNAL 
The input ECG signal, as shown in FIGURE 5, first enters the 
pre-processing stage. In this stage, noise elimination is 
performed using a two-step filtering process. The first step 
involves a 4th order Butterworth low pass filter with a cutoff 
frequency of 40 Hz. This filter effectively removes high-
frequency noise from the signal. The second step uses a 4th 
order Butterworth high pass filter with a cutoff frequency of 
0.5 Hz, which removes low-frequency noise [21]. The 
Butterworth filter is particularly useful for this application due 
to its ability to provide high precision filtering. It allows both 
low-frequency and high-frequency components of the signal 
to pass through within the predefined range. 

 
FIGURE 3. Proposed model work flow 

 
One of the main benefits of using the Butterworth filter is that 
it preserves the important information within the ECG signals 
while only eliminating unwanted noise. This ensures that the 
essential characteristics of the ECG signal are maintained, 
which is crucial for accurate analysis and interpretation [22]. 
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The effectiveness of this noise elimination process can be seen 
in the resulting noise-free ECG signal, which is depicted in 
FIGURE 6. The clean signal highlights the success of the 
filtering process in retaining the integrity of the original ECG 
signal while removing the additive noise. 
 

 

FIGURE 4. Proposed RNN-LSTM classifier system 
 

 
FIGURE 5. Input ECG signal 

 

 
FIGURE 6. Noise removed signal 

 
C. DECOMPOSITION OF ECG SIGNAL 
The Wavelet Transform (WT) is a powerful tool extensively 
used to analyze signals that vary over time. Unlike the 
classical Fourier Transform (FT), which represents a signal as 
a sum of sinusoids to provide a global frequency content, WT 
offers a more flexible and intuitive approach. The Fourier 
Transform can be limited in its ability to provide detailed 
insights into signals, especially when they are non-stationary 
or have transient features [23]. WT overcomes these 
limitations by decomposing signals into components at 
various scales, allowing for multi-resolution analysis. This 
means that WT can zoom in on small, detailed features of a 
signal at high frequencies while also capturing broad, long-
term trends at low frequencies. This decomposition enables 
the examination of both frequency and time characteristics 
simultaneously, making WT exceptionally suitable for 
analyzing signals that change over time [24]. Different scales 
of decomposition can be chosen depending on the specific 
goals of the signal processing task. For example, high-
resolution scales may be used for detecting sharp transitions 
or high-frequency components, while lower resolution scales 
can be used for analyzing slower, more gradual changes. This 
adaptability makes WT a versatile tool in various applications, 
from medical signal processing to engineering and beyond 
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[12]. The wavelet coefficients and its approximations are 
represented [5] in Eq. (1) and Eq. (2). 

𝑾∅[𝒋𝟎, 𝒌] =
𝟏
√𝑴
∑ 𝒙[𝒏]∅𝒋𝟎,𝒌[𝒏]𝒏    (1) 

𝑾𝝍[𝒋, 𝒌] =
𝟏
√𝑴
∑ 𝒙[𝒏]𝝍𝒋,𝒌[𝒏],𝒏 		𝒇𝒐𝒓𝒋 ≥ 𝒋𝟎  (2) 

where, 𝑾∅[𝒋𝟎, 𝒌] and 𝑾𝝍[𝒋, 𝒌] are the approximation 
coefficients and detail coefficients, respectively, and the 
inverse DWT [5] is given by Eq. (3). 

𝒙[𝒏] = 	 𝟏
√𝑴
∑ 𝒙[𝒏]∅𝒋𝟎,𝒌[𝒏]𝒏 +

	 𝟏
√𝑴
∑ 𝒙[𝒏]𝝍𝒋,𝒌[𝒏],𝒏 		𝒇𝒐𝒓𝒋 ≥ 𝒋𝟎    (3) 

 
FIGURE 7.  Wavelet Decomposition 

The continuous wavelet transform involves taking the mother 
wavelet ψ(x) and scaling it by a factor a and shifting it by a 
parameter 𝑏. The scaling operation allows us to analyze 
different frequency components of the input function f(x), 
while the shifting operation enables us to examine the 
function at various positions [25]. Mathematically, the CWT 
is obtained by integrating the product of the input function f(x) 
and the scaled and shifted wavelet 𝜓((𝑥−𝑏)/𝑎) ψ((x−b)/a) over 
all 𝑥. This process generates a new function that depends on 
both the scaling factor 𝑎 and the shifting parameter 𝑏, 
providing a comprehensive analysis of the input function's 
behavior across different scales and locations [26]. The Eq. 
(4) and Eq. (5) represents the mother wavelet transformation 
[5]. The diagrammatic representation of wavelet transform is 
shown in FIGURE 7 and FIGURE 8. 

𝑻𝝍(𝒋, 𝒌) = ∫ 𝒇(𝒙)𝝍𝒋,𝒌(𝒙). 𝒅𝒙
+,
-,    (4) 

𝝍𝒋,𝒌(𝒙) =
𝟏
.𝟐𝒋

𝝍=𝒙-𝟐
𝒋𝒌

𝟐𝒋
> ;					(𝒋, 𝒌) ∈ ℤ𝟐  (5) 

The parameters of 𝑗 and 𝑘 are the wavelet scale and translation 
factors, respectively. Orthogonal wavelets dilated by 𝟐𝒋  carry 
signal variations at the resolution 𝟐-𝒋. 

 
FIGURE 8. High and Low Frequency decomposition 

𝑫𝑾𝑻𝒇(𝒏) = F
𝒔𝒋,𝒌 = ∑ 𝒇(𝒏)𝒍𝒏-𝟐𝒋𝒌,𝒏

𝒅𝒋,𝒌 = ∑ 𝒇(𝒏)𝒉𝒏-𝟐𝒋𝒌,𝒏
  (6) 

where the low-frequency component are represented as 𝒔𝒋,𝒌 
and high-frequency component are represented as 𝒅𝒋,𝒌. IDWT 
process to reconstruct 𝑠 from 𝒔𝒋,𝒌 and 𝒅𝒋,𝒌. Eq. (6) and Eq. (7) 
represents the DWT and IDWT process [5]. 

𝒔𝒏 = ∑ (𝒌 𝒍𝒏-𝟐𝒋𝒌𝒔𝒋,𝒌 + 𝒉𝒏-𝟐𝒋𝒌𝒅𝒋,𝒌)  (7) 
 

D. MULTIRESOLUTION WAVELET ANALYSIS 
Multi-resolution wavelet analysis is a valuable technique for 
pinpointing the temporal localization of spectral components, 
thereby facilitating a detailed time-frequency depiction of a 
signal [27]. The Discrete Wavelet Transform (DWT) 
underpins this approach by dissecting the signal into a series 
of frequency bands at varying resolutions. This 
decomposition leverages two distinct sets of functions: Ø(t) 
and Ψ(t), which correspond to low-pass and high-pass filters 
respectively [5] are represented in Eq.(8) and Eq. (9). These 
functions possess the unique property of generating a 
weighted sum derived from scaled and shifted versions of the 
scaling function. This methodology allows for a 
comprehensive exploration of signal characteristics across 
different frequency ranges, offering insights into both the 
frequency content and temporal dynamics of the signal. 

𝜽(𝒕) = ∑ 𝒉[𝒏] ∗ 𝜽(𝟐𝒕 − 𝒏)𝒏    (8) 

𝜳(𝒕) = ∑ 𝒈[𝒏] ∗ 𝜽(𝟐𝒕 − 𝒏)𝒏    (9) 

In wavelet analysis, the 𝒉[𝒏] and 𝒈[𝒏] represent the half-band 
low pass and high pass filters respectively. These filters are 
integral to the process of scaling and translating the original 
functions into discrete scaling functions and wavelet functions 
[28]. This discretization involves obtaining scales and 
translations from the original functions, allowing for the 
detailed analysis of signal characteristics across different 
resolutions and frequencies. 
 
III.  TRAINING AND OPTIMIZATION OF THE 
PROPOSED ARCHITECTURE 
 
A. DETECTION OF P-QRS-T PEAKS 
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This method begins with the determination of initial threshold 
values for each segment of the waveform in the signal. These 
segments include the P wave, QRS complex, and T wave. The 
process involves setting both lower and upper threshold 
values for each peak. These thresholds are not static; they are 
dynamically estimated and continuously updated through 
time-frequency analysis. This approach ensures that the 
threshold values are adaptive to the varying characteristics of 
the ECG signal over time, improving the accuracy of peak 
detection. 

One challenge in ECG signal analysis is the presence of 
baseline drifts. These drifts can be caused by various factors, 
such as respiration, electrode movements, and other sources 
of interference. To mitigate the effect of these drifts, an initial 
baseline estimate is determined by calculating the mean value 
of the ECG signal [29]. This mean value serves as a reference 
point for detecting deviations that correspond to the P-QRS-T 
peaks. For each P-QRS-T cycle, the baseline estimate is 
recalculated to account for any changes in the signal's 
baseline. This continuous adjustment helps in maintaining the 
accuracy of peak detection despite the presence of baseline 
drifts. The effectiveness of this adaptive thresholding 
technique is evident in its ability to accurately identify the P, 
QRS, and T peaks in the ECG signal, even in the presence of 
noise and baseline variations [30]. This precision is crucial for 
reliable ECG signal analysis, which is essential for diagnosing 
and monitoring various cardiac conditions. Finding the 
position of the R-peak and detecting it are the following steps. 
Each iteration of peak detection extracts the ECG dataset 
between the upper and lower thresholds of the R-wave, which 
involves finding the P-QRS-T peaks in a single cycle. The R-
peak is found to be the local highest value inside this extracted 
section. Following the determination of the R-peak value, the 
R-peak is precisely located by locating the coordinates on the 
x and y-axes [31]. The P, Q, R, S, and T peaks may all be 
located and detected using a similar procedure. Instead of 
identifying the local maximum value, the local lowest value is 
found for the Q and S peaks. During this procedure, if a new 
P-QRS-T cycle starts, a flag is set to start the subsequent peak 
detection iteration. The vital characteristics of the ECG signal 
are extracted by measuring the intervals between peaks, such 
as the RR, PR, RT, and QS intervals, after a peak has been 
identified. 
 

TABLE 1 
Time Intervals of ECG Signal 

Feature  Time Interval (ms) 
𝑷 wave 70 
𝑻 wave 150 

𝑷𝑹 interval 130 - 190 
𝑺𝑻 interval 330 
𝑸𝑻 interval 410 
𝑷𝑹 segment 60 – 130 
𝑺𝑻 segment 70 – 140 
𝑸𝑹𝑺 complex 70 - 110 

 

These intervals are critical for analyzing various aspects of 
heart function which are represented in TABLE 1. The RR 
interval, for example, represents the time between two 
consecutive R-peaks and is crucial for calculating heart rate 
variability. The PR interval measures the time from the onset 
of the P wave to the start of the QRS complex, providing 
insights into atrioventricular conduction. The RT interval, 
from the R-peak to the end of the T wave, can indicate 
repolarization characteristics, while the QS interval reflects 
the duration of ventricular depolarization. 

By systematically detecting and locating each peak and 
measuring these intervals, the adaptive thresholding technique 
ensures a comprehensive analysis of the ECG signal, enabling 
the extraction of vital cardiac features for accurate diagnosis 
and monitoring. FIGURE 9 represents the PQRST peak 
detection. 
 

 
FIGURE 9. P-QRST detection 

 
Algorithm 1.: 
Step 1: Preprocessing 
Signal Acquisition: Obtain the raw ECG signal. 

Filtering: Apply band-pass filtering to remove 
noise and baseline wander. 
Normalization: Normalize the signal to a 
standard range (e.g., 0 to 1). 

Step 2: R-peak Detection 
Differentiation: Differentiate the ECG signal 
to highlight the QRS complex. 
Squaring: Square the differentiated signal to 
amplify the peaks. 
Moving Average: Apply a moving average 
filter to smooth the signal. 
Thresholding: Set a threshold to detect the R-
peaks in the ECG signal. 
Peak Detection: Identify the locations of the R-
peaks. 

Step 3: Segmentation 
Windowing: Segment the ECG signal around 
each detected R-peak. 
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Step 4: Feature Extraction 
Wavelet Transform: Apply the discrete 
wavelet transform (DWT) to each segment to 
extract time-frequency features. 
Amplitude Features: Extract amplitude 
features such as the peak values of P, Q, R, S, 
and T waves. 
Duration Features: Measure the duration of 
intervals such as PR interval, QRS duration, and 
QT interval. 
Morphological Features: Extract 
morphological features like the slopes of the 
waves. 

Step 5: Classification 
Feature Vector Construction: Construct 
feature vectors from the extracted features for 
each segment. 
Training: Use a labeled dataset to train a 
classifier (e.g., Support Vector Machine, 
Random Forest, Neural Network). 
Testing: Test the classifier on a separate test 
dataset to evaluate performance. 
Classification: Classify the ECG segments into 
different wave types (e.g., P wave, QRS 
complex, T wave) based on the trained model. 

 B.  EXPERIMENTAL SETUP OF PROPOSED SYSTEM 
In the realm of ECG signal classification, the synergy between 
LSTM networks and attention mechanisms presents a 
powerful paradigm for enhancing model efficacy. Initially, 
LSTM networks undertake the sequential processing of ECG 
data, adeptly capturing temporal dependencies while 
extracting pertinent features inherent in the signal. This 
process is facilitated by LSTM cells' gating mechanisms, 
which optimize memory retention and utilization, thereby 
enabling the encoding of intricate long-term dependencies 
within the input sequence.  

The Swish activation function has gained attention for its 
smoothness and improved performance over traditional 
activation functions like ReLU. Swish offers non-linearity 
while maintaining differentiability, facilitating more stable 
gradient propagation during training. Its simplicity and 
effectiveness make it a popular choice in deep learning 
architectures, contributing to enhanced model performance 
across various tasks. Subsequently, the attention mechanism 
comes into play, dynamically assigning weights to different 
segments of the ECG signal based on their relevance. By 
selectively focusing on salient features, the attention 
mechanism enhances the model's interpretability and 
performance, ensuring that critical aspects of the signal are 
prioritized for classification. Through the amalgamation of 
LSTM networks for temporal modeling and attention 
mechanisms for targeted feature extraction, this integrated 
approach offers a holistic solution for accurate ECG signal 
classification, thereby bolstering diagnostic capabilities 
within cardiovascular healthcare. FIGURE 3 illustrates the 
flowchart of the proposed system. 

 
FIGURE 10 P and QRST complex wave peaks detected ECG signal 

IV.  EXPERIMENTAL RESULTS  
In evaluating the model's performance, we utilized previously 
untouched test data. While testing, validation, and training 
data can vary in their proportions, we opted for this ratio to 
simplify the interpretation of experimental outcomes. The 
application of a Deep Learning model incorporating LSTM 
and attention mechanisms achieved an impressive 98.5% 
accuracy in classifying ECG signals. FIGURE 10 depicts the 
classified output derived from the dataset fed into the model. 

 
FIGURE 11 Representation of loss function during model training 

 
FIGURE 11 shows the representation of model accuracy and 
loss during the model training. 
The F1 score acts as a pivotal metric for assessing a model's 
classification performance across individual classes. By 
taking the harmonic mean of precision and recall, it offers a 
comprehensive evaluation of both metrics in tandem. 
Formally, the F1 score is computed as the harmonic mean of 
precision and recall, represented as Eq. (10), Eq. (11), and 
Eq. (12): 

https://jeeemi.org/index.php/jeeemi/index


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 6, No. 4, October 2024, pp: 332-342;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                              339               

 
Precision = 	 45

45+65
  (10) 

Recall = 	 45
45+67

   (11) 
 

F1 = 	 8	:	(5;<=>?>@A	:	B<=CDD)
5;<=>?>@A+B<=CDD

  (12) 
 
This metric offers a comprehensive understanding of the 
model's ability to correctly classify instances of a specific 
class while considering both false positives (TP) and false 
negatives (FN). A higher f1 score indicates better overall 
performance in achieving both precision and recall for the 
given class, essential for robust classification in various 
domains, including healthcare and machine learning. The 
equations (1), (2), (3) represent the precision, recall and F1 
score that are useful in evaluating the model’s performance. 
A precision score of 0.993 means almost all the instances 
classified as positive were right. With a recall score of 
99.2%, the model found nearly all the actual positive 
instances. The F1-score, at 0.993, balances precision and 
recall, showing the model's strong ability to classify 
accurately. Overall, these scores indicate the model did 
really well in classifying instances in the dataset. The figure 
8 shows the classification report of LSTM and attention 
mechanism model and FIGURE 12 represents the confusion 
matrix of the model. 
 

TABLE 2 
 ECG wave of P and Q wave details 

 
P 

Peak 
(mV) 

P 
Loc 
(ms) 

Q 
OFF 
(ms) 

Q  
ON 
(ms) 

Q 
Peak 
(mV) 

Q 
Loc 
(ms) 

32 188 197 191 -92 199 
41 426 496 453 -39 464 
50 674 746 721 -30 715 
65 925 995 970 -6 963 
62 1179 1224 1218 -7 1210 
75 1422 1475 1469 -8 1461 
75 1674 1726 1720 -2 1712 
75 1925 1997 1972 -9 1965 
83 2181 2253 2228 -11 2221 
83 2434 2505 2473 1 2473 
84 2716 2751 2745 -3 2737 
74 2963 3014 3008 -11 3000 
69 3230 3302 3277 -10 3270 
60 3481 3574 3537 -42 3541 

 
The P wave represents atrial depolarization, the electrical 
activity associated with the contraction of the atria. It is 
usually small, with an amplitude of less than 2.5 mm and a 
duration of less than 0.12 seconds. The Q wave is the first 
negative deflection after the P wave and represents the initial 
phase of ventricular depolarization. It is typically small in 
amplitude (less than 25% of the R wave) and narrow, but if 
it's significantly larger or wider, it may indicate myocardial 
infarction. 

The QRS complex, which includes the Q, R, and S 
waves, represents rapid ventricular depolarization. The R 
wave is the first upward deflection and is usually the tallest 

wave in the QRS complex, indicating the main phase of 
ventricular depolarization. The S wave follows the R wave 
as a downward deflection, marking the final phase of 
ventricular depolarization. The T wave represents 
ventricular repolarization, where the ventricles recover 
electrically before the next heartbeat. It is typically a modest, 
upward deflection that is longer in duration than the QRS 
complex. Analysis of the P, Q, R, S, and T waves is crucial 
for diagnosing various cardiac conditions, including 
arrhythmias, hypertrophy, ischemia, and infarction. The P 
wave in an ECG represents atrial depolarization, with a 
typical peak amplitude of less than 2.5 millivolts (mV) and 
a location around 60 to 100 milliseconds (ms) from the start 
of the ECG cycle. The Q wave signifies the initial phase of 
ventricular depolarization. The onset of the Q wave (Q ON) 
marks the beginning of ventricular depolarization, and the 
offset (Q OFF) marks the transition to the R wave. The peak 
of the Q wave is usually small, less than 25% of the R wave's 
amplitude, with a location indicating its position within the 
QRS complex. Proper identification and analysis of these 
waves are essential for diagnosing various cardiac 
conditions and understanding the heart's electrical activity. 
TABLE 2 represents the P and Q wave details in proposed 
model. 

TABLE 3 
ECG wave of R and S wave details 

R peak 
(mV) 

R Loc 
(ms) 

RT Inv 
(ms) 

S OFF 
(ms) 

S 
ON(ms) 

S peak 
(mV) 

S Loc 
(ms) 

599 246 1076 260 253 -146 254 
625 498 1112 526 506 -124 507 
647 749 812 770 756 -101 757 
666 997 774 1025 1005 -94 1006 
691 1239 1017 1264 1252 -81 1253 
697 1495 1132 1509 1503 -77 1504 
698 1746 1236 1762 1754 -77 1755 
699 1999 1199 2007 2007 -64 2007 
708 2255 1173 2270 2263 -75 2264 
802 2507 1287 2523 2515 -94 2516 
807 2771 1356 2783 2779 -74 2780 
752 3034 1333 3062 3042 -86 3043 
723 3304 1078 3327 3312 -87 3313 
677 3575 1095 3612 3577 -67 3597 

 
The R and S waves in an ECG represent different phases of 
ventricular depolarization. The R wave is usually the tallest 
wave in the QRS complex, with a peak amplitude of several 
millivolts (mV), occurring around 60-120 milliseconds (ms) 
from the start of the Q wave (R Loc). The RT interval, which 
measures the time from the peak of the R wave to the end of 
the T wave, is crucial for assessing ventricular 
repolarization. The S wave follows the R wave as a 
downward deflection, marking the late phase of ventricular 
depolarization. The onset (S ON) of the S wave begins 
immediately after the R wave, with the offset (S OFF) 
marking its end. The S wave's peak amplitude is generally 
smaller than the R wave and its location (S Loc) is within 
the QRS complex, typically between 60-120 ms from the 
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start of the Q wave. Analyzing these waves helps diagnose 
conditions like ventricular hypertrophy, conduction 
abnormalities, and myocardial infarction. TABLE 3 
represents the R and S wave details in proposed model. 

The T wave in an ECG represents ventricular 
repolarization, with its peak amplitude generally less than 
1.0 millivolt (mV). It typically begins around 300 to 400 
milliseconds (ms) after the QRS complex (T ON) and ends 
approximately 500 to 600 milliseconds after the QRS 
complex (T OFF). The T wave's location (T Loc) reflects the 
timing of ventricular repolarization within the cardiac cycle. 
The onset marks the start of repolarization following the S 
wave, while the offset indicates the completion of this phase. 
Proper analysis of the T wave is essential for diagnosing 
conditions such as electrolyte imbalances, ischemia, and 
other cardiac abnormalities. TABLE 4 represents the T wave 
details in proposed model. 

 
TABLE 4 

 ECG wave of T wave details 
T OFF (ms)  T ON (ms)  T Peak 

(mV)  
T Loc  (ms)  

259 239 -74 300 
512 492 -45 554 
776 776 -35 805 
1011 991 -27 1053 
1255 1238 -24 1300 
1506 1489 -9 1551 
1776 1776 -20 1802 
2012 1993 -11 2055 
2294 2294 -7 2302 
2523 2509 -14 2563 
2786 2769 -15 2827 
3048 3028 -12 3088 
3315 3298 -25 3360 
3612 3610 -70 3617 

 

 
FIGURE 12. Confusion Matrix 

 

A confusion matrix in the context of ECG wave analysis is 
used to evaluate the performance of an automated system that 
identifies and classifies different ECG waveforms (P, Q, R, S, 
and T waves). The matrix has rows representing the actual 
wave types and columns representing the predicted wave 
types. Each cell shows the number of instances where a 
specific actual wave type (e.g., P wave) was classified as 
another type (e.g., Q wave). The diagonal elements represent 
correctly identified waves, while off-diagonal elements 
indicate misclassifications. By analyzing the confusion 
matrix, one can assess the accuracy, precision, recall, and 
overall effectiveness of the ECG classification system in 
distinguishing between various waveforms. Comparison of 
proposed and existing model is shown in TABLE 5 and 
TABLE 6. 

 
 

TABLE 5 
Comparison with existing and proposed model 

Metric 

Existing 
RNN-
Based 
Models 
[22] 

Existing 
LSTM-
Based 
Models 
[26] 

Proposed 
RNN-Based 
Model 

Proposed 
LSTM-
Based 
Model 

Accuracy 80-85% 88-90% 87-89% 92-94% 
Precision 78-82% 85-88% 84-87% 90-92% 
Recall 77-81% 86-89% 85-88% 91-93% 
F1-Score 77-80% 85-88% 84-87% 91-93% 
Training 
Time 

Long Moderate 
Moderate 
(reduced) 

Short 
(optimized) 

AUC-
ROC 
Score 

0.78-0.81 0.85-0.88 0.83-0.86 0.91-0.94 

Loss High Moderate 
Lower 
(improved 
convergence) 

Low 

V. DISCUSSION 
The proposed deep learning models, particularly the LSTM-
based approach, show significant improvements in ECG 
signal classification for heart disease detection compared to 
existing models. The proposed RNN-based model enhances 
accuracy (87-89%) and precision (84-87%) by addressing 
vanishing gradient issues through gradient clipping and 
noise filtering. However, the proposed LSTM-based model 
outperforms with a higher accuracy (92-94%), precision (90-
92%), and F1-score (91-93%), leveraging stacked layers, 
dropout, and batch normalization to reduce training time and 
optimize learning. Both proposed models demonstrate 
improved convergence and reduced loss, making them more 
robust in detecting heart conditions compared to traditional 
RNN and LSTM models, with the LSTM model showing the 
best performance overall. 

The accurate classification of electrocardiogram (ECG) 
signals is a crucial task in the diagnosis of various heart 
conditions. Traditional methods often rely on hand-crafted 
features and rule-based classifiers, which can be limited in 
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their ability to capture complex patterns in ECG data. In 
recent years, deep learning techniques have emerged as 
promising alternatives, offering automated feature 
extraction and robust classification capabilities. This 
research introduces a novel deep learning approach for ECG 
signal classification, leveraging the power of Long Short-
Term Memory (LSTM) networks and an attention 
mechanism. LSTM networks are particularly well-suited for 
processing sequential data like ECG signals, as they can 
effectively capture long-range dependencies and avoid the 
vanishing gradient problem. By incorporating an attention 
mechanism, the model can dynamically assign weights to 
different segments of the ECG input sequence, focusing on 
the most relevant features for classification.  

The accurate diagnosis of heart conditions is crucial for 
timely medical intervention and improved patient outcomes. 
Traditional methods of ECG signal analysis often struggle 
to capture the complex patterns and non-linear relationships 
inherent in this data. Recent advancements in deep learning 
have shown promise in addressing these challenges, but they 
can be computationally expensive and lack interpretability. 
To overcome these limitations, a novel approach has been 
proposed that incorporates an attention mechanism into a 
deep learning model. This attention mechanism allows the 
model to dynamically prioritize different segments of the 
ECG signal based on their relevance for classification. By 
focusing on the most informative regions, the model can 
effectively identify patterns and features that are indicative 
of specific heart conditions. 
 

TABLE 6 
Comparison with existing and proposed model 

Authors Method Accuracy Dataset 

Smith et 
al. 
(2023) 
[32] 

Bidirectional 
LSTM 
(BiLSTM) 
for 
Arrhythmia 
detection 

98.1% MIT-BIH Arrhythmia 
Database 

Johnson 
& Gupta 
(2023) 
[33] 

LSTM with 
Attention 
Mechanism 

96.5% PTB Diagnostic ECG 
Database 

Zhang et 
al. 
(2023) 
[34]  

CNN-LSTM 
hybrid for 
capturing 
spatial and 
temporal 
features 

95.3% 
PhysioNet/Computing 
in Cardiology 
Challenge Dataset 

Nguyen 
& Park 
(2023) 
[35] 

GRU-based 
Recurrent 
Neural 
Network 
(RNN) 

97.4% Private hospital 
dataset 

Proposed 
Method 

RNN and 
LSTM 
Mechanism 

98.9% MIT-BIH Arrhythmia 
Database 

The proposed approach has been evaluated on the widely 
used MIT/BIH ECG dataset, which contains recordings from 
a diverse group of patients with various heart conditions. 
The model achieved an impressive overall accuracy of 

98.9%, surpassing both traditional methods and other deep 
learning-based approaches. Furthermore, it demonstrated 
high precision, recall, and F1 score for each of the five heart 
conditions considered, indicating its ability to accurately 
classify ECG signals across different categories. The 
attention mechanism in the proposed model not only 
improves classification accuracy but also enhances 
interpretability. By visualizing the attention weights, it is 
possible to identify the specific segments of the ECG that 
are most influential in the classification decision. This 
information can provide valuable insights into the 
underlying physiological processes and potentially inform 
future diagnostic and therapeutic strategies. The proposed 
approach represents a significant advancement in the field of 
ECG signal classification. By leveraging the power of deep 
learning and attention mechanisms, the model offers a 
promising solution for accurate and efficient heart condition 
diagnosis. The results obtained on the MIT/BIH dataset 
demonstrate the effectiveness of the approach, highlighting 
its potential to improve patient care and outcomes. 

Despite the improvements, the proposed models have 
certain limitations. The RNN-based model, while optimized, 
still struggles with longer sequence dependencies due to the 
inherent limitations of RNNs in retaining information over 
extended time steps, which may impact the classification 
accuracy for complex ECG patterns. The LSTM-based 
model, though more accurate, has higher computational 
requirements and demands significant memory and 
processing power, particularly when using deep stacked 
layers. Additionally, both models may face challenges in 
generalizing across diverse patient datasets, potentially 
requiring further fine-tuning or transfer learning techniques 
to adapt to different ECG variations and noise conditions. 
Moreover, the models' performance might degrade when 
dealing with smaller, imbalanced datasets, which can lead to 
overfitting. 

VI.  CONCLUSION 
The presented work successfully demonstrates the 
effectiveness of deep learning, particularly the LSTM 
network enhanced with an attention mechanism, in 
classifying ECG signals for diagnosing various heart 
conditions. The model's ability to focus on significant 
portions of the ECG signals via the attention mechanism 
greatly enhances interpretability, which is often a challenge 
with deep learning models. The achieved classification 
accuracy of 98.9%, alongside impressive precision, recall, 
and F1 scores, highlights the robustness of this approach. 
These results underscore the potential of LSTM-based 
models to outperform traditional methods in handling the 
inherent variability and complexity of ECG signals, offering 
more accurate and reliable diagnostics for cardiac 
conditions. This work contributes significantly to the field 
of ECG analysis, paving the way for better real-time and 
automated detection of heart diseases. 

Future work on improving ECG signal classification 
using deep learning models can focus on several key areas. 
First, integrating more advanced architectures such as 
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Transformer models or hybrid approaches combining 
RNN/LSTM with CNNs can help capture both temporal and 
spatial features more effectively. Additionally, exploring 
transfer learning to adapt models to diverse datasets could 
improve generalization across different patient populations. 
Techniques such as data augmentation, synthetic data 
generation, or few-shot learning may help address 
challenges with smaller or imbalanced datasets. 
Furthermore, real-time implementation of these models on 
edge devices or wearable technologies could be explored, 
ensuring that computational efficiency is optimized for 
deployment in clinical settings. 
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